
 Open access Journal Article DOI:10.1109/3477.604107

An adaptive neural fuzzy filter and its applications — Source link

Chin-Teng Lin, Chia-Feng Juang

Institutions: National Chiao Tung University

Published on: 01 Aug 1997 - Systems, Man and Cybernetics

Topics: Fuzzy logic, Fuzzy control system, Artificial neural network, Adaptive filter and Filter (video)

Related papers:

 ANFIS: adaptive-network-based fuzzy inference system

 Fuzzy adaptive filters, with application to nonlinear channel equalization

 Recurrent radial basis function networks for adaptive noise cancellation

 Adaptive noise cancelling: Principles and applications

 An online self-constructing neural fuzzy inference network and its applications

Share this paper:

View more about this paper here: https://typeset.io/papers/an-adaptive-neural-fuzzy-filter-and-its-applications-
1kzwf0d1al

https://typeset.io/
https://www.doi.org/10.1109/3477.604107
https://typeset.io/papers/an-adaptive-neural-fuzzy-filter-and-its-applications-1kzwf0d1al
https://typeset.io/authors/chin-teng-lin-v3dx0b8gyz
https://typeset.io/authors/chia-feng-juang-4mboz9jek3
https://typeset.io/institutions/national-chiao-tung-university-1db72t8f
https://typeset.io/conferences/systems-man-and-cybernetics-1tf575tv
https://typeset.io/topics/fuzzy-logic-17suk4py
https://typeset.io/topics/fuzzy-control-system-1mikp4x7
https://typeset.io/topics/artificial-neural-network-3kmw15mc
https://typeset.io/topics/adaptive-filter-325y9iaj
https://typeset.io/topics/filter-video-2sknjtg7
https://typeset.io/papers/anfis-adaptive-network-based-fuzzy-inference-system-4l4y9ozu1d
https://typeset.io/papers/fuzzy-adaptive-filters-with-application-to-nonlinear-channel-1f749u7mog
https://typeset.io/papers/recurrent-radial-basis-function-networks-for-adaptive-noise-3qh8oj79up
https://typeset.io/papers/adaptive-noise-cancelling-principles-and-applications-1kc4rr7avw
https://typeset.io/papers/an-online-self-constructing-neural-fuzzy-inference-network-vyzwho9him
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-adaptive-neural-fuzzy-filter-and-its-applications-1kzwf0d1al
https://twitter.com/intent/tweet?text=An%20adaptive%20neural%20fuzzy%20filter%20and%20its%20applications&url=https://typeset.io/papers/an-adaptive-neural-fuzzy-filter-and-its-applications-1kzwf0d1al
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-adaptive-neural-fuzzy-filter-and-its-applications-1kzwf0d1al
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-adaptive-neural-fuzzy-filter-and-its-applications-1kzwf0d1al
https://typeset.io/papers/an-adaptive-neural-fuzzy-filter-and-its-applications-1kzwf0d1al

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997 635

An Adaptive Neural Fuzzy Filter and Its Applications
Chin-Teng Lin, Member, IEEE, and Chia-Feng Juang

Abstract—A new kind of nonlinear adaptive filter, the adap-
tive neural fuzzy filter (ANFF), based upon a neural network’s
learning ability and fuzzy if-then rule structure, is proposed in
this paper. The ANFF is inherently a feedforward multilayered
connectionist network which can learn by itself according to
numerical training data or expert knowledge represented by
fuzzy if-then rules. The adaptation here includes the construction
of fuzzy if-then rules (structure learning), and the tuning of the
free parameters of membership functions (parameter learning).
In the structure learning phase, fuzzy rules are found based
on the matching of input–output clusters. In the parameter
learning phase, a backpropagation-like adaptation algorithm is
developed to minimize the output error. There are no hidden
nodes (i.e., no membership functions and fuzzy rules) initially,
and both the structure learning and parameter learning are
performed concurrently as the adaptation proceeds. However,
if some linguistic information about the design of the filter is
available, such knowledge can be put into the ANFF to form
an initial structure with hidden nodes. Two major advantages
of the ANFF can thus be seen: 1) a priori knowledge can be
incorporated into the ANFF which makes the fusion of numerical
data and linguistic information in the filter possible; and 2)
no predetermination, like the number of hidden nodes, must
be given, since the ANFF can find its optimal structure and
parameters automatically. Moreover, in contrast to traditional
fuzzy systems where the input-output spaces are partitioned as
grid type causing the combinatorial growing of fuzzy rules as the
input–output dimensions increase, irregular partitions are done in
the ANFF according to the distribution of training data so fewer
fuzzy rules will be generated. To demonstrate the performance of
the ANFF, two applications, the nonlinear channel equalization
and the adaptive noise cancellation, are simulated. Efficiency and
advantages of the ANFF are verified by these simulations and
comparisons.

I. INTRODUCTION

A
DAPTIVE filtering has achieved widespread applications

and success in many areas such as control, image pro-

cessing, and communications [1]. Among the various adaptive

filters, the adaptive linear filter is the most widely used one

mainly due to its low hardware implementation cost and its

properties, like the convergence, global minimum, misadjust-

ment error and training algorithms, and can be easily analyzed

and derived. The adaptive linear filtering has achieved a large

amount of success in many situations. But for some situations

where nonlinear phenomenon appear, the performance of

linear filters have been poor [2]–[5], and the development of

nonlinear filters is thus necessary.

Neural networks are composed of a large number of highly

interconnected processing elements (nodes) which are con-

Manuscript received November 9, 1995; revised June 14, 1996.
The authors are with the Department of Control Engineering, Na-

tional Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
ctlin@fnn.cn.nctu.edu.tw).

Publisher Item Identifier S 1083-4419(97)03881-8.

nected through the weights. When looking into the struc-

ture and learning of neural networks, many common points

to the methods used in adaptive signal processing can be

found. For example, both of them have the adaptive lin-

ear combiner (ALC) properties in common [10]. Also, the

backpropagation algorithm used to train the neural-network

is in fact a generalized Widrow’s least mean square (LMS)

algorithm and can be contrasted to the LMS algorithm usually

used in adaptive filtering. Characterized with these common

points and the powerful learning and generalization ability,

the neural network is now becoming an attractive candidate

in adaptive signal processing. A problem encountered in

the design of neural filters is that the internal layers of

neural networks are always opaque to the user, so it is not

easy to determine the structure and size of a network. To

encode the input–output relationship into the neural network,

repeated learning cycles must be performed and will take a

lot of learning time. In a nonstationary environment, to adapt

themselves to the statistical changes in the environment, the

neural filters’ adaptation will drag the weights away from

their estimates of the previous environment, and knowledge

forgetting then happens. The inconvenience of incorporating

linguistic information expressed as fuzzy if-then rules in

the design of neural filters is yet another shortcoming. To

overcome the shortcomings encountered in neural filters, while

still keeping their advantages, an adaptive neural fuzzy filter

(ANFF) is developed in this paper.

The practical application of expert knowledge to solve

real-world problems has received increasing attention. When

we are constructing information processing systems, like the

filters, the available information usually comes in two forms:

numerical and linguistic. Most often, when we are designing

filters, we use these two forms of information separately.

We use the linguistic information for the choice of the most

suitable kind of filter in application or the order of filters,

etc. [26], while for the training of the filter we use numerical

information only. The design of neural filters is such an

example. Since filters can be considered as mapping functions,

noisy inputs are mapped onto clean outputs. Very often, the

available linguistic information is about this input–output

relationship and is usually expressed as fuzzy if-then rules.

For example, if we know that the high amplitude vicinity of

the noisy input should be mapped by the filter onto the low

amplitude vicinity of the output, we express it as “if input is

high then output is low.” For this reason, a good filter should

be able to learn from such kind of information.

The ANFF is a feedforward multilayer network that inte-

grates the basic elements and functions of a traditional fuzzy

system into a connectionist structure. In this connectionist

1083–4419/97$10.00  1997 IEEE

636 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

structure, the input and output nodes represent the corrupted

signal process and desired signal process, respectively, and,

in the hidden layers, there are nodes function as member-

ship functions (activation functions) and fuzzy logic rules

(connection types). An important feature of the proposed

adaptive filter is that it can dynamically partition the input

space and output space using irregular fuzzy hyperboxes

according to training pattern distribution [26]. This irregular

space-partitioning method is more flexible and can avoid

combinatorial growth of partitioned grids in [26]. Fig. 1(a) and

(b) show the grid-type partitions and the proposed partitioning

method in the ANFF. The problem of space partitioning

from numerical training data is basically a clustering problem.

