
 Open access Journal Article DOI:10.1137/S1064827594277673

An Adaptive Newton--Picard Algorithm with Subspace Iteration for Computing
Periodic Solutions — Source link

Kurt Lust, Dirk Roose

Published on: 01 Jul 1998 - SIAM Journal on Scientific Computing (Society for Industrial and Applied Mathematics)

Topics: Discretization, Dynamical systems theory, Newton's method, Shooting method and Jacobi method

Related papers:

 Stabilization of unstable procedures: the recursive projection method

Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-
Level Analysis

 Elements of applied bifurcation theory

 Numerical Methods for Large Eigenvalue Problems

 "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example.

Share this paper:

View more about this paper here: https://typeset.io/papers/an-adaptive-newton-picard-algorithm-with-subspace-iteration-
3hnwswnp0t

https://typeset.io/
https://www.doi.org/10.1137/S1064827594277673
https://typeset.io/papers/an-adaptive-newton-picard-algorithm-with-subspace-iteration-3hnwswnp0t
https://typeset.io/authors/kurt-lust-1thk1bk7bt
https://typeset.io/authors/dirk-roose-4tvryp89t8
https://typeset.io/journals/siam-journal-on-scientific-computing-162j53kf
https://typeset.io/topics/discretization-1gip5tg1
https://typeset.io/topics/dynamical-systems-theory-24op3dlk
https://typeset.io/topics/newton-s-method-1xabdhq1
https://typeset.io/topics/shooting-method-1xlz8tmk
https://typeset.io/topics/jacobi-method-2r4binum
https://typeset.io/papers/stabilization-of-unstable-procedures-the-recursive-366ka9jlvp
https://typeset.io/papers/equation-free-coarse-grained-multiscale-computation-enabling-4a23zxf9n8
https://typeset.io/papers/elements-of-applied-bifurcation-theory-3os3ouq004
https://typeset.io/papers/numerical-methods-for-large-eigenvalue-problems-422tmcjffz
https://typeset.io/papers/coarse-stability-and-bifurcation-analysis-using-time-1wqk0uopj2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-adaptive-newton-picard-algorithm-with-subspace-iteration-3hnwswnp0t
https://twitter.com/intent/tweet?text=An%20Adaptive%20Newton--Picard%20Algorithm%20with%20Subspace%20Iteration%20for%20Computing%20Periodic%20Solutions&url=https://typeset.io/papers/an-adaptive-newton-picard-algorithm-with-subspace-iteration-3hnwswnp0t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-adaptive-newton-picard-algorithm-with-subspace-iteration-3hnwswnp0t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-adaptive-newton-picard-algorithm-with-subspace-iteration-3hnwswnp0t
https://typeset.io/papers/an-adaptive-newton-picard-algorithm-with-subspace-iteration-3hnwswnp0t

HAL Id: hal-01379706
https://hal.archives-ouvertes.fr/hal-01379706

Submitted on 12 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

An Adaptive Newton–Picard Algorithm with Subspace
Iteration for Computing Periodic Solutions
Kurt Lust, Dirk Roose, Alastair Spence, Alan Champneys

To cite this version:
Kurt Lust, Dirk Roose, Alastair Spence, Alan Champneys. An Adaptive Newton–Picard Al-
gorithm with Subspace Iteration for Computing Periodic Solutions. SIAM Journal on Scien-
tific Computing, Society for Industrial and Applied Mathematics, 1998, 19 (4), pp.1188-1209.
10.1137/S1064827594277673. hal-01379706

https://hal.archives-ouvertes.fr/hal-01379706
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

AN ADAPTIVE NEWTON–PICARD ALGORITHM WITH

SUBSPACE ITERATION FOR COMPUTING PERIODIC SOLUTIONS∗

K. LUST† , D. ROOSE† , A. SPENCE‡ , AND A. R. CHAMPNEYS§

Abstract. This paper is concerned with the efficient computation of periodic orbits in large-scale
dynamical systems that arise after spatial discretization of partial differential equations (PDEs). A
hybrid Newton–Picard scheme based on the shooting method is derived, which in its simplest form
is the recursive projection method (RPM) of Shroff and Keller [SIAM J. Numer. Anal., 30 (1993),
pp. 1099–1120] and is used to compute and determine the stability of both stable and unstable
periodic orbits. The number of time integrations needed to obtain a solution is shown to be deter-
mined only by the system’s dynamics. This contrasts with traditional approaches based on Newton’s
method, for which the number of time integrations grows with the order of the spatial discretiza-
tion. Two test examples are given to show the performance of the methods and to illustrate various
theoretical points.

1. Introduction.

1.1. Continuation of periodic solutions. This paper is concerned with the
efficient computation of periodic orbits of PDEs and the determination of their sta-
bility. Specifically we consider the autonomous dynamical system

dx

dt
= f(x, λ), x ∈ R

N , λ ∈ R,(1.1)

with N “large,” and with f derived from a finite element or finite difference spatial
discretization of a parabolic PDE (see section 4). We will assume that f is C2-
continuous in x and λ in the region of interest. For a fixed λ, a periodic solution is
determined by N + 1 unknowns, namely, the initial conditions x(0) ∈ R

N and the
period T . To find these unknowns we use the system

x(T) − x(0) = 0,
s(x(0), T) = 0,

(1.2)

where the second equation is a phase condition needed to eliminate the translational
invariance of periodic solutions of autonomous dynamical systems (see section 4 and

The authors acknowledge the financial support of the British Council and Vlaamse Interuniversitaire
Raad within the “British-Flemish Academic Research Collaboration Programme” and the Volkswagen
Stiftung. This work was also supported by the Belgian programme on Interuniversity Poles of
Attraction (IUAP 17), initiated by the Belgian State – Prime Minister’s Service – DWTC. The
scientific responsibility is assumed by its authors.

†Department of Computer Science, K.U. Leuven, Celestijnenlaan 200A, B-3001 Heverlee-Leuven,
Belgium (kurt.lust@cs.kuleuven.ac.be, dirk.roose@cs.kuleuven.ac.be). K. Lust is Research Assistant
of the National Fund for Scientific Research (Belgium).

‡School of Mathematics, University of Bath, Claverton Down, BA2 7AY Bath, UK (a.spence@
maths.bath.ac.uk).

§Department of Engineering Mathematics, University of Bristol, Queen’s Building, University
Walk, BS8 1TI Bristol, UK (a.r.champneys@bristol.ac.uk). The research of this author was supported
by a research assistantship from the SERC (UK) at the University of Bath.

1

[19, p. 251] for examples). When computing a branch of periodic solutions, the pa-
rameter λ is allowed to vary and an additional condition, the parameterizing equation,
is added. The unknowns x(0), T , and λ are found by solving

⎧

⎨

⎩

x(T) − x(0) = 0,
s(x(0), T, λ) = 0,
n(x(0), T, λ; τ) = 0

(1.3)

with τ an artificial parameter. With a good choice for n, one is able to pass round
turning points and detect other bifurcations without any difficulties. In our exam-
ples in section 4, we use pseudo-arclength parameterization [2], but other choices are
possible [16, 19].

1.2. Some numerical methods. When N is small a common approach is to
rescale time to obtain a new boundary value problem of period 1 where T is now an
unknown parameter. This new problem can then be solved by a direct method for
a two-point boundary value problem. The stability of the orbit is determined by its
Floquet multipliers, the eigenvalues of the monodromy matrix (see (1.5)). If care is
taken, this matrix can be recovered from the direct method (see [2, 4]).

