
An Adaptive, Non-Uniform Cache Structure for
Wire-Delay Dominated On-Chip Caches

Changkyu Kim Doug Burger Stephen W. Keckler

Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin

c a r t e l @ cs. u texas , e d u - w w w . cs. u texas , e d u / u s e r s / c a r t

ABSTRACT

Growing wire delays will force substantive changes in the designs

of large caches. Traditional cache architectures assume that each

level in the cache hierarchy has a single, uniform access time. In-

creases in on-chip communication delays will make the hit time of

large on-chip caches a function of a line's physical location within

the cache. Consequently, cache access times will become a contin-

uum of latencies rather than a single discrete latency. This non-

uniformity can be exploited to provide faster access to cache lines

in the portions of the cache that reside closer to the processor. In

this paper, we evaluate a series of cache designs that provides fast

hits to multi-megabyte cache memories. We first propose physical

designs for these Non-Uniform Cache Architectures (NUCAs). We

extend these physical designs with logical policies that allow im-

portant data to migrate toward the processor within the same level

of the cache. We show that, for multi-megabyte level-two caches,

an adaptive, dynamic NUCA design achieves 1.5 times the IPC of a

Uniform Cache Architecture of any size, outperforms the best static

NUCA scheme by 11%, outperforms the best three-level hierarchy-

while using less silicon area-by 13%, and comes within 13% of an

ideal minimal hit latency solution.

1. INTRODUCTION

Today's high performance processors incorporate large level-two

(L2) caches on the processor die. The Alpha 21364 [8] will contain

a 1.75MB L2 cache, the HP PA-8700 will contain 2.25MB of uni-

fied on-chip cache [10], and the Intel Itanium2 will contain 3MB of

on-chip L3 cache. The sizes of on-chip L2 and L3 cache memories

are expected to continue increasing as the bandwidth demands on

the package grow, and as smaller technologies permit more bits per
mm 2 [13].

Current multi-level cache hierarchies are organized into a few

discrete levels. Typically, each level obeys inclusion, replicating

the contents of the smaller level above it, and reducing accesses to

the lower levels of the cache hierarchy. When choosing the size of

each level, designers must balance access time and capacity, while

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
ASPLOSX, 10/02, San Jose, CA, USA.
Copyright 2002 ACM ISBN 1-58113-574-2-02/0010 ...$5.00

staying within area and cost budgets.

In future technologies, large on-chip caches with a single, dis-

crete hit latency will be undesirable, due to increasing global wire

delays across the chip [1, 22]. Data residing in the part of a large

cache close to the processor could be accessed much faster than

data that reside physically farther from the processor. For example,

the closest bank in a 16-megabyte, on-chip L2 cache built in a 50-

nanometer process technology could be accessed in 4 cycles, while

an access to the farthest bank might take 47 cycles. The bulk of

the access time will involve routing to and from the banks, not the
bank accesses themselves.

In this paper, we explore the design space for large, wire-delay-

dominated caches. We first show that traditional cache designs,

in which a centralized decoder drives physically partitioned sub-

banks, will be ineffective in future technologies, as data in those

designs can be accessed only as fast as the slowest sub-bank. We

propose designs in which the cache is broken into banks that can be

accessed at different latencies. Our exploration of that design space
addresses the three following questions:

• Mapping: How many addressable banks should future caches

contain, and how should lines be mapped into those banks?

• Search: What is the fight strategy for searching the set of

possible locations for a line?

• Movement: Should a line always be placed in the same bank?

If not, how is a line moved, either while resident in the cache

or across different lifetimes in the cache?

Figure 1 shows the types of organizations that we explore in this

paper, listing the number of banks and the average access times,

assuming 16MB caches modeled with a 50nm technology. The

numbers superimposed on the cache banks show the latency of a
single contentionless request, derived from a modified version of

the Cacti cache modeling tool. The average loaded access times
shown below are derived from performance simulations that use

the unloaded latency as the access time but which include port and
channel contention.

We call a traditional'cache a Uniform Cache Architecture (UCg),

shown in Figure la. Although we support aggressive sub-banking,

our models indicate that this cache would perform poorly due to

internal wire delays and restricted numbers of ports.

Figure lb shows a traditional multi-level cache (L2 and L3),

called HL-UCA. Both levels are aggressively banked for support-
ing multiple parallel accesses, although the banks are not shown

in the figure. Inclusion is enforced, so a line in the smaller level

implies two copies in the cache, consuming extra space.