The proposed ANFF applies the Fuzzy Adaptive Resonance

Theory (Fuzzy ART) proposed by Carpenter et al. [30], [31]

to do fuzzy clustering in the input–output spaces and find

proper fuzzy logic rules dynamically by associating input

clusters with output clusters. For the adaptation of membership

functions in the ANFF, the backpropagation algorithm is used

to find the optimal parameters under the mean square error

(MSE) criterion. Hence, in the ANFF, the Fuzzy ART is

used for structure learning and the backpropagation algorithm

for parameter learning. The ANFF can thus on-line partition

the input–output spaces, tune membership functions, and find

proper fuzzy logic rules dynamically on the fly. Users need

not give the initial fuzzy partitions, membership functions, or

fuzzy logic rules except for the case that expert knowledge is

available and is used as the initial fuzzy rules. Hence, there are

no hidden nodes in the beginning of learning; they are created

and begin to grow as the training signal arrives. Since the

structure of the ANFF is constructed from fuzzy if-then rules,

once the input–output relationship is constructed, it will not

be destroyed and, thus, no knowledge forgetting may happen.

As the statistics of the environment change, the ANFF can

automatically add new nodes to cope with the change and

thus their estimates of the previous environment are still kept.

These properties make the ANFF more suitable for on-line

operation than the neural-network-type filters.

This paper is organized as follows. Section II discusses

previous work about other adaptive filters, neural networks,

fuzzy systems, and neural fuzzy networks. Section III de-

scribes the basic structure and functions of the ANFF. The

on-line structure/parameter learning algorithm of the ANFF,

which combines fuzzy ART and backpropagation learning

algorithm under the MSE criterion is presented in Section IV.

In Section V, the ANFF is applied to the nonlinear channel

equalization problem and adaptive noise cancellation problem.

Finally, conclusions are summarized in the last section.

II. PREVIOUS WORK

Over the past two decades, many kinds of nonlinear filters

designed using a nonadaptive approach have been proposed

[6]. These include the class of filters based upon order statistics

(e.g., L-filters, median filters, and -trimmed mean filters),

and the polynominal filters which are based on the Volterra

series and Wiener series, etc. These filters perform well only

when the statistics of signal and noise processes are known in

(a)

(b)

Fig. 1. (a) Grid-type fuzzy partitioning and (b) flexible hyperbox fuzzy
partitioning.

advance or only for a special kind of noise. In real situations,

the input data are usually nonstationary, and even for the

stationary case, their statistics may not be available. Under

these circumstances, the above filters perform poorly. More-

over, as the order of the filter increases, greater complexity

in design occurs. Because of the two main drawbacks which

appeared in the direct design approach, adaptive design method

of nonlinear filters is required.

Most of the proposed adaptive nonlinear filters are the

adaptation versions of existing nonlinear filters. A major class

is the adaptive stack filter [8] which provides an adaptive

design method to existing generalized stack filters defined

based upon threshold decomposition and Boolean operators,

like the rank-order filters, morphological filters, stack filters

and median filters, etc. [9]. The adaptive stack filter can

solve both the problems of lacking statistics knowledge and

the computation complexity in direct design; however, it is

constrained to be applied to the situations when the threshold

levels are small. Another example is the adaptive Volterra

filter [7]. Volterra filters are linear combinations of order

stochastics and adaptive Volterra filters enable them to tune the

combination coefficients adaptively when the signal or noise

statistics change. Since adaptive Volterra filters are inherently

Volterra filters, they are also constrained to be applied to

the class of nonlinear systems that can be represented by

the Volterra series expansion. Basically, the structures of

the above adaptive nonlinear filters are the same as those

existing nonadaptive filters, and many assumptions are made

in the derivation of these filters, which makes the suitability

of their application limited. Since the performance of such

kind of adaptive nonlinear filters is application oriented, it is

difficult to say which one is dominantly better than others.

The development of new adaptive nonlinear filters that can

be applied under arbitrary situations is thus necessary. The

universal approximation ability of neural and fuzzy networks

makes them suitable for this requirement.

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 637

Many kinds of nonlinear filters designed using neural net-

works have been proposed. One of them is the neural filter,

whose learning algorithm is shown to be more efficient than

Lin’s adaptive stack filtering algorithm [16]. This class of

neural filters is based on the threshold decomposition and

neural networks, and are divided into hard neural filters

(whose activation functions are unit steps) and soft neural

filters (whose activation functions are sigmoid functions).

Another kind of neural filter is the recursive filter obtained

by training a recurrent multilayer perception (RMLP) [17].

Other applications of neural networks in the adaptive filtering

include nonlinear channel equalizers [13], [15] and the noisy

speech recognition [5], [11], [12] where neural networks are

used to map the noisy input features into clean output features

for recognition. Common disadvantages of these neural filters

are discussed in Section I.

A fuzzy system is composed of a bunch of fuzzy if-then

rules. Conventionally, the selection of fuzzy if-then rules often

relies on a substantial amount of heuristic observation to

express proper strategy’s knowledge. Obviously, it is difficult

for human experts to examine all the input–output data from

a complex system to find the suitable number of rules within

the fuzzy systems. For this reason, a fuzzy system with neural

network’s learning ability is required.

To enable a neural network to learn from numerical data

as well as expert knowledge expressed as fuzzy if-then rules,

several approaches have been proposed [18]–[25]. The neural

fuzzy network [21]–[24], which is inherently a fuzzy logic

system embedded with neural network’s learning ability, is

one of them. Generally, two phases of learning, structure

and parameter, are performed sequentially to construct neural

fuzzy networks. First, the structure learning is employed

to construct the rules, and then the parameter learning is

performed to tune the free parameters of each rule. This

sequential learning scheme makes these networks suitable only

for off-line operation, not for on-line operation. Another type

of network is the fuzzy neural network proposed in [25]. This

network is inherently a neural network being able to learn

from fuzzy input–output pairs. To encode a fuzzy if-then rule

into the neural network, repeated training is required, which

is time consuming and the learned fuzzy if-then relationship

may be destroyed for on-line learning. The other type of

neural network is the expert network [18]–[20] that combines

neural network with symbolic method. The shortcoming of this

method is that to encode an expert knowledge into the network,

the number of nodes required is large, and the input–output

relation expressed is crisp and not fuzzy.

The application of an adaptive fuzzy network as a filter

can be found in [26]. Even though this filter can make use

of both linguistic and numerical information in their natural

form, some drawbacks of this structure can still be seen. For

their recursive-least-squares (RLS)-type fuzzy adaptive filters,

the input spaces are partitioned in the grid type as shown in

Fig. 1(a). The RLS-type fuzzy adaptive filters do have high

convergent speed, but input spaces partitioned as this type have

a serious problem: the number of fuzzy subspaces increases

exponentially as the dimension of input spaces increases

and will cause a high computation load and high memory

Fig. 2. Functional diagram of a fuzzy system.

requirement. As to the least-mean-squares (LMS)-type fuzzy

adaptive filters in [26], the number of fuzzy rules should be

decided in advance and are initially assigned arbitrarily. In

real situations, the proper number of fuzzy rules are not easy

to decide and arbitrary assignment of the initial rules will

restrain the learning speed. As shown in the following sections,

these shortcomings are solved by the proposed ANFF, with the

original advantages of traditional adaptive fuzzy systems kept.

III. THE STRUCTURE OF ANFF

The universal approximation ability of some fuzzy systems

has been proven [27], [28]. Theoretically, any kind of filters,

linear or nonlinear, can be approximated with these fuzzy

systems. The structure and basic components of a conventional

fuzzy system will be briefly introduced (for more details,

please refer to [37] and [38]), and then the structure of the

ANFF is proposed.

A. Basic Structure of a Fuzzy System

Fig. 2 shows the basic structure of a conventional fuzzy

system with a learning/adapting component. Before proceed-

ing, we must define some important terms. A fuzzy set in

a universe of discourse is characterized by a membership

function . Thus, a fuzzy set in may be

represented as a set of ordered pairs. Each pair consists of

a generic element and its grade of membership function

, that is, . is called a

support value if . If is a continuous universe

and is normal and convex (i.e.,

and

, then is a fuzzy number. A linguistic variable

in a universe of discourse is characterized by

and

where is the term set of , that is, the set of names

of linguistic values of with each value being a fuzzy

number with membership function defined on . So

is a semantic rule for associating with each value its meaning.

638 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

For example, if indicates speed, then may be slow,

medium, fast . Following the above definition, the input vector

which includes the input state linguistic variables ’s,

and the output state vector which includes the output state

linguistic variables ’s in Fig. 2 can be defined as

(1)

(2)

The fuzzifier in Fig. 2 is a mapping from an observed input

space to fuzzy sets in certain input universe of discourse. So

a specific value at time is mapped to the fuzzy set

with degree and to the fuzzy set with degree

, and so on.

The fuzzy rule base in Fig. 2 contains a set of fuzzy logic

rules . For a multi-input and multi-output (MIMO) system,

we have

where the th fuzzy logic rule is

IF is and and is

THEN is and and is

The preconditions of form a fuzzy set

and the consequent of is the union of independent

outputs. So the rule can be represented by a fuzzy implication

where “ ” represents the union of independent variables.