In the problems of interest here, with N large and the Jacobian of f sparse, a
direct approach is likely to prove infeasibly expensive. For this reason we shall use a
shooting approach (though this approach has its limitations as discussed in [19]). For
a given initial condition x(0), we denote the solution of (1.1) at t = T by ϕ(x(0), T, λ).
System (1.2) can now be written as

r(x(0), T, λ) := ϕ(x(0), T, λ) − x(0) = 0,
s(x(0), T, λ) = 0,
n(x(0), T, λ) = 0,

(1.4)

and we denote a solution of (1.4) by (x∗(0), T ∗, λ∗). Note we do not make the re-
scaling of time mentioned above. If ∂ϕ

∂x
denotes the partial derivative of ϕ(x(0), T, λ)

with respect to x(0), then the monodromy matrix M∗ is given by

M∗ :=
∂ϕ

∂x

∣

∣

∣

∣

(x∗(0),T∗,λ∗)

.(1.5)

We denote the eigenvalues (Floquet multipliers) of M∗ by μ∗

i , i = 1, . . . , N . As
is well known (see, for example, [19]), one eigenvalue of M∗ has the value 1. The
corresponding eigenvector is the tangent vector to the limit cycle in (x(0)∗, λ∗),

b∗ :=
∂ϕ

∂T

∣

∣

∣

∣

(x(0)∗,T∗,λ∗)

= f(ϕ(x(0)∗, T ∗, λ∗), λ∗).(1.6)

If any eigenvalue lies outside the unit circle, the periodic orbit is unstable.
To compute stable periodic orbits a natural way requires merely the integration

of (1.1) over a sufficiently long time interval. If x(0) is close enough to the limit cycle
then the trajectory will converge to the periodic solution and one can read off the value
for the unknown period T ∗. This is essentially a form of Picard iteration (see [17]).
Indeed if the period T ∗ were known exactly, one would carry out Picard iteration
on a Poincaré map to find a stable periodic orbit. Variations on this theme are
possible and they are well suited to problems where N is large, but they break down
or have very slow convergence if M∗ has eigenvalues outside or near the unit circle

2

(apart from the trivial one at 1). A Newton-like method applied to (1.4) directly
would be able to compute both stable and unstable orbits but would involve the
computation or approximation of ∂ϕ

∂x
either by numerical differentiation or by solving

the variational form of (1.1). In the former case, the nonlinear system (1.1) would
have to be integrated N times with perturbed initial data, and in the latter case an
N2-dimensional linear initial value problem (IVP) has to be integrated together with
(1.1). Thus both approaches are prohibitively expensive when N is large. A Newton-
like method also requires the expensive storage and factorization of the full N × N
matrix.

This paper is concerned with the efficient solution of (1.4) and the computation of
the stability-determining eigenvalues of M∗. Of primary concern is the desire to avoid
the explicit calculation of M∗. The approach used here requires only the calculation
of the action of M∗ on a p-dimensional subspace of R

N with p ≪ N . As we show in
section 2, this is a computationally less expensive task. To solve (1.4) we shall use a
hybrid Newton–Picard approach which was motivated by and is an extension of the
RPM of Shroff and Keller [20]. However, though the philosophy is the same, there
are several differences in the implementation forced on us by the nature of M∗ and
by the fact that we seek x(0), λ, and T rather than just x(0), λ. Our approach is
influenced by the knowledge that the problem is set in a continuation framework, and
hence, for a given λ, reasonably accurate starting approximations for x(0) and T will
be known, and a rough idea of the distribution of the Floquet multipliers will also be
known. This provides us with some degree of confidence in some of the linear algebra
techniques which would not be satisfied in a one-off problem.

The present paper is an extension of the preliminary results presented in [17] which
concerned only the basic idea of a Newton–Picard algorithm for periodic orbits. The
plan of the paper is as follows. In section 2 we derive from first principles several
approximate Newton methods for the computation of both equilibrium points and
periodic solutions. In so doing we recover the RPM of [20] but also produce other
methods which prove superior in the examples discussed in section 4. The relation of
these approximate Newton methods to earlier work is also discussed in section 2, as
are their convergence properties. In section 3, we discuss the efficient implementation
of the methods. This includes iterative methods to compute a maximal dominant
invariant subspace of a matrix using only matrix–vector products and not requiring
the explicit computation of the matrix. Some other important implementation details
are also discussed in this section. In section 4 we present some numerical experiments
which confirm the theoretical results and illustrate the effectiveness of our approach.
Finally, section 5 presents our conclusions.

2. Newton–Picard methods.

2.1. Derivation. Consider the solution of the nonlinear system

r(x) := F (x) − x = 0, x ∈ R
N , F : R

N �→ R
N ,(2.1)

where F (x) is at least twice differentiable in the neighborhood of x∗ a locally unique
root of (2.1). It is well known that under certain conditions, the simple Picard iteration

x(ν+1) = F (x(ν)), ν = 0, 1, 2, . . .(2.2)

converges linearly if rσ[Fx(x∗)] < 1. (Here we use rσ[·] to denote the spectral radius
of a matrix, which is equal to the modulus of the eigenvalue of largest modulus.) In

3

contrast, (2.2) typically diverges if Fx(x∗) has an eigenvalue outside the unit circle.
Newton’s method,

{ [

Fx(x(ν)) − I
]

Δx(ν) = −
(

F (x(ν)) − x(ν)
)

,
x(ν+1) = x(ν) + Δx(ν), ν = 0, 1, 2, . . .

(2.3)

shows quadratic convergence in a neighborhood of x∗ if Fx(x∗)−I is nonsingular, but
it needs the construction and factorization of one or more N ×N matrices. From now
on, we will drop the superscript (ν) from our notation whenever the formula remains
clear. One can easily extend Newton’s scheme to compute a solution to the parameter
dependent system

{

r(x, λ) = F (x, λ) − x = 0, F : R
N × R �→ R

N ,
n(x, λ) = 0, n : R

N × R �→ R,
(2.4)

where n(x, λ) is some (pseudo-arclength) parameterization, and to (1.4)

⎧

⎨

⎩

r(x(0), T, λ) = ϕ(x(0), T, λ) − x(0) = 0,
s(x(0), T, λ) = 0,
n(x(0), T, λ) = 0,

(2.5)

where it is assumed ϕ, s, and n are twice differentiable with respect to x(0), T , and
λ. For ϕ, this follows from the C2-continuity of f(x, λ) in (1.1) [1].

For (2.5), the use of Newton’s method leads to the repetitive solution of linear
systems in the form

⎡

⎣

M − I b1 b2
cT1 d1 1 d1 2

cT2 d2 1 d2 2

⎤

⎦

⎡

⎣

Δx(0)
ΔT
Δλ

⎤

⎦ = −

⎡

⎣

r(x(0), T, λ)
s(x(0), T, λ)
n(x(0), T, λ)

⎤

⎦ ,(2.6)

where
⎡

⎣

M − I b1 b2
cT1 d1 1 d1 2

cT2 d2 1 d2 2

⎤

⎦ =
∂(r, s, n)

∂(x(0), T, λ)
.

For (2.1) and (2.4), Jarausch and Mackens [8, 9, 10] and Shroff and Keller [20]
both had the idea to use Newton’s method on a small-dimensional subspace, where
the Picard iteration (time integration in case of (2.5)) is slowly convergent or unstable,
and to use the Picard iteration on the complement of that subspace. Our approach to
the efficient solution of periodic orbits of (1.1) via the solution of (2.5) is motivated
by the treatment in sections 2 and 7 of [20]. We make the following assumptions.

Assumption 2.1. Let y∗ = (x(0)∗, T ∗, λ∗) denote an isolated solution to (2.5),
and let B be a small neighborhood of y∗. Let M(y) = ∂ϕ

∂x
(y) for y ∈ B and denote its

eigenvalues by μi, i = 1, . . . , N . Assume that for all y ∈ B precisely p eigenvalues lie
outside the disk

Cρ = {|z| < ρ}, 0 < ρ < 1(2.7)

and that no eigenvalue has modulus ρ; i.e., for all y ∈ B,

|μ1| ≥ |μ2| ≥ · · · ≥ |μp| > ρ > |μp+1|, . . . , |μN |.

4

Note that this assumption is more restrictive than that in [20]. At y∗, M∗ is the
monodromy matrix. Our method is designed to be efficient for p ≪ N . Let Vp ∈ R

N×p

be a basis for the subspace U of R
N spanned by the (generalized) eigenvectors of

M(x(0), T, λ) corresponding to the eigenvalues μi, i = 1, . . . , p and Vq ∈ R
N×(N−p) =

R
N×q a basis for U⊥, the orthogonal complement of U in R

N . In general, U⊥ is not
an invariant subspace of M(x(0), T, λ). Vp and Vq can be computed by the real Schur
factorization of M(x(0), T, λ). Note that in actual computations eigenvalues may
move out of or into Cρ as the iteration proceeds, and our code is able to deal with
this. However, as the iteration comes close to convergence, Assumption 2.1 is observed
in practice and so is not unreasonable.

We can construct orthogonal projectors P and Q of R
N onto U and U⊥, respec-

tively, as

P := VpV
T
p ,

Q := VqV
T
q = IN − VpV

T
p .