211

0 41

(a) UCA
Numberofbanks: 1 bank
Avg. loaded access time: 255 cycles

- - I

oo° D
o [3 . . .

E3E3 .--=°_
E3

(b) ML-UCA (c) S-NUCA-1 Id) S-NUCA-2 (e) D-NUCA
8/32 banks 32 banks 32 banks 256 banks
1 I/41 cycles 34 cycles 24 cycles 18 cycles

Figure 1:Level-2 Cache Architectures.

Figure lc shows an aggressively banked cache, which supports

non-uniform access to the different banks without the inclusion

overhead of ML-UCA. The mapping of data into banks is prede-

termined, based on the block index, and thus can reside in only one

bank of the cache. Each bank uses a private, two-way, pipetined

transmission channel to service requests. We call this statically

mapped, non-uniform cache S-NUCA- 1.

When the delay to route a signal across a cache is significant,

increasing the number of banks can improve performance. A large
bank can be subdivided into smaller banks, some of which will

be closer to the cache controller, and hence faster than those farther

from the cache controller. The original, larger bank was necessarily

accessed at the speed of the farthest, and hence slowest, sub-bank.

Increasing the number of banks, however, can increase wire and de-

coder area overhead. Private per-bank channels, used in S-NUCA-

1, heavily restrict the number of banks that can be implemented,

since the per-bank channel wires adds significant area overhead to

the cache if the number of banks is large. To circumvent that limita-

tion, we propose a static NUCA design that uses a two-dimensional

switched network instead of private per-bank channels, permitting

a larger number of smaller, faster banks. This organization, called

S-NUCA-2, is shown in Figure ld.

Even with an aggressive multi-banked design, performance may
still be improved by exploiting the fact that accessing closer banks

is faster than accessing farther banks. By permitting data to be

mapped to many banks within the cache, and to migrate among

them, a cache can be automatically managed in such a way that

most requests are serviced by the fastest banks. Using the switched

network, data can be gradually promoted to faster banks as they

are frequently used. This promotion is enabled by spreading sets

across multiple banks, where each bank forms one way of a set.

Thus, cache lines in closer ways can be accessed faster than lines

in farther ways.

In this paper, we compare this dynamic non-uniform scheme (D-

NUCA), depicted in Figure le, to the S-NUCA schemes and ML-

UCA. A D-HUCA organization incurs fewer misses than an inclu-

sive HL-UCA design using the same area, since D-HUCA does not

enforce inclusion, preventing redundant copies of the same line.

We show that a D-NUCA cache achieves highest IPC across diverse

applications, by adapting to the working set of each application

and moving it into the banks closest to the processor. In an ML-

UCA organization, conversely, the faster level may not match the

working set size of an application, either being too large (and thus

too slow), or being too small, incurring unnecessary misses to the

slower backing level. For large caches in wire-delay-dominated

technologies (16MB at 50nm), the best D-NUCA organization we

explore outperforms the best S-NUCA organization by 18% and the

best ML-UCA organization by 20%.

The remainder of this paper is organized as follows. Section 2

l ~ a n k

D.bu, I) [IJL II,,,I ,,I

"--klIIII

Figure 2: UCA and S-NUCA-1 cache dcsigu

describes the limitations of single-banked caches, and describes our

per-bank evaluation methodology. Section 3 describes and evalu-

ates the $-NUCA-1 and S-NUCA-2 designs, as well as details our

modeling of contention and wire pipelining. Section 4 presents a

D-NUCA, in which flexible mapping policies dynamically migrate

important data to nearer, faster banks along a switched network. In

this section, we also compare the D-NUCA design with a number

of HL-UCA hierarchies. We briefly discuss the effect of changing
technology projections in Section 6. We discuss related work in

Section 7, and conclude in Section 8.

2. UNIFORM ACCESS CACHES
Large modern caches are subdivided into multiple sub-banks to

minimize access time. Cache modeling tools, such as Cacti [16,

33], enable fast exploration of the cache design space by automat-

ically choosing the optimal sub-bank count, size, and orientation.

To estimate the cache bank delay, we used Cacti 3.0, which ac-

counts for capacity, sub-bank organization, area, and process tech-

nology [27].

Figure 2 contains an example of a Cacti-style bank, shown in

the circular expanded section of one bank. The cache is modeled

assuming a central pre-decoder, which drives signals to the local

decoders in the sub-banks. Data are accessed at each sub-bank and

returned to the output drivers after passing through muxes, where

the requested line is assembled and driven to the cache controller.