Since the outputs of MIMO rule are independent, the general

rule structure of MIMO fuzzy system can be represented as

a collection of multi-input and single-output (MISO) fuzzy

systems by decomposing the above rule into subrules with

as the single consequent of the th subrule. In this

subsection, for clarity, we will consider MISO system in the

following analysis. A sample rule is

IF the speed is TOO SLOW and the acceleration

is DECREASING,

THEN INCREASE POWER STRONGLY.

The inference engine in Fig. 2 matches the rule precondi-

tions in the fuzzy rule base with the input state linguistic terms

and performs implication. For example, if there are two rules

R IF is and is THEN is

R IF is and is THEN is

then the firing strengths of rules R1 and R2 are defined as

and , respectively. Here is defined as

(3)

where “ ” is the fuzzy AND operation. The most commonly

used fuzzy AND operations are intersection and algebraic

product [37], [38].

Rules R1 and R2 lead to the corresponding decision with

the membership function, , which is defined as

(4)

where is the variable that represents the membership func-

tion support values. Combining these decisions, we obtain the

output decision

(5)

where “ ” is the fuzzy OR operation. The most commonly used

fuzzy OR operations are union and bounded sum [37], [38].

Notice that the last result is a membership function curve.

Before sending out the signal to the plant, we must defuzzify

it to get a crisp decision, which is what defuzzifier block in

Fig. 2 does. Among commonly used defuzzification strategies,

the center of area method yields a superior result [37], [38].

Let be the support value at which the membership function,

, reaches the maximum value . Then the

defuzzification output is

(6)

The preceding describes the standard function operations in

a conventional fuzzy system, although there are some alter-

natives for fuzzy OR, fuzzy AND, and reasoning operations

[37], [38].

Enabling a fuzzy system to learn is an important issue. The

learning/adapting block in Fig. 2 represents this function. This

learning/adapting block finds suitable fuzzy logic rules and

adapts the fuzzifier and the defuzzifier to find the proper shapes

and membership function overlaps by learning the desired

outputs. Traditionally, the structure or the number of rules in

an adaptive fuzzy system are all predecided, and the adaptation

includes only the parameters of the membership functions.

The aim of this paper is to present an adaptive filter that

can adapt itself to match the input–output pairs and construct

fuzzy rules automatically. In the next subsection, the adaptive

neural fuzzy filter (ANFF), a feedforward connectionist model,

is proposed. This neural-network-based architecture eliminates

the structure predescription process and distributively stores

mapping knowledge in the connection types and link weights.

More importantly, the connectionist architecture is a natural

structure for performing neural learning [26].

B. Adaptive Neural Fuzzy Filters

In this section, we will describe the structure and func-

tions of the proposed ANFF, a connectionist type of filter

constructed from a set of fuzzy if-then rules. The ANFF

(see Fig. 3) has five layers with node and link numbering

defined by the brackets on the left-hand side of the figure.

Layer-1 nodes are input nodes (input linguistic nodes) rep-

resenting input linguistic variables. Layer-5 nodes are output

nodes (output linguistic nodes) representing output linguistic

variables. Layer-2 and layer-4 nodes are term nodes that act as

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 639

Fig. 3. Structure of the proposed ANFF.

membership functions representing the terms of the respective

input and output linguistic variables. Each layer-3 node is a

rule node representing one fuzzy logic rule. Thus, together all

the layer-3 nodes form a fuzzy rule base. Links between layers

3 and 4 function as a connectionist inference engine. Layer-3

links define the preconditions of the rule nodes, and layer-4

links define the consequents of the rule nodes. Therefore, each

rule node has at most one link to some term node of a linguistic

node, and may have no such links. This is true both for

precondition links (links in layer 3) and consequent links (links

in layer 4). The links in layers 2 and 5 are fully connected

between linguistic nodes and their corresponding term nodes.

The arrows indicate the normal signal flow directions when the

network is in operation (after it has been built and trained).

We will later indicate the signal propagation, layer-by-layer,

according to the arrow direction.

The ANFF uses the technique of complement coding from

Fuzzy ART [30] to normalize the input–output training vectors.

Complement coding is a normalization process that rescales

an -dimensional vector in , to its

-dimensional complement coding form in , such

that

(7)

where and is the com-

plement of , i.e., . As mentioned in [30],

complement coding helps avoid the problem of category

640 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

proliferation when using fuzzy ART for fuzzy clustering.

It also preserves training vector amplitude information. In

applying the complement coding technique to the ANFF, all

training vectors (either input state vectors or desired output

vectors) are transformed to their complement coded forms in

the preprocessing process, and the transformed vectors are then

used for training.

A typical network consists of nodes with some finite number

of fan-in connections from other nodes represented by weight

values, and fan-out connections to other nodes. Associated

with the fan-in of a node is an integration function which

combines information, activation, or evidence from other

nodes, and provides the net input, i.e.,

net-input

(8)

where is the th input to a node in layer , and is

the weight of the associated link. The superscript in the above

equation indicates the layer number. This notation will be also

used in the following equations. Each node also outputs an

activation value as a function of its net-input

output (9)

where denotes the activation function. We will next

describe the functions of the nodes in each of the five layers

of the ANFF. Assume that the dimension of the input space

is , and that of the output space is .

Layer 1: Each node in this layer is called an input linguistic

node and corresponds to one input linguistic variable. Layer-

1 nodes just transmit input signals to the next layer directly.

That is,

and (10)

From the above equation, the link weight in layer 1

is unity. Notice that due to the complement coding process,

for each input node , there are two output values, and

.

Layer 2: Nodes in this layer are called input term nodes

and each represents a term of an input linguistic variable, and

acts as a one-dimensional membership function. The following

trapezoidal membership function [39] is used

and

(11)

where and are, respectively, the left-flat and right-

flat points of the trapezoidal membership function of the th

input term node of the th input linguistic node [see Fig. 4(a)];

is the input to the th input term node from the th input

linguistic node (i.e., ; and

if

if

if

(12)

The parameter is the sensitivity parameter that regulates the

fuzziness of the trapezoidal membership function. A large

(a)

(b)

Fig. 4. (a) One-dimensional and (b) two-dimensional trapezoidal member-
ship function.

means a more crisp fuzzy set, and a smaller makes the

fuzzy set less crisp. A set of input term nodes (one for each

input linguistic node) is connected to a rule node in layer 3

where its outputs are combined. This defines an -dimensional

membership function in the input space, with each dimension

specified by one input term node in the set. Hence, each input

linguistic node has the same number of term nodes. That is,

each input linguistic variable has the same number of terms

in the ANFF. This is also true for output linguistic nodes.

A layer-2 link connects an input linguistic node to one of

its term nodes. There are two weights on each layer-2 link.

We denote the two weights on the link from input node

(corresponding to the input linguistic variable) to its th

term node as and (see Fig. 3). These two weights

define the membership function in (11). The two weights,

and , correspond, respectively, to the two inputs, and

from the input linguistic node . More precisely, and

, the two inputs to the input term node , will be used

during the fuzzy-ART clustering process in ANFF’s structure-

learning step to decide and , respectively. In ANFF’s

parameter-learning step and normal operating, only is used

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 641

in the forward reasoning process [i.e., in (11)]. We

detail the ANFF learning scheme in Section IV.

Layer 3: Nodes in this layer are called rule nodes and each

represents one fuzzy logic rule. Each layer-3 node has input

term nodes fed into it, one for each input linguistic node.

Hence, there are as many rule nodes in the ANFF as there are

term nodes of an input linguistic node (i.e., the number of rules

equals the number of terms of an input linguistic variable).

Notice that each input linguistic variable has the same number

of terms in the ANFF as mentioned in the above. The links

in layer 3 are used to perform precondition matching of fuzzy

logic rules. Hence the rule nodes perform the operation

and (13)

where is the th input to a node in layer 3 and the

summation is over the inputs of this node. The link weight

in layer 3 is then unity. The summation in the above

equation is equivalent to defining a multidimensional (-

dimensional) membership function, which is the summation

of the trapezoid functions in (11) over . This forms a

multidimensional trapezoidal membership function called the

hyperbox membership function [39], since it is defined on a

hyperbox in the input space. The corners of the hyperbox

are decided by the layer-2 weights, and , for all

’s. More clearly, the interval defines the edge of

the hyperbox in the th dimension. Hence, the weight vector

, defines a hyper-

box in the input space. An illustration of a two-dimensional

hyperbox membership function is shown in Fig. 4(b). The rule

nodes output are connected to sets of output term nodes

in layer 4, one for each output linguistic variable. This set

of output term nodes defines an -dimensional trapezoidal

(hyperbox) membership function in the output space that

specifies the consequent of the rule node. Different rule nodes

may be connected to the same output hyperbox (i.e., they may

have the same consequent) as shown in Fig. 3.