(2.8)

For any x(0) ∈ R
N there is the unique decomposition

x(0) = Vpp̄ + Vq q̄ = p + q, p = Vpp̄ = Px(0), q = Vq q̄ = Qx(0)(2.9)

with p̄ ∈ R
p and q̄ ∈ R

N−p. Substituting (2.9) in (2.6) and multiplying the first N
equations at the left-hand side with [Vq Vp]T , one obtains

(2.10)

⎡

⎢

⎢

⎣

V T
q (M − I)Vq 0 V T

q b1 V T
q b2

V T
p MVq V T

p (M − I)Vp V T
p b1 V T

p b2
cT1 Vq cT1 Vp d1 1 d1 2

cT2 Vq cT2 Vp d2 1 d2 2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Δq̄
Δp̄
ΔT
Δλ

⎤

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎣

V T
q r

V T
p r
s
n

⎤

⎥

⎥

⎦

.

Here we have used V T
p Vq = 0p×q, V

T
q Vp = 0q×p, and V T

q MVp = 0q×p with the latter
equality holding since U is an invariant subspace of M(x(0), T, λ). Remark that
b1(x(0)∗, T ∗, λ∗) is an eigenvector of M(x(0)∗, T ∗, λ∗) for the eigenvalue 1, and thus
by Assumption 2.1 a vector in the subspace U at (x(0)∗, T ∗, λ∗). Therefore, V T

q b1
converges to zero as the iteration converges. We will put this term to zero.

Let us first consider the case where λ is kept fixed. Equation (2.10) with the
above approximation for V T

q b1 then reduces to the block triangular system

⎡

⎣

V T
q MVq − Iq 0 0
V T
p MVq V T

p MVp − Ip V T
p b1

cT1 Vq cT1 Vp d1 1

⎤

⎦

⎡

⎣

Δq̄
Δp̄
ΔT

⎤

⎦ = −

⎡

⎣

V T
q r

V T
p r
s

⎤

⎦ .(2.11)

This is no real saving since we want to avoid the computation of the large matrix
V T
q MVq. However, we can approximate the solution to the first q equations of (2.11)

by the Picard scheme

⎧

⎨

⎩

Δq̄[0] = 0,
Δq̄[i] = V T

q MVqΔq̄[i−1] + V T
q r, i = 1, . . . , l,

Δq̄ = Δq̄[l] =
∑l−1

i=0(V
T
q MVq)

iV T
q r.

(2.12)

5

By construction, rσ[V T
q MVq] = |μp+1| < ρ < 1. Thus the linear Picard scheme

(2.12) converges asymptotically. Obviously (2.12) corresponds to approximately solv-
ing (V T

q MVq − Iq)Δq̄ = −V T
q r by multiplying the right-hand side by the l terms

Neumann series for (V T
q MVq − Iq)

−1. Δp̄ and ΔT can then be computed from

[

V T
p MVp − Ip V T

p b1
cT1 Vp d1 1

] [

Δp̄
ΔT

]

= −

[

V T
p r
s

]

−

[

V T
p MVqΔq̄
cT1 VqΔq̄

]

.(2.13)

Except for highly nonnormal cases, (2.12) with l = 1 is enough to make the overall
scheme convergent for a starting value close enough to (x(0)∗, T ∗, λ∗) (see section 2.3).

Using Taylor’s theorem, the right-hand side of (2.13) can be transformed to
[

V T
p MVp − Ip V T

p b1
cT1 Vp d1 1

] [

Δp̄
ΔT

]

= −

[

V T
p r(x(0) + VqΔq̄, T)
s(x(0) + VqΔq̄, T)

]

+ h.o.t.

This is seen to be a Gauss–Seidel approach since we first solve an approximate version
of the equations for Δq̄ and then use the updated q̄ to compute Δp̄ and ΔT . The
variant based on l steps of the linear Picard scheme in (2.12) will be denoted by
NPGS(l). Jacobi-type variants are derived by putting the terms V T

p MVq and cT1 Vq in
(2.11) to 0, although these terms can (and often will) be large. We will further denote
this variant by NPJ(l). Remark that our NPJ(1) scheme applied to the equilibrium
point problem (2.1) is the method presented in [20, section 2]. When Fx in (2.1) is
normal, the NPJ(l) and NPGS(l) variants are equivalent. The NPGS(l) method can
formally be written as an approximate Newton method in the form

(2.14)

⎡

⎢

⎣

−
(

∑l−1
i=0(V

T
q MVq)

i
)−1

0 0

V T
p MVq V T

p MVp − Ip V T
p b1

cT1 Vq cT1 Vp d1 1

⎤

⎥

⎦

⎡

⎣

Δq̄
Δp̄
ΔT

⎤

⎦ = −

⎡

⎣

V T
q r

V T
p r
s

⎤

⎦ .

The NPJ(l) Jacobi variant is obtained by putting the (2, 1) and (3, 1) blocks to zero.
This form will be used in the convergence study.

Let us now reintroduce the parameter λ. In (2.10), there is no reason for the
term V T

q b2 to be small, and so the system (2.10) is fully coupled. However, the system

matrix (with V T
q b1 set to zero) is just a rank-one update of the block triangular matrix

B =

⎡

⎢

⎢

⎣

V T
q MVq − Iq 0 0 0
V T
p MVq V T

p MVp − Ip V T
p b1 V T

p b2
cT1 Vq cT1 Vp d1 1 d1 2

cT2 Vq cT2 Vp d2 1 d2 2

⎤

⎥

⎥

⎦

.(2.15)

We solve this system using the Sherman–Morrison formula (see, e.g., [15, 16]). Let

θ =

⎡

⎢

⎢

⎣

V T
q b2
0p
0
0

⎤

⎥

⎥

⎦

, ξ =

⎡

⎢

⎢

⎣

0q
0p
0
1

⎤

⎥

⎥

⎦

, Δu =

⎡

⎢

⎢

⎣

Δq̄
Δp̄
ΔT
Δλ

⎤

⎥

⎥

⎦

, t = −

⎡

⎢

⎢

⎣

V T
q r

V T
p r
s
n

⎤

⎥

⎥

⎦

.

Provided B is regular, a solution to

(B + θξT)Δu = t

6

can be obtained by solving the two systems

Bw = θ, Bv = t.(2.16)

We can compute Δλ from

Δλ = ξTΔu =
ξT v

1 + ξTw
(2.17)

and the other unknown from

Δu = v − Δλw.(2.18)

If B + θξT is regular then

1 + ξTw = 1 + wN+2 �= 0.

Indeed,

B−1(B + θξT) = I + wξT =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0 w1

0 1 · · · 0 w2

...
...

. . .
...

...
0 0 · · · 1 wN+1

0 0 · · · 0 1 + wN+2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

so 1+ξTw = 0 would imply that I+wξT and thus B+θξT is singular. The two systems
(2.16) can be solved (approximately) as before by first solving for Δq̄ using (2.12) and
then solving the remaining equations for the other unknowns. Since this approach
is relevant in a continuation context using Newton–Picard iterations we denote this
variant by CNP(l) (i.e., continuation Newton–Picard). Other variants can be derived
by deleting the (2, 1), (3, 1), (4, 1), and/or the (1, 4) blocks. In all cases, the resulting
system is partially or fully decoupled and only one Q-system needs to be solved at
each step. When applying the method to the continuation of steady-state solutions,
we obtain the scheme of [20, section 7] by choosing l = 1 and neglecting the V T

p MVq

and cT2 Vq terms. The CNP(l) method seems the most expensive variant, requiring
the solution of two Q-systems at each iteration step. However, the CNP(l) method
proved to be more robust in our tests.

2.2. Comparison with other work. Recursive projection methods were first
proposed by Jarausch and Mackens [8, 9, 10]1 for solving

Au = f(u),(2.19)

where A is a symmetric positive definite matrix and ∂f(x)
∂x

is symmetric. For A = I, our
NPJ(1) and NPGS(1) schemes reduce to their method. Based on a decoupling lemma
(stating that a change in p has no influence on the Q-projection of the residual and vice
versa) and a trust-region approach, a criterion to decide whether to do a (damped)
Q-step, a (damped) P -step or an update of the basis, is derived. Under certain
conditions, this results in a globally convergent algorithm. For continuation, they
use the Moore–Penrose inverse to solve the underdetermined P -system and correct

1Jarausch and Mackens call the method “condensed Newton–supported Picard.”