Cacti uses an exhaustive search to choose the number and shape of

sub-banks to minimize access time. Despite the use of an optimal

sub-banking organization, large caches of this type perform poorly

in a wire-delay-dominated process, since the delay to receive the

portion of a line from the slowest of the sub-banks is large.

2.1 Experimental Methodology
To evaluate the effects of different cache organizations on sys-

tem performance, we used Cacti to derive the access times for

212

Phase L2 load accesses/ Phase L2 load accesses/
SPECINT2000 FFWD RUN Million instr SPECFP2000 FFWD RUN Million instr
176.gcc 2.367B 300M 25,900 172.mgrid 550M 1.06B 21,000
181.mcf 5.0B 200M 260,620 177.mesa 570M 200M 2,500
197.parser 3.709B 200M 14,400 173.applu 267M 650M 43,300
253.perlbmk 5.0B 200M 26,500 179.art 2.2B 200M 136,500
256.bzip2 744M 1.0B 9,300 178.galgel 4.0B 200M 44,600
300.twolf 511M 200M 22,500 183.equake 4.459B 200M 41,100

Speech NAS
sphinx ~ 6 . 0 B 200M 54,200 cg 600M 200M 113,900

bt 800M 650M 34,500
sp 2.5B 200M 67,200

Table 1: Benchmarks used for performance experiments

caches, and extended the s i r e - a l p h a simulator [6] to simulate

different cache organizations with parameters derived from Cacti.

s i r e - a l p h a models an Alpha 21264 core in detail [18]. We as-

sumed that all microarchitectural parameters other than the L2 or-

ganization match those of the 21264, including issue width, fetch

bandwidth, and clustering. The L1 caches we simulated are sim-

ilar to those of the 21264: 3-cycle access to the 64KB, 2-way set

associative L1 data cache, and single-cycle access to the similarly

configured L1 I-cache. All line sizes in this study were fixed at

64 bytes. In all cache experiments, we assumed that the off-chip

memory controller resides near the L2 memory controller. Thus,

writebacks need to be pulled out of the cache, and demand misses,

when the pertinent line arrives, are injected into the cache by the

L2 controller, with all contention modeled as necessary. However,

we do not model any routing latency from the off-chip memory

controller to the L2 cache controller.

Since Cacti produces timing estimates in nanoseconds, we con-

verted cache delays to processor cycles by assuming an aggressive

clock of 8 FO4 inverter delays 1 per cycle for each technology. Re-

cent work has shown that 8 FO4 delays is close to the optimal clock

for superscalar microprocessors [12]. We assume an unloaded 132-

cycle access to main memory, obtained by scaling the memory la-

tency of an actual Alpha 21264 system-a DS-10L workstation at

66 cycles-by a factor equal to the ratio of the assumed and actual

clock rates. Since the 21264 has approximately twice as many gate

delays per cycle (16---20 FO4 versus 8 FO4), we multiplied the DS-

10L 66 cycle memory latency by two.

Table 1 shows the benchmarks used in our experiments, cho-

sen for their high L1 miss rates. The 16 applications include six

SPEC2000 floating-point benchmarks [30], six SPEC2000 integer

benchmarks, three scientific applications from the NAS suite [3],

and Sphinx, a speech recognition application [21]. For each bench-

mark we simulated the sequence of instructions which capture the

core repetitive phase of the program, determined empirically by

plotting the L2 miss rates over one execution of each benchmark,

and choosing the smallest subsequence that captured the recurrent

behavior of the benchmark. Table 1 lists the number of instructions

skipped to reach the phase start (FFWD) and the number of in-

structions simulated (RUN). Table 1 also shows the anticipated L2

load, listing the number of L2 accesses per 1 million instructions

assuming 64KB level-1 instruction and data caches (this metric was

proposed by Kessler et al. [19]).

2.2 UCA Evaluation

Table 2 shows the parameters and achieved instructions per cycle

1One FO4 is the delay of one inverter driving four copies of itself.
Delays measured in FO4 are independent of technology; we model
one FO4 as 360 picoseconds times the transistor's effective gate
length in microns [11].