Layer 4: The nodes in this layer are called output term

nodes; each has two operating modes: down-up transmission

and up-down transmission (see Fig. 3). In down-up transmis-

sion mode, the links in layer 4 perform the fuzzy OR operation

on fired (activated) rule nodes that have the same consequent

and (14)

where is the th input to a node in layer 4 and is

the number of inputs to this node from the rule nodes in

layer 3. Hence the link weight is In up-down

transmission mode, the nodes in this layer and the up-down

transmission links in layer 5 function exactly the same as

those in layer 2: each layer-4 node represents a term of

an output linguistic variable and acts as a one-dimensional

membership function. A set of output term nodes, one

for each output linguistic node, defines an -dimensional

hyperbox (membership function) in the output space, and there

are also two weights, and , on each of the up-down

transmission links in layer 5 (see Fig. 3). The weights define

hyperboxes (and thus the associated hyperbox membership

functions) in the output space. More clearly, the weight

vector, , defines

a hyperbox in the output space.

Layer 5: Each node in this layer is called a output linguistic

node and corresponds to one output linguistic variable. There

are two kinds of nodes in layer 5. The first kind of node

performs up-down transmission for training data (desired

outputs) to feed into the network, acting exactly like the input

linguistic nodes. For this kind of node, we have

and (15)

where is the th element of the normalized desired output

vector. Notice that complement coding is also performed on

the desired output vectors. Thus, as mentioned above, there

are two weights on each of the up-down transmission links in

layer 5 (the and shown in Fig. 3). The weights define

hyperboxes and the associated hyperbox membership functions

in the output space. The second kind of node performs down-

up transmission for decision signal output. These nodes and

the layer-5 down-up transmission links attached to them act as

a defuzzifier. If and are the corners of the hyperbox

of the th term of the th output linguistic variable , then

the following functions can be used to simulate the center of

area defuzzification method:

and

(16)

where is the input to the th output linguistic node from

its th term node, and denotes the

center value of the output membership function of the th

term of the th output linguistic variable. The center of a fuzzy

region is defined as the point with the smallest absolute value

among all the other points in the region at which the value

of membership function is equal to one. Here the weight,

, on a down-up transmission link in layer 5 is defined

by , where and are

the weights on the corresponding up-down transmission link

in layer 5.

The fuzzy reasoning process in the ANFF is illustrated

in Fig. 5(a), which shows a graphic interpretation of the

center of area defuzzification method. Fig. 5(b) shows the

corresponding structure of the ANFF. Here, we consider a

two-input and two-output case. As shown in the figure, three

hyperboxes (IH1, IH2, and IH3) are formed in the input

space and two hyperboxes (OH1, OH2) are formed in the

output space. These hyperboxes are defined by the weights

, and . The three fuzzy rules indicated in the

figure are “IF is IH1 THEN is OH1 (rule 1),” “IF is IH2

THEN is OH1 (rule 2),” and “IF is IH3 THEN is OH2

(rule 3),” where and . If an input

pattern is located inside a hyperbox, the membership value

is equal to one [see (12)]. In this figure, according to (14),

642 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

(a)

(b)

Fig. 5. (a) The fuzzy reasoning process in the ANFF model. (b) The
corresponding ANFF structure of (a).

is obtained by performing fuzzy OR (maximum) operation

on the inferred results of rules 1 and 2, which have the same

consequent, OH1. Also according to (14), is directly the

inferred result of rule 3. and are then defuzzified to get

the final output according to (16).

Note that with the proposed learning algorithms developed

in Section IV, no input–output term nodes and no rule node

exist when learning begins. They are created dynamically as

on-line teaching signals are received and learning proceeds.

But for the cases where some expert knowledges, which are

expressed as fuzzy if-then rules, are known in advance, these

rules can be presented as initial rules in the ANFF. As training

proceeds, if the expert knowledge is not able to handle the

desired mapping, new input and output term nodes and rule

nodes are added during the learning process. This enables the

combination of expert knowledge and numerical training data

into a filter, a major advantage of the ANFF.

IV. LEARNING ALGORITHM FOR THE ANFF

In this section, we develop an on-line learning algorithm

to find the optimal fuzzy filter under the MSE criterion. The

learning algorithm combines structure learning and parameter

learning to determine the proper corners of the hyperbox (’s

and ’s) for each term node in layers 2 and 4. It also learns

fuzzy logic rules and link connection types in layers 3 and 4,

that is, the precondition and consequent links of the rule nodes.

A. Problem Formulation

The problem of the design or adaptation of an optimal

fuzzy filter can be phrased as follows. Given a process

specified in a finite interval length, , we are to

design a nonlinear filter in such a way that the estimated value,

, based upon is as close as possible to the desired

process . Written in mathematical form, we have

(17)

where is in the interval , and represents the

function of the desired nonlinear filter. The process

is usually a nonlinear version of corrupted with noise

. The objective is to find the optimal filter, , so as

to minimize the MSE

(18)

Two steps, the structure learning step and the parameter

learning step as shown in Fig. 6, are used concurrently to

achieve this goal, and are introduced in the following two

subsections.

B. The Structure-Learning Step

The structure-learning task can be stated as following. Given

input training data at time and desired

output value , find proper fuzzy partitions, membership

functions, and fuzzy logic rules. At this step, the network

works in a two-sided manner, that is, the nodes and links

in layer 4 are in the up-down transmission mode so training

input and output data are fed in the ANFF from both sides.

The structure-learning step consists of three learning pro-

cesses: input fuzzy clustering process, output fuzzy clustering

process, and mapping process. The first two processes are

performed simultaneously on both sides of the network, and

are described below.

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 643

Fig. 6. Flowchart of the learning algorithm for the ANFF.

1) Input Fuzzy Clustering Process: We use the fuzzy ART

fast learning algorithm [30], [31] to find the input membership

function parameters, and . This is equivalent to finding

proper input space’s fuzzy clustering or, more precisely, to

forming proper fuzzy hyperboxes in the input space. Compared

with other fuzzy clustering techniques, the major advantage of

this one is on the ability of on-line generation of a new cluster

when necessary. Hence, no preassignment of the number of

rules is required. Initially, for each complement coded input

vector [see (7)], the values of choice functions, , are

computed by

(19)

where “ ” is the minimum operator performed for the pairwise

elements of two vectors, is a constant, is the current

number of rule nodes, and is the complement weight vector,

which is defined by

Notice that is

the weight vector of layer-2 links associated with rule node

. The choice function value indicates the similarity between

the input vector and the complement weight vector . We

then need to find the complement weight vector closest to .

This is equivalent to finding a hyperbox (category) that

could belong to. The chosen category is indexed by , where

(20)

Resonance occurs when the match value of the chosen cate-

gory meets the vigilance criterion

(21)

where is a vigilance parameter. If the vigilance

criterion is not met, we say mismatch reset occurs. In this case,

the choice function value is set to zero for the duration of

the input presentation to prevent persistent selection of the

same category during search (we call this action “disabling

”). A new index is then chosen using (20). The search

process continues until the chosen satisfies (21). This search

process is indicated by the feedback arrow marked with

“vigilance test” in Fig. 6. If no such is found, then a new

input hyperbox is created by adding a set of new input term

nodes, one for each input linguistic variable, and setting up

links between the newly added input term nodes and the input

linguistic nodes. The complement weight vectors on these new

layer-2 links are simply given as the current input vector, .

These newly added input term nodes and links define a new

hyperbox, and thus a new category, in the input space. We

denote this newly added hyperbox as .

2) Output Fuzzy Clustering Process: The output fuzzy

clustering process is exactly the same as the input fuzzy

clustering process except that it is performed between layers 4

and 5 which are working in the up-down transmission mode.

Of course, the training pattern used now is the desired output

vector after complement coding, .

We denote the chosen or newly added output hyperbox by .

This hyperbox is defined by the complement weight vector

in layer 5,

The above two fuzzy clustering processes produce a chosen

input hyperbox indexed as and a chosen output hyperbox

indexed as , where the input hyperbox is defined by

and the output hyperbox by . If the chosen input

hyperbox is not newly added, then there is a rule node, ,

that corresponds to it. If the input hyperbox is a newly added

one, then a new rule node (indexed as) in layer 3 is added,

and connected to the input term nodes that constitute it.

3) Mapping Process: After the two hyperboxes in the input

and output spaces are chosen in the input and output fuzzy

clustering processes, the next step is to perform the mapping

process which decides the connections between layer-3 and

layer-4 nodes. This is equivalent to deciding the consequents

of fuzzy logic rules. This mapping process is described by

the following algorithm, wherein connecting rule node to

output hyperbox we means connecting the rule node to

the output term nodes that constitutes the hyperbox in the

output space.

644 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

Step 1: IF rule node is a newly added node

THEN connect rule node to output hyperbox

Step 2: ELSE IF rule node is not connected to output

hyperbox originally

THEN disable and perform Input Fuzzy Clustering

Process to find the next qualified [i.e., the next rule node

that satisfies (20) and (21)].

Go to Step 1.

Step 3: ELSE no structure change is necessary.

In the mapping process, hyperboxes and are resized

according to the fast learning rule [30] by updating weights,

and as

(22)

Note that once the consequent of a rule node has been

decided in the mapping process, it will not be changed

thereafter. To show how the structure learning of the ANFF

works, a simple example is given below.