7

q after each update to eliminate the influence of a change of λ on the Q-projection
of the residual. Our case is more difficult because of the (sometimes large) influence
of the Q-step on the P -projection of the residual. This results in a block triangular
system when parameters are kept fixed and a fully coupled system when a parameter is
varied. There is no straightforward extension of the decoupling lemma to unsymmetric
systems when using one set of orthogonal projectors. Therefore, in this paper we
always do a P - and a Q-step together. In section 3.2 we will derive a criterion for the
basis update.

In later work, Jarausch developed alternatives for nonsymmetric systems. Two
schemes for finding equilibrium points of parabolic PDEs are developed in [6]. The
partially decoupled case is similar to our NPGS(1) scheme, while the fully decoupled
scheme uses oblique projectors based on both left and right invariant subspaces. The
splitting is not based on the convergence properties of a Picard scheme but on the
physically relevant eigenvalues with respect to stability: the projectors are based on
subspaces corresponding to eigenvalues which have a real part larger than a certain
(negative) threshold. Several algorithms to solve the Q-system are proposed.

Computing the subspaces needed in the algorithms in [6] without constructing the
matrix explicitly is much harder than computing the subspaces needed in our algo-
rithms or in the algorithm in [8, 9, 10]. A complete decoupling has certain advantages,
e.g., in bifurcation analysis, but the oblique projectors needed in [6] to achieve this
impose numerical difficulties. As a solution to these problems, Jarausch developed
another method to solve systems of the form (2.1) in [7]. A completely decoupled sys-
tem is derived using orthogonal projectors and a rotator with the result that singular
subspaces of the Jacobian of f are used, instead of invariant subspaces.

In [20], Shroff and Keller also generalized the method of [8, 9, 10]. They look
at the method as a way to stabilize a Picard iteration scheme. Their method is
completely equivalent to our NPJ(1) scheme. However, by thinking of the procedure
as an approximate Newton method, we have derived some other variants with better
convergence properties; see section 4. In some of those variants, the influence of the
Q-updates on the P -projection of the residual shows up, so these schemes should be
more robust.

2.3. Convergence discussion. A convergence analysis for RPM under rather
restrictive assumptions is given in [20]. For our application a full convergence analysis
would require very careful discussion (including an account of norms of nonnormal
matrices, etc.), which would probably have limited practical value. In this section we
present two results on asymptotic convergence on which a more complete convergence
account could be based.

We concentrate on methods for the solution of (2.1) and refer to the extension to
(2.5) in the last paragraph. A fixed point method

x(ν+1) = G(x(ν))(2.20)

is asymptotically convergent if

rσ[Gx(x∗)] < 1(2.21)

and the asymptotic convergence rate is rσ[Gx(x∗)]. Corresponding to Assumption
2.1, we suppose the following assumption.

Assumption 2.2. Let x∗ denote an isolated solution to (2.1) and let B be a
small neighborhood of x∗. Let M(x) = ∂F

∂x
(x) for x ∈ B and denote its eigenvalues by

8

μi, i = 1, . . . , N . Assume that for all x ∈ B precisely p eigenvalues lie outside the
disk

Cρ = {|z| < ρ}, 0 < ρ < 1(2.22)

and that no eigenvalue has modulus ρ; i.e., for all x ∈ B,

|μ1| ≥ |μ2| ≥ · · · ≥ |μp| > ρ > |μp+1|, . . . , |μN |.

The NPGS(l) and the NPJ(l) schemes can both be rewritten in the form

x(ν+1) = G(x(ν)) = x(ν) + H(x(ν))r(x(ν)),

where

H(x) = HGS(x) = Vq

(

l−1
∑

i=0

(V T
q MVq)

i

)

V T
q

+ Vp(Ip − V T
p MVp)

−1V T
p

(

I + MVq

(

l−1
∑

i=0

(V T
q MVq)

i

)

V T
q

)

and

H(x) = HJ(x) = Vq

(

l−1
∑

i=0

(V T
q MVq)

i

)

V T
q + Vp(Ip − V T

p MVp)
−1V T

p ,

respectively. In these formulas Vp, Vq, and M = Fx(x) depend on x.

The following lemma provides the spectral radius results for NPJ(l) and NPGS(l).

Lemma 2.3. Let x∗ be an isolated solution of r(x) = 0. Suppose

F (x) is twice differentiable(2.23)

and

1 ∈/ σ{V T
p Fx(x∗)Vp}.(2.24)

For both NPJ(l) and NPGS(l) schemes, the spectral radius of the Jacobian of G at x∗

satisfies

rσ[Gx(x∗)] < ρl < 1.

Proof. The following proof is valid for both H = HGS and H = HJ . Since
r(x∗) = 0,

Gx(x∗) = I + H(x∗)rx(x∗).

Let V = [Vq Vp] with p defined as in Assumption 2.2; then

rσ[Gx(x∗)] = rσ[V TGx(x∗)V] = rσ[I + (V TH(x∗)V)(V T rx(x∗)V)]

9

and

V TH(x∗)V =

[

∑l−1
i=0(V

T
q MVq)

i 0
* (Ip − V T

p MVp)
−1

]

,

V T rx(x∗)V =

[

V T
q MVq − Iq 0
V T
p MVq V T

p MVp − Ip

]

,

and hence

V TGx(x∗)V =

[

(V T
q MVq)

l 0
* 0

]

,

where the values at the stars depend on the type of the scheme. It directly follows
from Assumption 2.2 that

rσ[Gx(x∗)] = |μp+1|
l < ρl < 1.

Corollary 2.4. Under the conditions of Lemma 2.3,
1. NPGS(l) and NPJ(l) schemes are asymptotically convergent in a neighbor-

hood of the solution if ρ < 1;
2. the asymptotic convergence rate of NPGS(l) and NPJ(l) is |μp+1|

l.
For the computation of periodic solutions with shooting and nonvarying parame-

ters, a similar convergence result can be proved under the conditions that ϕ(x(0), T)
and s(x(0), T) are twice continuously differentiable with respect to x(0) and T in a
neighborhood of (x(0)∗, T ∗) and

1 ∈/ σ

{[

V T
p M(x(0)∗, T ∗)Vp V T

p b1(x(0)∗, T ∗)
cT1 (x(0)∗, T ∗)Vp d1 1(x(0)∗, T ∗)

]}

.

As long as 1 is a simple eigenvalue of M(x(0)∗, T ∗), the last condition can always be
satisfied using a suitable phase condition. Although NPJ(l) and NPGS(l) methods
have the same asymptotic convergence rate, NPGS(l) methods perform better as is
indicated in section 4. There is no similar theorem for the continuation variants in
the general case.

3. Computation of the projectors and other algorithmic details. In this
section, we will explain some of the implementation issues. First, we will discuss how
one can avoid the expensive computation of the basis Vq and how one can compute
matrix–vector products Mv without first building M . In the second part of this
section, we will discuss the computation of an (approximate) basis Vp.

3.1. Implementing the Newton–Picard steps. In the Newton part of the
scheme (see, e.g., (2.13)) and for the update of x(0), we do not need the q-dimensional
vector Δq̄ itself but only the N -dimensional vector Δq = VqΔq̄. Therefore, (2.12) can
be rewritten as follows (using Q = VqV

T
q = IN − VpV

T
p):

⎧

⎨

⎩

Δq[0] = 0,
Δq[i] = QMΔq[i−1] + Qr, i = 1, . . . , l,
Δq = Δq[l].

(3.1)

Next we need matrix–vector products Mv in (3.1), the coupling term V T
p MΔq,

and in the Newton system (the term MVp). Since M = ∂ϕ(x(0), T, λ)/∂x(0), those

10

matrix–vector products are rescaled directional derivatives that can be computed
using the variational equations or finite differences. Thus the explicit computation
of the full monodromy matrix M is avoided. In the first approach we define the
fundamental matrix W (t) at x(t) by the variational equation

Ẇ (t) = fx(x(t))W (t), W (0) = IN .(3.2)

It is easy to verify that if x(t) = ϕ(x(0), t, λ), then M = W (T). Equation (3.2)
represents a set of N2 linear IVPs, and so it is impractical to compute M if N
is large. However, in applying our algorithms, for a given x and T , we need only
compute Mv for a small number of vectors v ∈ R

N . From (3.2) it follows that

Ẇ (t)v = fx(ϕ(x(0), t, λ), λ)W (t)v, W (0)v = v,

or, putting z(t) = W (t)v,

ż = fx(ϕ(x(0), t, λ), λ)z, z(0) = v,(3.3)

with the result that Mv = z(T). The second approach is to use a finite difference
approximation to

Mv =
∂ϕ

∂x

∣

∣

∣

∣

(x(0),T,λ)

v

given by

Mv ≈
1

ǫ
[ϕ(x(0) + ǫv, T, λ) − ϕ(x(0), T, λ)] .