Tech
(nm)
130
100
70
50

L2 Num. Unloaded Loaded
Capacity Sub-banks Latency Latency IPC

2MB 16 13 67.7 0.41
4MB 16 18 91.1 0.39
8MB 32 26 144.2 0.34
16MB 32 41 255.1 0.26

Table 2: Performance of UCA organizations

Miss
Rate
0.23
0.20
0.17
0.13

(IPC) of the UCA organization. For the rest of this paper, we assume

a constant L2 cache area and vary the technology generation to

scale cache capacity within that area, using the SIA Roadmap [26]

predictions, from 2MB of on-chip L2 at 130 nm devices to 16MB

at 50 nm devices. In Table 2, the unloaded latency is the average

access time (in cycles) assuming uniform bank access distribution

and no contention. The loaded latency is obtained by averaging the

actual L2 cache access time-including contention-across all of the

benchmarks. Contention can include both bank contention, when

a request must stall because the needed bank is busy servicing a

different request, and channel contention, when the bank is free but

the routing path to the bank is busy, delaying a request.

The reported IPCs are the harmonic mean of all IPC values across

our benchmarks, and the cache configuration displayed for each ca-

pacity is the one that produced the best IPC; we varied the number

and aspect ratio of sub-banks exhaustively, as well as the number

of banks.

In the UCA cache, the unloaded access latencies are sufficiently

high that contention could be a serious problem. Multiported ceils

are a poor solution for overlapping accesses in large caches, as in-

creases in area will expand loaded access times significantly: for a

2-ported, 16MB cache at 50nm, Cacti reports a significant increase

in the unloaded latency, which makes a 2-ported solution perform

worse than a single-ported L2 cache. Instead of multiple physical

ports per cell, we assume perfect pipelining: that all routing and

logic have latches, and that a new request could be initiated at an in-

terval determined by the maximal sub-bank delay, which is shown

in column 4 of Table 2. We did not model the area or delay con-

sumed by the pipeline latches, resulting in optimistic performance

projections for an UCA organization.

Table 2 shows that, despite the aggressive cache pipelining, the

loaded latency grows significantly as the cache size increases, from

68 cycles at 2MB to 255 cycles at 16MB. The best overall cache

size is 2MB, at which the increases in L2 latency are subsumed by

the improvement in miss rates. For larger caches, the latency in-

creases overwhelm the continued reduction in L2 misses. While

the UCA organization is inappropriate for large, wire-dominated

caches, it serves as a baseline for measuring the performance im-

provement of more sophisticated cache organizations, described in

the following section.

213

Technology L2 Num.
(nm) size banks
130 2MB 16
100 4MB 32
70 8MB 32
50 16MB 32

Unloaded latency Conservative
bank min max avg. Loaded IPC

3 7 13 10 11.3 0.54
3 9 21 15 17.3 0.56
5 12 26 19 21.9 0.61
8 17 41 29 34.2 0.59

Table 3 :S -NUCA-1 evaluation

Aggressive
Loaded 1PC

10.0 : 0.55
15.3 0.57
19.3 0.63
30.2 0.62

3. STATIC NUCA IMPLEMENTATIONS
Much performance is lost by requiring worst-case uniform ac-

cess in a wire-delay dominated cache. Multiple banks can mitigate

those losses, if each bank can be accessed at different speeds, pro-

portional to the distance of the bank from the cache controller. In

our banked cache models, each bank is independently addressable,

and is sized and partitioned into a locally optimal physical sub-bank

organization. As before, the number and physical organization of

banks and sub-banks were chosen to maximize overall IPC, after

an exhaustive exploration of the design space.

Data are statically mapped into banks, with the low-order bits of

the index determining the bank. Each bank we simulate is four-

way set associative. These static, non-uniform cache architectures

(S-NUCA) have two advantages over the UCA organization previ-

ously described. First, accesses to banks closer to the cache con-

troller incur lower latency. Second, accesses to different banks may

proceed in parallel, reducing contention. We call these caches S -

NUCA caches, since the mappings of data to banks are static, and

the banks have non-uniform access times.

3.1 Private Channels (S-NUCA-1)
As shown in Figure 2, each addressable bank in the S-NUCA-1

organization has two private, per-bank 128-bit channels, one go-

ing in each direction. Cacti 3.0 is not suited for modeling these

long transmission channels, since it uses the Rubenstein RC wire

delay model [14] and assumes bit-line capacitative loading on each

wire. We replaced that model with the more aggressive repeater

and scaled wire model of Agarwal et al. for the long address and

data busses to and from the banks [1].