4) Simple Example: Fig. 5(b) shows the structure of an

ANFF, which is being constructed during the learning process.

Learning is performed continuously for succeeding incoming

training data. Fig. 5(a) shows the generated two-dimensional

hyperboxes in the input–output spaces, and the projected

membership functions for each variable. Fig. 5(b) shows the

corresponding structure of the ANFF. For a given training

datum, the input fuzzy clustering process and the output fuzzy

clustering process find or form proper clusters (hyperboxes)

in the input and output spaces, respectively. Assume that the

input and output hyperbox pair found (or formed) are .

The mapping process then tries to relate these two hyperboxes

by setting up links between them. This is equivalent to finding

a fuzzy logic rule that defines the association between an

input hyperbox and an output hyperbox. The following cases

may happen during the mapping process. Case 1: If the input

hyperbox and output hyperbox as well as their association

exist already [e.g., (IH1, OH1), (IH2, OH1),

or (IH3, OH2) in Fig. 5(a)], then only Step 3 in the mapping

process is satisfied and thus no structural change is necessary.

Case 2: If input hyperbox is newly formed (i.e., IH4),

and thus not connected to any output hyperbox, then Step

1 in the mapping process is satisfied and input hyperbox

will be connected to output hyperbox directly, where

could be OH1, OH2, or a newly formed hyperbox, OH3. Case

3: If input hyperbox is associated with an output hyperbox

different from originally (i.e., assume (IH2, OH2),

but the original mapping is (IH2, OH1)), then Step 2 in the

mapping process is satisfied and a new input hyperbox close

to will be found or formed by performing the input fuzzy

clustering process again. This search, called “match tracking”

(see Fig. 6), continues until an input hyperbox, , that can be

associated with output hyperbox is found [e.g.,

(IH3, OH2)].

The vigilance parameter, , is an important structure-

learning parameter that determines learning cluster density.

High (approaching 1) values tend to produce increasingly

finer learning clusters, until at 1, each training datum is

assigned to its own cluster in the input (output) space. Low

(approaching 0) values tend to produce increasingly coarser

learning clusters, until at 0, all training data are assigned to a

single cluster in the input (output) space.

Clearly, a constantly high or low value will result in

formation of excessively high numbers of clusters on the one

hand, or very low output accuracy (and thus, low network

representation power) on the other hand. For these reasons, we

chose an adaptive vigilance strategy in which the parameter

is initially set high to allow fast ANFF structure growth, and

then monotonically decreased to slow cluster formation and

stabilize learning. Empirical studies have shown this approach

to be efficient and stable in the learning speeds and numbers

of clusters it produces.

C. The Parameter-Learning Step

After the network structure has been adjusted according to

the current training pattern in the structure-learning step, it is

then necessary to fine tune the network parameters using the

same training pattern. This fine tuning process is necessary

to assure the desired output accuracy of a network. Using the

terminology of fuzzy logic: once our adaptive neural fuzzy

filter has found its fuzzy logic rules, its membership functions

must be tuned to make its output meet the desired output

as closely as possible. Notice that the following parameter

learning is performed on the whole network after the structure

learning step, no matter whether the nodes (links) are newly

added or are existent originally. The parameter-learning task

can be stated as: Given the training input data

, the desired output value , and the network

structure (specified by input and output hyperboxes and fuzzy

logic rules), we need to adjust the network parameters to make

the network output match the desired output values as closely

as possible. Thus, the network works in a feedforward manner;

that is, the nodes and links in layer 4 are in the down-up

transmission mode. Basically, the backpropagation algorithm

is used to find node output errors, which are then analyzed to

guide parameter adjustment.

As mentioned above, the goal of training the ANFF is to

minimize the error function [see (18)]

(23)

where is the desired signal, and is the filtered

signal. Based upon this MSE criterion and in analogy to

the backpropagation algorithm, we can derive the following

general parameter-learning rule:

(24)

(25)

where is the adjustable parameter in the filter (i.e., or

). To show the parameter-learning rules, we derive the rules

layer-by-layer using the hyperbox membership functions with

corners ’s and ’s as the adjustable parameters for these

computations. In the following derivation, we consider only

one output linguistic variable for notational clarity. Hence, the

adjustable parameters in layer 5 are denoted by , and

, for the th term node.

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 645

Layer 5: Using (16), (24), and (25), the updating rule for

the corners of the hyperbox membership function is

(26)

And the corner parameter is updated by

(27)

Similarly, using (16), (24), and (25), the updating rule for the

other corner parameter is

(28)

And this corner parameter is updated by

(29)

Notice that since the update values for and are the

same, the constraint associated with the trapezoidal

membership function in the output space is preserved after

tuning.

The error propagated to the preceding layer is

(30)

Layer 4: There is no parameter to be adjusted in this

layer. Only the error signal needs to be computed and

propagated. According to (16), the error signal is derived

by

(31)

where

(32)

(33)

Hence, the error signal is

(34)

In the multi-output case, the computations in layers 5 and 4

are exactly the same as the above and proceed independently

for each output linguistic variable.

Layer 3: As in layer 4, only the error signals need to be

computed in this layer. According to (14), this error signal

can be derived by

(35)

where

(36)

(37)

(38)

where inputs of output terms node The term,

, normalizes the error to be propagated for fired rules

with the same consequent. Hence the error signal is

(39)

If there are multiple outputs, then the error signal becomes

where the summation is performed over the consequents of a

rule node; that is, the error of a rule node is the summation

of the errors of its consequents.

Layer 2: Using (11), (24), and (25), the updating rule of

is derived as in

(40)

where

(41)

if

otherwise.
(42)

So the updating rule of is

(43)

Similarly, using (11), (24), and (25), the updating rule of

is derived as

(44)

where

(45)

if

otherwise.
(46)

646 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

Hence, the updating rule of becomes

(47)

Notice that after tuning, the constraint associated

with the trapezoidal membership function in the input space

is kept by setting , if the violation

condition is encountered.

V. APPLICATIONS AND SIMULATIONS

A. Application to Nonlinear Channel Equalization

The proposed ANFF is used as a nonlinear channel equalizer

in this application. In [26], the first use of fuzzy filter to

equalize nonlinear channels is proposed. Nonlinear channel

equalization is a technique used to combat some imperfect

phenomenon (mainly refers to intersymbol interference in

the presence of noise) in high-speed data transmission over

channels, like the high-speed modems [1]. The structure of

the system is shown in Fig. 7. The transmitted input signal,

, is a sequence of statistically independent random binary

symbols which takes values of 1 or 1 with equal probability.

The signal is sent through the channel. In real communications,

the channel (like the telephone channel and radio channel) is

in fact dispersive and the dispersion will cause interference

between successive samples (intersymbol interference) which

greatly complicates reliable transmission and reception. If

denotes the output of the channel, then the channel function

can be described as

(48)

In general, is a nonlinear function of the past transmitted

signals, and the channels change slowly but significantly over

time, so a nonlinear channel equalizer with adaptation ability

is needed. At the receiving end, the observed signal is the

channel output corrupted by additive noise , that is

(49)

The task of the equalizer is to reconstruct the transmitted

signal, , from the observed information sequence

(where and denote the lag

and order, respectively) such that greater speed and reality can

be achieved. Following the functions defined in [13], [15], the

geometric formulation of the equalizers can be described as

follows. In mathematical form, the function of the equalizer is

where (50)

Let the possible channel noise-free output vectors

(51)

that are produced by sequences of channel inputs containing

and , be denoted by the set

and , respectively, i.e.,

(52)

(53)

(a)

(b)

Fig. 7. (a) Schematic of a data transmission system. (b) ANFF as an adaptive
equalizer.

Fig. 8. Channel output points and optimal decision region in Example 1.

As shown in [15], the optimal equalizer, , which achieves

the minimum bit error rate for a given order and lag is

if

sgn

if

sgn

(54)

where and denote the conditional density func-

tions of observing output given and

, respectively. The optimal decision boundary is thus

the set of points that satisfy

with (55)

For the case that the noise is Gaussian distributed with

zero mean and covariance matrix

(56)

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 647

(a) (b)

Fig. 9. (a) Decision region of the ANFF in Example 1 when the adaptation is stopped at k = 17, where five rules are generated. (b) The generated
hyperboxes and the training data (denoted as “+”).

(a) (b)

Fig. 10. (a) Decision region of the ANFF in Example 1 when the adaptation is stopped at k = 50, where nine rules are generated. (b) The generated
hyperboxes and the training data (denoted as “+”).

the optimal equalizer, , is

sgn

(57)

To demonstrate the performance of the ANFF’s used as

equalizers, different situations are illustrated in the following

examples.

Example 1: Suppose the nonlinear channel function is

(58)

where , and the noise is white

Gaussian distributed with . Then the

covariance matrix used in (56) is

If and , then by (54) the optimal boundary can be

derived and is shown in Fig. 8. In Fig. 8, the shaded region is

the region where the transmitted signal is classified as 1. Also

shown in the figure are the symbols “ ” and “ ” which denote

the elements of the sets of and , respectively.