When using the finite difference approximations, both time integrations should be
done using the same sequence of time steps and order of the method when using
a variable stepsize/order method, or the time integrations must be computed with
very high accuracy. Thus in both approaches the calculation of the action of M on a
vector v requires the solution of one IVP of dimension N , assuming that φ(x(0), T, λ)
has already been computed and that the trajectory has also been stored when the
variational equations are used. In the latter case, (3.3) is a linear IVP. Similarly, to
calculate the action of M on the p-dimensional space U , p IVPs need to be solved.

3.2. Computation of the projectors. The most important aspect of the
Newton–Picard algorithms is the efficient calculation and repeated updating of the
low-dimensional subspace U . Recall that U is defined to be the space spanned by
the (generalized) eigenvectors of M corresponding to Floquet multipliers of modulus
greater than ρ. Since we are only interested in the dominant eigenvalues and since
we are able to compute matrix–vector products with the matrix M , it is natural to
use subspace iteration to compute the dominant eigenvalues and eigenvectors. This
is also proposed in [8, 9, 10] and [20]. In order to keep the number of (expensive)
matrix–vector multiplications low, we will use the most sophisticated version of this
algorithm, namely, subspace iteration with projection after each iteration and locking
(deflation), as described by Saad in [18] (Algorithm 5.4 with iter = 1). Since the
details of the locking process are quite technical and would obscure the essential idea
of the method, we now outline the procedure, ignoring the locking process.

11

Let us first discuss the subspace iteration process, where we keep M fixed, and
assume p is known. We will use pe additional vectors to accelerate the convergence
and to aid the detection of eigenvalues leaving Cρ. Let

V [0] =
[

v
[0]
1 · · · v

[0]
p

]

be an initial guess for an orthonormal basis for U . We extend this basis to the
orthonormal basis

V [0]
e =

[

v
[0]
1 · · · v

[0]
p · · · v

[0]
p+pe

]

,

where v
[0]
p+1, . . ., v

[0]
p+pe

are guesses for the next pe dominant Schur vectors. We re-
arrange the order of operations in algorithm 5.3 in [18] to further reduce the number
of matrix–vector operations and obtain the following algorithm.

Algorithm 3.1. Subspace iteration with projection

Input: V
[0]
e =

[

v
[0]
1 · · · v

[0]
p · · · v

[0]
p+pe

]

routine to compute Mv.
Output: Ve, where span(Ve[1 · · · p]) is a good approximation for U .
begin

Ve = V
[0]
e

repeat

Compute W = MVe.
Compute S = V T

e MVe = V T
e W .

Compute the Schur vectors Y =
[

y1 · · · yp+pe

]

of S, order them according
to decreasing modulus of the corresponding eigenvalue.
Ve ← WY .
Orthonormalize Ve.

until convergence
end

The matrix–vector products MVe[1 · · · p] in the last iteration step of this al-
gorithm are also needed to compute the terms V T

p MVp in (2.14) and (2.15). The
convergence properties for Algorithm 3.1 are proven in [18]. The convergence factor
for a simple eigenvalue μi is |μp+pe+1/μi|, where μp+pe+1 is the next most domi-
nant eigenvalue of M . From this formula we see that the more dominant eigenvalues
converge faster than the other ones. We exploit this feature by using the version
of subspace iteration with projection and locking as described in Algorithm 5.4 in
[18]. The convergence criterion is based on [21] and requires no new matrix–vector
products with M . For small values of l and when a good starting value is available,
one subspace iteration step per Newton–Picard step is usually sufficient. For large
values of l and small values of pe, or before the first Newton–Picard steps, more sub-
space iteration steps are needed. Locking then prevents updating almost converged
vectors and is especially useful when some of the Floquet multipliers are large. Once
the Newton–Picard procedure has sufficiently converged and some eigenvalues of M
do not change from step to step, we lock those converged eigenvalues to save some
computation time. We then gradually switch to lower-rank updates of the projected
Jacobian matrix. However, this strategy should be used with care, since preliminary
locking of vectors and failing to unlock them again can lead to slow convergence or
divergence of the algorithm. All vectors should be unlocked to compute accurate
values for the Floquet multipliers after the final Newton–Picard step.

12

When computing a branch of periodic solutions, the initial guess V
[0]
e may be the

final basis for the periodic solution at the previous continuation point. However, it is
safer to add some random components to the vectors to be sure that new eigenvectors
can enter the basis rapidly. For the first point on a branch we can either start with
random vectors and do some subspace iterations without a Newton–Picard step or
derive starting values from the bifurcation point where the branch originates from.
For example, at a Hopf point with critical eigenvalues ±iω, the Floquet multipliers of
the originating periodic orbit are given by

μi = e
2πλi

ω ,

where λi are the eigenvalues of fx at the Hopf point. The initial basis is then given
by the Schur vectors corresponding to the p rightmost eigenvalues of fx. These eigen-
values and the corresponding basis can be computed using appropriate iterative tech-
niques; see, e.g., [13].

To determine the basis size we try to satisfy

|μ1| ≥ · · · ≥ |μp| > ρ > |μp+1| ≥ · · · ≥ |μp+pe
|

with pe ≥ 2 to ensure that μp+1 converges (since it can be a complex or multiple
eigenvalue). In fact, larger values of pe greatly improve the convergence speed of the
subspace iteration procedure. In addition, to improve robustness in the calculation

of the Floquet multipliers outside Cρ, components of V
[0]
e are randomly perturbed at

the start of each new continuation step. This proved to be reliable in our test cases.
It avoids the problem encountered in the second test example of [20], where a Hopf
bifurcation point is detected too late along a continuation branch. It is also much
simpler than criteria based on monitoring the convergence speed as in [8, 20], since
slow convergence can also be caused by an inaccurate basis or bad starting values.

To conclude this section, we briefly sketch the final algorithm for NPGS(2) using
subspace iteration with projection and discuss the work per iteration step.

Algorithm 3.2. NPGS(2) and subspace iteration with projection for computing
a periodic solution (without locking).
Input: Starting value x(0)(0), T (0).

Starting basis Ve =
[

v1 · · · vp+pe

]

routine to compute M(x(0), T)v.
Output: FAILURE or x∗(0), T ∗, final basis Ve.
begin

ν = 0
repeat

Compute ϕ ← ϕ(x(0), T); r ← ϕ− x(0)
for i = 1 to νsub do

We ← M(x(0), T)Ve

Se ← V T
e We

Compute the ordered Schur decomposition SeYe = YeRe

if (i < νsub) then

Ve ← WeYe

Orthonormalize Ve

end if

end for

Determine the value of p.

13

Vp ← VeYe[1 · · · p]
Compute the Picard correction:

Δq ←
(

I − VpV
T
p

)

r
Δq ←

(

I − VpV
T
p

)

(M(x(0), T)Δq + r).

Compute the Newton correction:
[

Re[1 · · · p, 1 · · · p] − Ip V T
p f(ϕ)

cT1 (x(0), T)Vp d1 1(x(0), T)

] [

Δp̄
ΔT

]

= −

[

V T
p (r + M(x(0), T)Δq)

s(x(0), T) + cT1 (x(0), T)Δq

]

.

Update the point:

x(0) ← x(0) + Δq + VpΔp̄

T ← T + ΔT.

Ve = WeYe

Decide whether vectors should be added to or deleted from Ve.
Orthonormalize Ve

ν ← ν + 1
until ν ≥ νmax or convergence
if (no convergence) then return FAILURE
else x∗(0) ← x(0); T ∗ ← T ;

end

The algorithm as given above requires νsub(p + pe) + 3 IVP solves per iteration:
one to compute ϕ(x(0), T), one additional IVP solve to compute the Picard correction,
one to compute the residual for the Newton part, and νsub(p+ pe) to build the basis.
In our tests, we used νsub = 1, except for the first iteration step. The time integration
needed in the NPGS(l) schemes to compute the right-hand side of the Newton part
is not needed in the NPJ(l)-schemes. The CNP(l) scheme needs νsub(p+ pe) + 2l + 1
IVP solves per iteration since the Picard scheme (2.12) must be executed twice per
iteration step. When using our methods to compute branches of periodic solutions, we
advise the use of the NPGS(l) scheme wherever possible and a switch to the CNP(l)
scheme near a turning point. A turning point might occur when there is a double
Floquet multiplier at +1. One can develop a detection criterion based on monitoring
the available eigenvalues and switching to CNP(l) when an eigenvalue (except for the
trivial Floquet multiplier) approaches 1. This means, however, that we switch to the
CNP(l) scheme also in the neighborhood of transcritical or pitchfork bifurcations.