We now use the ANFF as an equalizer to solve the above

problem. For training the ANFF, all input–output data should

be normalized to be between 0 and 1. For the output, the two

desired values, 1 and 1, are normalized as 0.75 and 0.25,

respectively. Of course, other normalized values are allowed

if they are within 0 and 1. Since the desired output value is

either 0.75 or 0.25, one output node with two clusters centering

at 0.75 and 0.25 is used. Since only two clusters are generated

at the output node, we can simply set the output vigilance

as 1. The decided threshold at the output is set as 0.5 so that

for the output whose value is larger than 0.5, the transmitted

signal is classified as 1, otherwise it is classified as 1. The

input vigilance is set as 0.87 initially and is kept decreasing

as training proceeds. The sensitivity parameter, , and learning

constant, , are chosen as and . There are

no rules initially and they are generated during the training

process. The simulation results (the decision boundaries) after

the on-line training stopped at and are shown

in Fig. 9 and Fig. 10 with the generated rule numbers being 5

and 9, respectively, where denotes the number of time steps

(sampling points). In Figs. 9(b) and 10(b), the training data,

denoted as “ ,” and their corresponding generated hyperboxes

which denote the number of rules are shown.

To explain the meaning of the above results, let us consider

Fig. 9(b). In Fig. 9(b), five hyperboxes (or rules) marked as

are shown. The five fuzzy rules that the

648 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

Fig. 11. Comparison of bit-error-rate curves for the optimal equalizer and the ANFF trained with k = 17 and k = 50 in Example 1.

hyperboxes stand for are

Rule 1: IF is THEN is

Rule 2: IF is THEN is

Rule 3: IF is THEN is

Rule 4: IF is THEN is

Rule 5: IF is THEN is

where , and and are the two

output clusters meaning the decided result being 1 or 1,

respectively. The function of these rules is in fact to classify

whether the received samples contains 1 or 1. From this point

of view, the equalizer can be viewed as a classifier, and the

problem can be considered as a classification problem [36].

In this perspective, the ANFF uses ART to do clustering in

the input space and then maps the clusters to category “1” or

“ 1,” a technique similar to fuzzy ARTMAP [31]. In contrast

to fuzzy ARTMAP, where a cluster is merely a rectangle, a

cluster in the ANFF is in fact a multidimensional membership

function with membership value decaying outside the hyper-

boxes as shown in Fig. 4(b). The degree (or membership) a

sample point belongs to each cluster is calculated and these

degrees are then integrated via the defuzzification process to

produce a final classification result. Moreover, the hyperboxes

(clusters) are tuned optimally in the ANFF as mentioned in

Section IV-C.

The results in Figs. 9 and 10 show that as training proceeds,

the decision boundary has the tendency of converging to the

optimal one. To see the actual bit-error-rate, a realization of

10 points of the sequences and are used to test

the bit-error-rate of the equalizers. We stopped the training of

the ANFF at 17 and 50. From Fig. 11, we can see that

the curve of the bit-error-rate caused by the trained ANFF at

is very close to the optimal one. At higher signal-

to-noise ratio (SNR), these two curves show a little more

deviation. To explain this phenomenon, we take the case with

SNR for example. At SNR , the number of

misclassified bits for the optimal filter are 2, while that for the

ANFF trained after are 14, for a total of 10 testing

bits. Hence the deviation of the two bit-error-rate curves at

Fig. 12. Channel output points and optimal decision region in Example 2.

high SNR in Fig. 11 is in fact caused by a small difference in

the numbers of misclassified bits. Better performance can be

achieved if more sampling points are used for training.

Example 2: The convergence of the ANFF to the optimal

equalizer will be verified for a more complex case in this

example. First, consider the same channel function as that in

Example 1, except that is used. The optimal decision

boundary is shown in Fig. 12. From Fig. 12, we see that the

decision boundary is highly nonlinear and the linear equalizer

will not be able to handle it. By choosing input vigilance

and doing the same training job as in Example 1,

we trained the ANFF and stopped the training at 20, 50,

and 130, respectively. The corresponding decision boundaries

and generated hyperboxes are shown in Figs. 13–15 with

generated rule numbers being 10, 17, and 24, respectively. It

should be noted that at the beginning of training, the hyperbox

may be only a single point and is not clear in these figures.

The tendency of converging to the optimal equalizer is verified

in Figs. 13–15. Also from Figs. 13–15, we find that the ANFF

takes only for the vicinity of the sets, and

, to be properly decided. The bit-error-rate curves of

the ANFF trained for and are shown in

Fig. 17.

For comparison, the LMS-type adaptive fuzzy filter [26]

with 24 randomly chosen rules is used. By using the same

training data and after time steps of training, the

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 649

(a) (b)

Fig. 13. (a) Decision region of the ANFF in Example 2 when the adaptation is stopped at k = 20, where 10 rules are generated. (b) The generated hyperboxes.

(a) (b)

Fig. 14. (a) Decision region of the ANFF in Example 2 when the adaptation is stopped at k = 50, where 17 rules are generated. (b) The generated hyperboxes.

(a) (b)

Fig. 15. (a) Decision region of the ANFF in Example 2 when the adaptation is stopped at k = 130, where 24 rules are generated. (b) The generated hyperboxes.

Fig. 16. Decision region of the LMS-type adaptive fuzzy filter with 24 rules
in Example 2 when the adaptation is stopped at k = 500.

decision boundary and the bit-error-rate curve are shown in

Fig. 16 and 17, respectively. Since the initial rules of this type

of filter are randomly assigned, the training results may be

different for different initial conditions. The result shown here

is a better one of them. More training data (larger time steps)

are required for the LMS-type adaptive fuzzy filter to achieve

the same performance of the ANFF, which required only 130

training time steps. This is due to the fact that the generation

of fuzzy rules in the ANFF is based on the distribution of

input data rather than on arbitrary assignment. The actual

computation time of the ANFF trained for 130 time steps is

0.33 s, while for the LMS-type adaptive fuzzy filter trained

650 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

Fig. 17. Comparison of bit-error-rate curves for the ANFF trained with k = 50 and k = 130, where no linguistic information is incorporated, the LMS-type
adaptive fuzzy filter trained with k = 500, and the ANFF trained with k = 20, where 10 initial fuzzy rules are incorporated.

for 500 time steps, the total computation time is 5.04 s. In

average, for one step of training, the computation time of the

LMS-type adaptive filter is three times of that of the ANFF.

Moreover, for on-line training with a constant sampling rate,

if the computation time of one step of training is less than

the sampling time, then a less number of time steps means

a shorter training time is required, that is, a fast learning is

achieved. The time steps required for the training of the ANFF

is comparable with that of the RLS-type adaptive fuzzy filters

in [26]; however, the RLS-type filter needs 81 fuzzy rules to

achieve the same performance of the ANFF, that uses only 24

fuzzy rules in the example.

Example 3: As mentioned earlier, the ANFF can combine

the training of numerical data and linguistic fuzzy if-then

rules together. In Examples 1 and 2, we have demonstrated

the training of the ANFF by numerical data. In this example,

we will show the case that some expert knowledge is known

in advance and we can incorporate such knowledge into the

ANFF as is done in [26], where the combination of numerical

data and linguistic fuzzy if-then rules was first proposed for

equalizer. Looking at the results in Examples 1 and 2, we

find that the function of the equalizer is in fact to find the

regions in the input space that are corresponding to the input

sequences containing 1 or 1. If in some specific situations,

there are experts who know roughly the decision boundary and

can assign degrees to some input regions to reflect their belief

that the regions should belong to the “1” or “ 1” category,

then we can incorporate such knowledge into the ANFF to

improve its learning speed. Consider, for example, the case in

Fig. 12. If there are experts who are familiar with this case

and can draw fuzzy regions, we can then assign fuzzy rules

to these fuzzy regions.

In constructing the ANFF, the assignment of fuzzy rules

is merely to draw the input and output hyperboxes in the

input and output spaces according to the preconditions and

consequents of the given fuzzy rules, and then connect the

input–output hyperboxes according to the given if-then rela-

tionship. For the uncertain regions no assignment is required,

because as numerical training proceeds new rules will be

generated if necessary. Thus, unlike the scheme used in [26],

the initial number of assigned rules is not required to be equal

to the final total number of rules used in the filter, so more

flexibility is allowed in our ANFF. The assigned hyperboxes

are shown in Fig. 18(a). Since the regions are very rough,

the mean values (center points) are assigned as 0.4 and 0.4

for category 1 and 1, respectively, to reflect the confidence.

Without numerical training data, the decision boundary de-

cided by the given 10 fuzzy rules are shown in Fig. 18(b).

From Fig. 18(b), we see that the decision boundary is correct

for the rightmost or the leftmost parts, but not good for the

middle part. This result reflects that the expert knowledge is

rough and can only provide partial information. To achieve

more precise decision, training via numerical data is still nec-

essary. Using the same training data as in Fig. 13, and stopping

the training at the decision region of the trained ANFF

is shown in Fig. 19. The result shows that only 20 time steps

are required to properly classify the vicinities of

the sets, and , and the bit-error-rate curve

is shown in Fig. 17. The improvement of learning speed by

incorporating expert fuzzy rules is verified from these curves.

B. Application to Adaptive Noise Cancellation

The ANFF is applied for adaptive noise cancellation in this

subsection [32]. Adaptive noise cancellation is concerned with

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 651

(a) (b)

Fig. 18. (a) The assigned hyperboxes and their degree of confidence in Example 3. (b) The decision region generated by the rules from expert knowledge.

Fig. 19. Decision region of the ANFF in Example 3 with 10 initial fuzzy
rules when the adaptation is stopped at k = 20.

the enhancement of noise corrupted signals and is based upon

the availability of a primary input source and an auxiliary

(reference) input source located at the noise field which

contains no or little signal as shown in Fig. 20. In Fig. 20,

the primary input source contains the desired signal , which

is corrupted by noise generated from the noise source .

The received signal is thus

(59)

The secondary or auxiliary (reference) input source receives

the noise , which is correlated with the corrupting noise,

. The principle of the adaptive noise cancellation techniques

is to adaptively process (by adjusting the filter’s weights) the

reference noise to generate a replica of , and then subtract

the replica of from the primary input to recover the

desired signal, . We denote the replica of , i.e., the adaptive

filter output, as process . To show how the system works, we

will follow what is derived in [32]. In [32], the assumptions

that , and are stationary zero-mean processes, is

uncorrelated with and , and and are correlated,

are made. Also, the reference input source is situated in such

a position that it detects only the noise not the signal . Here,

another constraint that process is uncorrelated with process

is added due to the use of nonlinear adaptive filters. From

Fig. 20, we have

(60)

Fig. 20. Flow diagram of using ANFF for solving the adaptive noise
cancelling problem.

By squaring and taking expectation of both sides, we can

obtain

(61)

Our objective is to minimize Observing

(61), we can see that this objective is equivalent to minimizing

, and when

approaches zero, the remaining error is in fact the desired

signal , where represents the function of the nonlinear

adaptive filter.

Traditionally, the design of the adaptive filters for the

aforementioned noise cancelling problem is based upon a

linear filter adapted by the LMS or RLS algorithm. In real

situations, the environment between and or and

is so complex that or is in fact a nonlinear function

of [33]–[35]. Higher performance of noise cancellation by

using a nonlinear filter can thus be expected. To verify this

and show the advantage of using the ANFF for adaptive noise

cancellation, the following examples are given.

Example 4: Consider the case where the primary input

source as shown in Fig. 21(a),

and the noise is generated by a white noise . Assume that the

relation between the noise source and the corrupting noise

is a nonlinear function as

(62)

and the reference input is placed just in front of the noise

source so that we have . The performance of the

652 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

(a)

(b)

Fig. 21. (a) The signal source s in Example 4. (b) The corrupted signal x.

(a)

(b)

Fig. 22. (a) The recovered signal using the linear filter with order 0 during the first epoch of training. (b) The recovered signal using the linear filter
with order 0 after convergence (see Example 4).

linear filter with transfer function

(63)

where is the order of the filter, is investigated first. Linear

filters with order 0, 1, and 2 are tested by setting all initial

weights equal to 0.1. By using the LMS algorithm with

learning constant , we find that for order one and

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 653

(a)

(b)

Fig. 23. (a) The recovered signal using the ANFF without linguistic information during the first epoch of training. (b) The recovered signal using the ANFF
without linguistic information after convergence, where seven rules are generated (see Example 4).

Fig. 24. Comparison of square error between the recovered signal and original signal for different orders of linear filters (a), (b), and (c), ANFF without
linguistic information (d), and ANFF with three initial fuzzy rules (e) for the channel function in (63), with each plotted error value being the sum of
errors over 60 adjacent time steps from the start of adaptation (see Example 4).

two, the weights all decay to zero, and the weight

converges to around 0.8 for all the three linear filters.

This shows that a linear filter with order zero is enough.

The recovered signals during the first epoch of training and

after convergence by using the linear filter with order zero are

shown in Fig. 22(a) and (b), respectively. The results indicate

that the performance of the linear filters is poor, and the

development of nonlinear filters is thus necessary.

654 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

(a)

(b)

(c)

Fig. 25. Illustrations of Example 5. (a) Noise corrupted speech signal. (b) Recovered speech signal using the ANFF. (c) Recovered speech signal
using linear filter.

We next apply the ANFF to this example. Before applying

the ANFF for the adaptive noise cancellation, one thing

should be noted. As stated in Section III, the input and

output of the ANFF should be normalized to be between 0

and 1. This normalization will violate the assumption that

processes , and should be of zero mean, and thus

the derivations of the above equations will not be valid

anymore. To keep the assumption true, we will perform the

normalization only in the input–output space partition process.

When the partition process is finished, we then denormalize the

corners of the hyperboxes as well as the input–output training

data. Thus, in the training process, the zero-mean assumption

holds.

The adaptation of the ANFF is performed after choosing

the initial vigilances as , and learning

parameters as . A total of 1200 training

data are used. The recovered signals during the first epoch

of training and after 100 epochs of training are shown in

Fig. 23(a) and (b), respectively. After 100 epochs of training,

seven fuzzy rules are generated in the ANFF. From Fig. 23,

we find that during the first epoch of training the initial error

(the recovered signal) is not so large as the one obtained from

linear filter. This phenomenon is due to the fact that in the

early stage of the ANFF training, structure learning has learned

the matching of input–output clusters quite well, so the error

is small. Once the structure or rule base is constructed, fine

tuning is performed continuously to minimize the error of the

ANFF. As compared to the performance of the linear filters,

the recovered signal through the use of the trained ANFF is

much closer to the original signal.

LIN AND JUANG: ADAPTIVE NEURAL FUZZY FILTER AND ITS APPLICATIONS 655

Fig. 26. Power spectrum of the noisy speech signal and recovered speech signal using linear filter and ANFF.

To make the performance comparison more precise, we

calculate the square error between the recovered signal and

the original signal for various filters. Fig. 24 shows the error

curves for three different orders of linear filters [curves (a), (b),

and (c)], and for the ANFF trained in the above—the ANFF

without initial fuzzy rules [curve (d)]. In the figure, the error is

calculated from the start of adaptation, and each plotted error

value is the sum of square errors over 60 adjacent time steps.

Also shown in the figure is the error curve for the ANFF with

initial fuzzy rules, which will be explained in the following.

The error curves showed in Fig. 24 indicate that the error of

the ANFF is much smaller than that of the linear filters.

Observing the above results, we see that the adaptation of

the filter is in fact to find a nonlinear function between

and . If we know the characteristics of the channels, we

can design the filter directly. However, in real situations, the

precise channel function is unknown and will change with

time, so the direct design approach is nearly infeasible. Even

though, if we know approximately the characteristic of the

channel function, we can add the a priori fuzzy knowledge to

the ANFF to improve its learning speed. Consider the noise

cancellation problem in this example again [see (62)]. If we

know roughly that the corrupting noise is proportional to

the reference measured noise . (Under some situations, this

is a reasonable relationship, since if the amplitude of the noise

source, , is large, the measured noises and are usually

both large. On the contrary, if the amplitude of the noise

source, is small, the measured noises and are usually

both small.) We can then add the following fuzzy rules in the

ANFF

IF is High, THEN is High,

IF is Middle, THEN is Middle,

IF is Low, THEN is Low.

In the normalized domain, the two corners of the trape-

zoidal membership functions corresponding to the fuzzy terms

“High,” “Middle,” and “Low” are (0.05, 0.3), (0.35, 0.65), and

(0.6, 0.9), respectively. These three fuzzy rules are constructed

in the ANFF initially. Then, after doing the same training job

as in the above, the error curve is shown in Fig. 24 [curve

(e)], where a total of six rules are generated. Fig. 24 shows

that higher learning speed is achieved if a priori knowledge

is incorporated into the ANFF.

Example 5: In previous examples, the signal used is a

sinusoidal signal. In real applications, the signal is usually

very complex such as a human’s speech signal. To demonstrate

the performance of the ANFF in a real-world case, consider

the channel function used in (62) with the signal being

a voice utterance “e” sampled at 10 kHz and is corrupted

with white noise. The measured signal, , is shown

in Fig. 25(a), where SNR dB. After five epochs of

training, the recovered signal, , by using the ANFF (where

eight rules are generated) is shown in Fig. 25(b). Of course,

a better result can be achieved if more epochs of training are

performed. Fig. 25(c) shows the recovered signal by using the

linear filter trained until convergence. The aim of the adaptive

filtering can be regarded as to minimize the power spectrum

of the measured signal. The output power spectrums of the

corrupted and recovered signals using the ANFF and linear

filter is shown in Fig. 26. Since the corrupting noise is white,

minimization over almost all frequency range is seen. From

the comparison of power spectrums, high performance and

learning speed are indeed achieved by using the ANFF.