At this point it is worth emphasizing again that our overall strategy is tuned to
utilize good starting values available because of the continuation context, and the
algorithm is a balance between efficiency and reliability. In particular, if a failure oc-
curs then the increment in the continuation parameter is halved and the computations
restarted.

4. Numerical results. In this section we illustrate the theoretical material pre-
sented in this paper by applying our algorithms to two specific example systems of
PDEs. The systems, presented in section 4.1 below, are derived from models of chemi-
cal kinetics and visco-elastic fluid dynamics, respectively. For each model we compare
the efficiency of each of the algorithms presented in this paper in reproducing known
bifurcation diagrams of periodic orbits.

14

0.5 1.0 1.5 2.0

L

3.0

3.5

T

◦.........
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
.......
.......
........
........
........
.........
..........
..........
...........
............
..............

.................
...................

...

i

0

1
3 5 4

◦........................
.....
....
...
...
...
..
.....
.....
.
.....
.....
.
.....
.....
.
.....
......
......
.....
......
.....
......
.....
......
.....
...
...
...
..
....
....
...
.....
......
...........
....................
..
......
.....
......
.....
......
.....
......
.....
......
.....
.......
....
.......
....
.......
....
.......
....
.......
....
.......
....
.......
....
........
....
........
....
........
....
........
.........
.....
........
.........
.....
........
..........
......
......
......
.....

........
......
...........

...................

ii

2

1

◦...........
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
.......
....
.......
....
.......
....
.......
....
......
.....
.......
....
.......
....
........
....
........
....
........
...

iii

4

5
3

◦... ...

iv
0

2 4
⋄ ⋄◦

◦

◦⋄

⋄ ⋄
◦ double 1

⋄ torus

Fig. 4.1. Periodic solutions bifurcation diagram for the discretized Brusselator model (h = 1

32
),

period T versus the reactor length L. Arabic numbers indicate the number of Floquet multipliers
outside the unit circle. Roman numbers indicate the number of the branch used in this section’s
tables. Double 1 Floquet multipliers and torus bifurcations are marked with ◦ and ⋄, respectively.
No period doublings occur on the computed branches. Note that we did not compute the branches
intersecting branch i around L = 1.89, branch ii around L = 1.32, and branch iii around L = 1.86.

4.1. Models. The first model is the one-dimensional Brusselator [5]:

∂X
∂t

= DX

L2

∂2X
∂z2 + X2Y − (B + 1)X + A,

∂Y
∂t

= DY

L2

∂2Y
∂z2 −X2Y + BX,

(4.1)

with Dirichlet boundary conditions

X(t, z = 0) = X(t, z = 1) = A,
Y (t, z = 0) = Y (t, z = 1) = B

A
.

(4.2)

We use the characteristic length L as the bifurcation parameter while the other pa-
rameters are fixed at A = 2, B = 5.45, DX = 0.008, and DY = 0.004. Branches of
periodic solutions bifurcate from the trivial steady-state branch (X = A, Y = B

A
), at

Hopf bifurcation points at LH
k = k 0.5130, k = 1, 2, For the reported results, we

used an O(h2) finite difference space discretization with grid size h = 1
32 , yielding a

system of ordinary differential equations (ODEs) of dimension N = 62. Four branches
of the bifurcation diagram obtained with this discretization are given in Figure 4.1.

The second test problem is the Olmstead model for fluid flow with memory, given
in [14]. It can be written as a system of two PDEs

∂u
∂t

= (1 − δ) ∂2v
∂x2 + δ ∂2u

∂x2 + Ru− u3,

λ∂v
∂t

= u− v,

(4.3)

15

0 1 2 3 4 5 6 7

R

0

1

2

3

4

‖u‖2

..⋄ ⋄◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦H1
.....
.....
.
.....
.....
..
.....
.....
.......
.........
......
......
.......
.......
.......
........
........
........
........
.........
.........
.........
.........
.........
.........
.......
................
..........
...........
...........
...........
...........
............
............
............
............
.............

.............
.............

.............
.............

..............
..............

..............
..............

..............
...............

...............
...............

................
................

................
................

................
......................

...............
..............

.................
.................

..................
..................

..................
................

◦
◦H2

.....

.....

.

.....
.....
.
.....
.....
..
......
....
......
.....
........
...
.....
......
...........
........
...
...........
.........
......
.......
..........
. ..
.............
.......
.......
.........
..............
........

............
.........

.........
.........

...........
...........

...........
...........

..

◦

◦
◦

Fig. 4.2. Steady-state bifurcation diagram for the Olmstead model, two-norm of the solution
profile versus the parameter R. Hopf bifurcation points are marked with ◦, pitchfork bifurcations
with ⋄.

with boundary conditions

u(t, x = 0) = u(t, x = π) = 0,
v(t, x = 0) = v(t, x = π) = 0.

(4.4)

The Rayleigh number R is used as the bifurcation parameter. The values of the
parameters λ (a relaxation time) and δ (the ratio of the retardation time to the
relaxation time) are kept fixed at λ = 2.0 and δ = 0.1. The steady-state bifurcation
diagram is shown in Figure 4.2. As shown in [14], the system has a trivial steady-state
solution branch at u = v = 0 with pitchfork bifurcations at R = k2, k = 1, 2, . . . and
Hopf bifurcations at

R =
1

λ
+ k2δ = 0.5 + k20.1, k = 1, 2,

On the steady-state solution branch bifurcating from the trivial branch at R = 1,
Hopf points arise at R ≈ 1.1007 and R ≈ 1.2040. We computed parts of the (initially
stable) periodic solution branch, bifurcating from the trivial branch at R = 0.6, and
of the (unstable) branch emanating at R = 1.2040 on the first bifurcated steady-state
branch. We will label these branches in the tables with “branch 1” and “branch 2,”
respectively. For the space discretization we used an O(h2) finite difference discretiza-
tion resulting in a system of 80 ODEs.

4.2. Robustness under discretization. In general, when the space discretiza-
tion of a PDE is refined, additional eigenvalues appear at the left of the spectrum of
the Jacobian (corresponding to rapidly decaying modes) while the eigenvalues on the
right-hand side of the spectrum shift only slightly (assuming the coarse discretization
has captured the essential features of the physical problem sufficiently well). For pe-
riodic solutions, this phenomenon translates into the addition of Floquet multipliers
close to zero. The dominant Floquet multipliers remain almost unchanged. We illus-
trate this phenomenon in Figure 4.3. It shows the Floquet multipliers for a solution
on the first branch of the Brusselator (4.1) with L ≈ 1.49, discretized with two differ-
ent grid sizes. As a result, the basis size needed in our algorithms to achieve a given
convergence speed, and the convergence speed of subspace iteration are virtually in-
dependent of N . Since the cost of the linear algebra operations in our methods grows

16

−1 0 1

−1

0

1

×××××××××××
××××
×
×
×
×

×

×

×

×

×

×

×

× ×× ×.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

..
..

..
....

...............
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....

. .
. .

..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..

..
...

.............
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....

. .
..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.
.
.
.
.
.
.
.
..

..
.........

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

..
..
.
.
.
.
.
.
.
.
..

.
.
.
.
..

.....
.
.
.
.
.
.
.
.
.
..

.
.
.
.
.
.

−1 0 1

−1

0

1

×××
××××
×
×
×
×

×

×

×

×

×

×

×

× ×× ×.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

..
..

..
....

...............
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....

. .
. .

..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..

..
...

.............
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....

. .
..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.
.
.
.
.
.
.
.
..

..
.........

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

..
..
.
.
.
.
.
.
.
.
..

.
.
.
.
..

.....
.
.
.
.
.
.
.
.
.
..

.
.
.
.
.
.

Fig. 4.3. Floquet multipliers of a periodic solution of the Brusselator, first branch (emanating
at L = 0.55), 15 (left) and 31 (right) discretization points, L = 1.4905 (left) and L = 1.4833 (right).

only linearly with N , the computational complexity of our algorithms is completely
determined by that of the IVP solver. For shooting methods using a traditional
Newton–Raphson solver—in which the full Jacobian matrix must be computed—the
computational complexity is N times higher (or even more if the cost of the linear
system solver would become dominant, which is very unlikely). We can conclude that
in our Newton–Picard methods the number of IVP solves is fully determined by the
system’s dynamics, while in Newton’s method the number of degrees of freedom of the
discretization determines the number of IVP solves. Hence Newton–Picard methods
are likely to be more competitive when a high accuracy and thus a fine discretization
is required.

4.3. Discussion of results. The influence of the threshold ρ on the numerical
performance was discussed in [17] for the Brusselator example. The conclusion there
was that values of ρ around 0.5 give good performance. A larger ρ results in a smaller
basis but slower convergence speed. The value of ρ is somewhat problem dependent
but, experience has shown, is in fact not very critical.

For our current tests, we have used ρ = 0.5 and 4 extra vectors (i.e., pe = 4; see
section 3.2). Using four extra vectors instead of two, as done in [17], greatly improves
the convergence and the robustness of the subspace iterations and results in fewer IVP
solves overall. The use of further extra vectors or smaller values of ρ did not result in
further improvements in our test examples. This can easily be explained heuristically
using Figure 4.3; by using ρ = 0.5 and four extra vectors, we generally capture all
basis vectors outside the cluster around 0. The convergence factor becomes so small
that the asymptotic rate is not reached at all. In fact the Q-projection of the residual
decreases faster than the P -projection in the initial iterations, which means that the
behavior of the Newton component becomes dominant.

We used a linear phase condition based on the starting value (x(0)(0), λ(0)) for
the Newton–Picard iterations:

f(x(0)(0), λ(0))T (x(0) − x(0)(0)) = 0.(4.5)

This condition defines a (N − 1)-dimensional hyperplane (called the Poincaré return
map) and should intersect the limit cycle transversally, which requires

f(x(0)(0), λ(0))T f(x(0)∗, λ∗) �= 0

17

(see, e.g., [3, 19]). Equation (4.5) satisfies this requirement for reasonable starting
values.

We computed several branches of periodic solutions, using the various algorithms
within a simple variable stepsize continuation code based on the strategy used in
Locbif [12]. A maximum and minimum predictor stepsize is user imposed. After a
convergence failure, the stepsize is halved. The computations are stopped when the
minimum stepsize is reached. When a point is computed sufficiently fast, the stepsize
is increased by a factor depending on the convergence history for the previous points
and the maximum stepsize. We do not use an angular control criterion as in Locbif
since such criteria performed badly in experiments with large-scale systems. The
variable stepsize strategy allows us to observe not only differences in (asymptotic)
convergence speed but also differences in the size of the attraction domain of the dif-
ferent methods. Some of the reported results use pseudo-arclength parameterization.
Two linear parameterization equations were tested:

n1 (x(0), T, λ) = (x(0) − xp(0))
T
xs(0) + ΘT (T − Tp)Ts + Θλ(λ− λp)λs(4.6)

and

n2 (x(0), T, λ) = (x(0) − xp(0))
T xT

s (0) f(xp(0))
fT (xp(0)) f(xp(0))

f(xp(0))

+ΘT (T − Tp)Ts + Θλ(λ− λp)λs.
(4.7)

(xs(0), Ts, λs) is the predictor step along the secant vector and (xp(0), Tp, λp) the
predicted point. ΘT and Θλ are two positive scaling parameters. Condition (4.7)
is derived from (4.6) by projecting the x(0)-components of the secant vector on the
tangent vector of the trajectory starting in the predicted point.

The computations were done on several variants of the method, using different
values for the parameters. Here we summarize the main conclusions. The main cost in
the overall scheme is the number of IVP solves, and in Table 4.1 we use this measure
to compare the following five methods.

• NPJ (Newton–Picard Jacobi), based on (2.12) and

[

V T
p MVp − Ip V T

p b1
cT1 Vp d1 1

] [

Δp̄
ΔT

]

= −

[

V T
p r
s

]

;

• NPGS (Newton–Picard Gauss–Seidel), based on (2.12) and (2.13).
• CNPGS, namely continuation Newton–Picard Gauss–Seidel. This method

uses the Jacobian approximation

⎡

⎢

⎢

⎢

⎣

−
(

∑l−1
i=0(V

T
q MVq)

i
)−1

0 0 V T
q b2

0 V T
p MVp − Ip V T

p b1 V T
p b2

0 cT1 Vp d1 1 d1 2

0 cT2 Vp d2 1 d2 2

⎤

⎥

⎥

⎥

⎦

.

Here we first solve the equations for Δp̄, ΔT , and Δλ and then compute Δq̄
from the Picard scheme

⎧

⎨

⎩

Δq̄[0] = 0,
Δq̄[i] = V T

q MVqΔq̄[i−1] + V T
q (r + b2Δλ), i = 1, . . . , l,

Δq̄ = Δq̄[l] =
∑l−1

i=0(V
T
q MVq)

iV T
q (r + b2Δλ).

18

Table 4.1

Number of IVP solves (best results obtained over 12 continuation runs).

Method Brusselator model Olmstead model Total

Branch i ii iii iv 1 2

Start at L/R = 5.55 1.04 1.55 1.30 0.623 1.209
T = 3.017 2.948 2.947 3.433 14.06 14.27

End at L/R = 2.0 2.0 2.0 2.0 1.267 1.24
T = 3.424 3.436 3.197 3.415 27.5 18.0

NPJ 1045 1611 959 1463 864 385 6327
NPGS 723 721 682 950 832 412 4320
CNPGS 905 852 746 919 1238 539 5199
CNP 987 932 753 998 1408 662 5740

Average 915 1029 785 1083 1086 500 5397

Chord–Newton 2053 1607 1128 1874 9229 3791 19682

Since

r + b2Δλ = r(x(0), T, λ + Δλ) + h.o.t.,

this is again essentially a Gauss–Seidel approach where we first solve the
P -system for Δp, ΔT , and Δλ and then use the update λ to compute Δq.
CNPGS(1) applied to the equilibrium point problem (2.4) is the method
presented in [20, section 7]. We used the pseudo-arclength condition (4.7).

• CNP, based on the Sherman–Morrison formula explained in (2.15)–(2.18) and
(4.7).

The fifth method is a direct application of a Chord–Newton method on (1.4) which
does not use the splitting approach. This is included for comparison purposes. To be
more precise,

• Chord–Newton applied to (1.4) directly. We tried several strategies for up-
dating the Jacobian matrix and only report the best result in Table 4.1. Here
we used the parameterization equation (4.6).

All Newton–Picard methods are implemented similarly to Algorithm 3.2, but we used
subspace iteration with locking. We always used all vectors from Ve in Vp. We
did one subspace iteration step before each Newton–Picard step, except before the
first Newton–Picard iteration step for the first point on a branch, where we used a
criterion on the accuracy of the computed subspace. All matrix–vector products and
the Jacobian matrices for the Chord–Newton method were computed using variational
equations.

Table 4.1 lists the number of IVP solves for each method on the two problems.
To be precise, we computed the branches using 1, 2, or 3 Picard steps and 4 values for
the maximal steplength of the continuation code but report only the best result of the
12 combinations in the table. The last column lists the total number of IVP solves.
It is seen that NPGS performs best overall and NPJ worst, being about 50% more
expensive than NPGS. Note, however, that the difference in performance occurs for
the Brusselator example and that for the Olmstead model the performance of both
methods is the same. This superiority of NPGS is mainly due to the larger domain
of attraction and higher convergence performance far from the solution. Close to a
solution, the difference in convergence speed between the Gauss–Seidel and Jacobi
variant was found to be negligible, in agreement with Corollary 2.4. The Gauss–
Seidel variant thus allows larger stepsizes (and hence fewer continuation points) in a
continuation procedure. As would be expected CNP, which uses the rank-one update

19

Table 4.2

Number of continuation points (best results obtained over 12 continuation runs).

Method Brusselator model Olmstead model Total

Branch i ii iii iv 1 2

NPJ 16 21 11 18 16 7 89
NPGS 11 9 7 12 15 7 61
CNPGS 13 9 7 11 23 8 71
CNP 13 9 7 11 23 9 72

Average 13 12 8 13 19 8 73

Chord–Newton 9 7 5 8 22 9 60

Table 4.3

Value for l used to obtain the results presented in the previous tables.