VI. CONCLUSION

An ANFF is developed in this paper. The ANFF can be

trained by numerical data and linguistic information expressed

by fuzzy if-then rules. This feature makes the incorporation of

a priori knowledge into the design of filters possible. Another

key feature of the ANFF is that, without any given initial

structure, the ANFF can construct itself automatically from nu-

merical training data. Especially, the irregular-type partitioning

on the input–output space can avoid the combinatorial growing

problem existing in the conventional grid-type partitioning

approach of fuzzy systems. Good performance is achieved by

applying the ANFF to the nonlinear channel equalization and

adaptive noise cancellation problems. More applications, like

the noisy speech recognition and noisy image filtering, will

be investigated.

REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[2] S. Benedetto and E. Biglieri, “Nonlinear equalization of digital satellite
channels,” presented at the 9th AIAA Conf. Comm. Satellite Syst., San
Diego, CA, Mar. 1982.

656 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

[3] D. D. Falconer, “Adaptive equalization of channel nonlinearities in
QAM data transmission systems,” Bell Syst. Tech. J., vol. 57, pp.
2589–2611, Sept. 1978.

[4] O. Agazzi, D. G. Messerschmitt, and D. A. Hodges, “Nonlinear echo
cancellation of data signals,” IEEE Trans. Commun., vol. COMM-30,
pp. 2421–2433, Nov. 1982.

[5] S. Moon and T. N. Hwang, “Coordinated training of noise removing
networks,” Proc. Int. Conf. Acoust., Speech, Signal Processing, 1993,
pp. 573–576.

[6] I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters. Boston,
MA: Kluwer, 1989.

[7] M. Bellanger, Adaptive Digital Filters and Signal Analysis. New York:
Marcel Dekker, 1987.

[8] J. H. Lin, T. M. Sellke, and E. J. Coyle, “Adaptive stack filtering under
the mean absolute error criterion,” IEEE Trans. Acoust., Speech, Signal

Processing, vol. 38, pp. 934–954, June 1990.
[9] J. H. Lin and E. J. Coyle, “Minimum mean absolute error estimation

over the class of generalized stack filters,” IEEE Trans. Acoust., Speech,

Signal Processing, vol. 38, pp. 663–678, Apr. 1990.
[10] B. Widrow and R. Winter, “Neural nets for adaptive filtering and

adaptive pattern recognition,” Computer, pp. 25–39, Mar. 1988.
[11] S. Tamura and A. Waibel, “Noise reduction using connectionist models,”

in Proc. Int. Conf. Acoust., Speech, Signal Processing, New York, Apr.
1988, pp. 553–556.

[12] H. B. D. Sorensen, “A cepstral noise reduction multilayer neural
network,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, 1991,
pp. 933–936.

[13] G. J. Gibson, S. Siu, and C. F. N. Cowan, “The application of nonlinear
structures to the reconstruction of binary signals,” IEEE Trans. Signal

Processing, vol. 39, pp. 1877–1884, Aug. 1991.
[14] K. A. Al-Mashouq and I. S. Reed, “The use of neural nets to com-

bine equalization with decoding for severe intersymbol interference
channels,” IEEE Trans. Neural Networks, vol. 5, pp. 982–988, Nov.
1994.

[15] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Reconstruction
of binary signals using an adaptive radial-basis-function equalizer,”
Signal Process., vol. 22, pp. 77–93, 1991.

[16] L. Yin, J. Astola, and Y. Neuvo, “A new class of nonlinear
filters—neural filters,” IEEE Trans. Signal Processing, vol. 41, pp.
1201–1222, Mar. 1993.

[17] T. H. J. Lo, “Synthetic approach to optimal filtering,” IEEE Trans.

Neural Networks, vol. 5, pp. 803–811, Sept. 1994.
[18] G. G. Towell, J. W. Shavlik, and M. O. Noordewier, “Refinement of

approximate domain theories by knowledge-based neural networks,” in
Proc. AAAI, 1990, pp. 861–866.

[19] Q. Yang and V. K. Bhargava, “Building expert systems by a modified
perceptron network with rule-transfer algorithms,” in Proc. IJCNN, San
Diego, CA, 1990, vol. 2, pp. 77–82.

[20] R. C. Lacher, S. I. Hruska, and D. C. Kuncicky, “Back-propagation
learning in expert networks,” IEEE Trans. Neural Networks, vol. 3, pp.
62–72, Jan. 1992.

[21] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using
fuzzy neural networks with the back-propagation algorithm,” IEEE.

Trans. Neural Networks, vol. 3, pp. 801–806, Sept. 1992.
[22] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control

and and decision system,” IEEE Trans. Comput., vol. 40, no. 12, pp.
1320–1336, 1991.

[23] J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665–685, May 1993.

[24] L. X. Wang and J. M. Mendel, “Back propagation fuzzy systems as
nonlinear dynamic system identifiers,” in Proc. IEEE Int. Conf. Fuzzy

Systems, San Diego, CA, 1992, pp. 1409–1418.
[25] H. Ishibuchi, R. Fujioka, and H. Tanaka, “Neural networks that learn

from fuzzy if-then rules,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 85–87,
May 1993.

[26] L. X. Wang and J. M. Mendel, “Fuzzy adaptive filters with application
to nonlinear channel equalization,” IEEE Trans. Fuzzy Syst., vol. 1, pp.
161–170, Aug. 1993.

[27] B. Kosko, “Fuzzy systems as universal approximators,” in Proc.

IEEE Int. Conf. Fuzzy Systems, San Diego, CA, Mar. 8-12, 1992,
pp. 1153–1162.

[28] L. X. Wang, “Fuzzy systems are universal approximators,” in Proc.

IEEE Int. Conf. Fuzzy Systems, San Diego, CA, Mar. 8–12, 1992, pp.
1163–1170.

[29] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control
network,” in Proc. IEEE Int. Conf. Fuzzy Systems, Orlando, FL, 1994,
pp. 1–6.

[30] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART: Fast
stable learning and categorization of analog patterns by an adaptive
resonance system,” Neural Networks, vol. 4, pp. 759–771, 1991.

[31] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps,” IEEE Trans.

Neural Networks, vol. 3, pp. 698–712, Sept. 1992.
[32] B. Widrow et al., “Adaptive noise cancellation: Principles and applica-

tions,” Proc. IEEE, vol. 63, pp. 1691–1717, 1975.
[33] M. J. Coker and D. J. Simkins, “A nonlinear adaptive noise canceller,”

IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 470–473, 1980.
[34] J. C. Stapleton and G. Ramponi, “Adaptive noise cancellation for a

class of nonlinear dynamic reference channels,” in Int. Symp. Circuits

Systems, 1984, pp. 268–271.
[35] S. A. Billings and F. A. Alturki, “Performance monitoring in nonlinear

adaptive noise cancellation” J. Sound Vibration, vol. 157, no. 1, pp.
161–175, 1992.

[36] S. Theodoridis, C. M. S. See, and C. F. N. Cowan, “Nonlinear channel
equalization using clustering techniques,” in IEEE Int. Conf. Commun.,

Chicago, IL, 1992, vol. 3, pp. 1277–1279.
[37] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller—Parts

I and II,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404–435,
1990.

[38] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[39] P. K. Simpson, “Fuzzy min-max neural networks—Part II: Clustering,”
IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 32–45, 1993.

Chin-Teng Lin (S’88–M’91) received the B.S. de-
gree in control engineering from National Chiao-
Tung University, Hsinchu, Taiwan, R.O.C., in 1986,
and the M.S.E.E. and Ph.D. degrees in electrical en-
gineering from Purdue University, West Lafayette,
IN, in 1989 and 1992, respectively.

Since August 1992, he has been with the College
of Electrical Engineering and Computer Science,
National Chiao-Tung University where he is cur-
rently an Associate Professor of Control Engineer-
ing. His current research interests are fuzzy systems,

neural networks, intelligent control, human-machine interface, and video and
audio processing. He is the co-author of Neural Fuzzy Systems—A Neuro-

Fuzzy Synergism to Intelligent Systems, (Englewood Cliffs, NJ: Prentice-Hall),
and the author of Neural Fuzzy Control Systems with Structure and Parameter

Learning, (Singapore: World Scientific).
Dr. Lin is a member of Tau Beta Pi and Eta Kappa Nu. He is also a member

of the IEEE Computer Society, the IEEE Robotics and Automation Society,
and the IEEE Systems, Man, and Cybernetics Society.

Chia-Feng Juang received the B.S. degree in con-
trol engineering from National Chiao-Tung Uni-
versity, Hsinchu, Taiwan, R.O.C., in 1993. He is
currently pursuing the Ph.D. degree there.

His current research interests are neural networks,
learning systems, fuzzy control, noisy speech recog-
nition, and signal processing.