Method Brusselator model Olmstead model Average

Branch i ii iii iv 1 2

NPJ 2 1 1 1 1 1 1.17
NPGS 2 2 3 1 1 1 1.67
CNPGS 1 1 3 2 1 1 1.50
CNP 1 1 2 1 1 1 1.17

approach, and CNPGS are both more expensive than NPGS. Compared with the
CNPGS method, the additional IVP solves per iteration needed in the CNP method
because of the full coupling do not result in improved convergence speed. However,
the CNP method proves to be the most robust method. As expected Chord–Newton
is the most expensive method, but it is significant that even for these relatively small
problems NPGS is over four times faster than Chord–Newton. For larger N the
superiority would be even more marked because of the scaling discussion in section 4.2.
Table 4.2 compares the same methods with the number of continuation steps taken
to compute the branch. Similar conclusions can be drawn from this table.

For the four Newton–Picard methods, the number of Picard steps to compute
Δq̄ in (2.12) is varied from l = 1 to l = 3. Table 4.3 indicates which value for l
provided the fastest performance, the figures for which were used to produce Tables
4.1 and 4.2. For the Olmstead model it is striking that l = 1 was best for all runs.
For the Brusselator, the results are less clear cut, though the choice l = 1 was best in
9 out of 16 runs. There are two possible explanations for this. First, for our choice
of parameters the theoretical convergence rate is quite high and is not reached in
practice even for l = 1. In fact, the transitional behavior of the Newton part often
dominates the convergence. Second, the convergence speed of the subspace iteration
procedure does not change when l is changed. The basis is not accurate enough to
get the full theoretical convergence speed.

The number of IVP solves presented in Table 4.1 includes the accurate compu-
tation of all Floquet multipliers larger than 0.7. After the Newton–Picard iterations
(where the basis update is stopped once two to three digits of accuracy for the eigen-
values is reached) we generally needed only one or two subspace iteration steps to
compute the dominant Floquet multipliers with four digits of accuracy. Note that for
the Olmstead model, we have observed inaccuracies in the computation of the trivial
one eigenvalue near Hopf bifurcations or for solutions with a large period. The com-
putation of the Floquet multipliers by applying the QR algorithm (from LAPACK)
to the full monodromy matrix resulted in comparable or even larger errors. This is

20

clearly caused by inaccuracies in the computation of the Jacobian. Compared with the
subspace method, the use of the QR algorithm on the full monodromy matrix also
results in larger differences in accuracy between approaches using finite differences
and using the variational equations.

5. Conclusions. In this paper we have developed Newton–Picard methods for
the computation of periodic solutions of PDEs or large-scale systems of ODEs, based
on single shooting. These methods are extensions of the recursive projection method
described in [20]. Our approach utilizes the fact that, in continuation, nearby starting
values are likely to be available, and if all else fails one can reduce the steplength in
the continuation parameter and restart the process. These methods are particularly
efficient for systems which exhibit only low-dimensional dynamics (as is the case for
many physically interesting systems) where the number of large Floquet multipliers
is essentially independent of the discretization, and this is exploited in our methods.
We have also shown how the Newton–Picard schemes could be implemented with
(pseudo-arclength) continuation.

We have tested the various Newton–Picard schemes for the computation of
branches of periodic solutions for two model problems. The test results indicate
that the Gauss–Seidel variants (e.g., the NPGS(1) scheme) are superior to the Jacobi
variants (e.g., NPJ(1)) . Although the asymptotic convergence speed is the same, the
Gauss–Seidel variants have in general a larger domain of attraction. Compared with
classical shooting and (Chord–) Newton methods, which need the explicit computa-
tion and factorization of the whole Jacobian matrix, Newton–Picard schemes are in
general much more efficient. Newton–Picard schemes also provide good approxima-
tions for the dominant Floquet multipliers, which can be refined by a few subspace
iteration steps. These Floquet multipliers are used to determine stability and could
easily be used to accurately detect bifurcations.

As is the case with all variants of the simple shooting idea, the Newton–Picard
schemes presented here for the computation of periodic solutions have the advantage
that memory requirements remain low, but the disadvantage is that it is hard or
impossible to compute unstable limit cycles with large Floquet multipliers or limit
cycles with long period. We believe that the ideas behind our methods can also be
applied to multiple shooting algorithms [11, 19] to overcome these disadvantages.

REFERENCES

[1] V. I. Arnold, Ordinary Differential Equations, MIT Press, Cambridge MA, 1973.
[2] E. Doedel, AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differ-

ential Equations, Tech. report, Applied Mathematics, California Institute of Technology,
Pasadena, 1986.

[3] T. Fairgrieve, The Computation and Use of Floquet Multipliers for Bifurcation Analysis,
Ph.D. thesis, Department of Computer Science, University of Toronto, 1994.

[4] T. Fairgrieve and A. Jepson, O.K. Floquet multipliers, SIAM J. Numer. Anal., 28 (1991),
pp. 1446–1462.

[5] M. Holodniok, P. Knedlik, and M. Kubicek, Continuation of periodic solutions in parabolic
differential equations, in Bifurcation: Analysis, Algorithms, Applications, T. Küpper,
R. Seydel, and H. Troger, eds., ISNM 79, Birkhäuser, Basel, 1987, pp. 122–130.

[6] H. Jarausch, Zur numerischen Untersuchung von parabolischen Differentialgleichungen mit
Hilfe einer adaptiven spektralen Zerlegung, Habilitationsschrift, RWTH Aachen, January
1991.

[7] H. Jarausch, Analyzing stationary and periodic solutions of systems of parabolic partial dif-
ferential equations by using singular subspaces as reduced basis, Bericht Nr. 92, Institut
für Geometrie und Praktische Mathematik, RWTH Aachen, 1993.

21

[8] H. Jarausch and W. Mackens, Numerical treatment of bifurcation branches by adaptive
condensation, in Numerical Methods for Bifurcation Problems, T. Küpper, H. Mittelman,
and H. Weber, eds., ISNM 70, Birkhäuser-Verlag, Basel, 1984, pp. 296–309.

[9] H. Jarausch and W. Mackens, Computing bifurcation diagrams for large nonlinear vari-
ational problems, in Large Scale Scientific Computing, P. Deuflhard and B. Enguist,
eds., Progress in Scientific Computing 7, Birkhäuser-Verlag, Basel, 1987.

[10] H. Jarausch and W. Mackens, Solving large nonlinear systems of equations by an adaptive
condensation process, Numer. Math., 50 (1987), pp. 633–653.

[11] H. Keller, Numerical Methods for Two-Point Boundary Value Problems, Blaisdell, New York,
1968.

[12] A. Khibnik, Y. Kuznetsov, V. Levitin, and E. Nikolaev, Continuation techniques and
interactive software for bifurcation analysis of ODEs and iterated maps, Physica D, 62
(1993), pp. 360–371.

[13] K. Meerbergen and D. Roose, Matrix transformations for computing rightmost eigenval-
ues of large sparse nonsymmetric eigenvalue problems, IMA J. Numer. Anal., 16 (1996),
pp. 297–346.

[14] W. Olmstead, S. Davis, S. Rosenblat, and W. Kath, Bifurcation with memory, SIAM J.
Appl. Math., 4 (1986), pp. 171–188.

[15] W. Rheinboldt, Numerical analysis of continuation methods for nonlinear structural prob-
lems, Comput. & Structures, 13 (1981), pp. 103–113.

[16] W. Rheinboldt, Numerical Analysis of Parameterised Nonlinear Equations, Wiley-Inter-
science, New York, 1986.

[17] D. Roose, K. Lust, A. Champneys, and A. Spence, A Newton–Picard shooting method for
computing periodic solutions of large-scale dynamical systems, Chaos Solitons Fractals, 5
(1995), pp. 1913–1925.

[18] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Algorithms and Architectures
for Advanced Scientific Computing, Manchester University Press, Manchester, 1992.

[19] R. Seydel, Practical Bifurcation and Stability Analysis. From Equilibrium to Chaos, 2nd ed.,
Springer-Verlag, New York, 1994.

[20] G. Shroff and H. Keller, Stabilization of unstable procedures: The recursive projection
method, SIAM J. Numer. Anal., 30 (1993), pp. 1099–1120.

[21] G. Stewart, Simultaneous iteration for computing invariant subspaces of non-hermitian ma-
trices, Numer. Math., 25 (1976), pp. 123–136.

22