Since banks have private channels, each bank can be accessed

independently at its maximum speed. While smaller banks would

provide more concurrency and a greater fidelity of non-uniform ac-

cess, the numerous per-bank channels add area overhead to the ar-

ray that constrains the number of banks.

When a bank conflict occurs, we model contention in two ways.

A conservative policy assumes a simple scheduler that does not

place a request on a bank channel until the previous request to that

bank has completed. Bank requests may thus be initiated every

b + 2d + 3 cycles, where b is the actual bank access time, d is the

one-way transmission time on a bank's channel, and the additional

3 cycles are needed to drain the additional data packets on the chan-

nel in the case of a read request following a writeback. Since each

channel is 16 bytes, and the L2 cache line size is 64 bytes, it takes

4 cycles to remove a cache line from the channel.

An aggressive pipelining policy assumes that a request to a bank

may be initiated every b + 3 cycles, where b is the access latency

of the bank itself. This channel model is optimistic, as we do not

model the delay or area overhead of the latches necessary to have

multiple requests in flight on a channel at once, although we do

model the delay of the wire repeaters.

Table 3 shows a breakdown of the access delays for the various

cache sizes and technology points: the number of banks to which

independent requests can be sent simultaneously, the raw bank ac-

cess delay, the minimum, average, and maximum access latency of

a single request to various banks, and the average latency seen at

Data bus

Address bus

_• r~SWitCh Tag array Sub-bank

Wordllne ddver rand decoder

~ l ~ T ~ PredecOder
Sense amplifier

Bank
Figure 3: Switched NUCA design

run-time (including channel contention). We assume that the cache

controller resides in the middle of one side of the bank array, so the

farthest distance that must be traversed is half of one dimension and

the entire other dimension. Unlike UCA, the average IPC increases

as the cache sizes increases, until 8 MB. At 16MB, the large area

taken by the cache causes the hit latencies to overwhelm the re-

duced misses, even though the access latencies grow more slowly

than with an UCA organization.

As technology advances, both the access time of individual banks

and the routing delay to the farthest banks increase The bank ac-

cess times for S-NUCA-1 increase from 3 cycles at 100nm to 8 cy-

cles at 50 nm because the best organization at smaller technologies

uses larger banks. The overhead of the larger, slower banks is less

than the delays that would be caused by the extra wires required for

more numerous, smaller banks.

The greater wire delays at small technologies cause increased

routing delays to the farther banks. At 130nm, the worst-case rout-

ing delay is 10 cycles. It increases steadily to reach 33 cycles at

50nm. While raw routing delays in the cache are significant, con-

tention is less of a problem. Contention for banks and channels can

be measured by subtracting the average loaded latency from the av-

erage unloaded latency in Table 3. The aggressive pipelining of the

request transmission on the channels eliminates from 1.3 to 4.0 cy-

cles from the conservative pipelining average loaded bank access

latency, resulting in a 5% improvement in IPC at 16MB.

The number of banks increases from 16 at 2MB to 32 at 4MB.

At 8MB and 16MB, the optimal number of banks does not increase

further, due to the area overhead of the per-bank channels, so each

bank grows larger and slower as the cache size increases. That con-

straint prevents the S-NUCA-1 organization from exploiting the

potential access fidelity of small, fast banks. In the next subsec-

tion, we describe a inter-bank network that mitigates the per-bank

channel area constraint.

3.2 Switched Channels (S-NUCA-2)

Figure 3 shows an organization that removes most of the large

number of wires resulting from per-bank channels. This organiza-

tion, called S-NUCA-2, embeds a lightweight, wormhole-routed

2-D mesh with point-to-point links in the cache, placing simpl e

switches at each bank. Each link has two separate 128-bit channels

for bidirectional routing. We modeled the switch logic in HSPICE

214

Technology L2
(nm) Size
130 2MB
100 4MB
70 8MB
50 16MB

Num. Unloaded Latency Loaded
Banks bank min max avg. Latency

16 3 4 11 8 9.7
32 3 4 15 10 11.9
32 5 6 29 18 20.6
32 8 9 32 21 24.2

Table 4 :S -NUCA-2 performance

Bank
IPC Requests
0.55 17M
0.58 16M
0.62 15M
0.65 15M

to obtain the delay for each switch and incorporate that delay into

our performance simulations. We again used the Agarwal et al.

model for measuring wire delay between switches. As in the previ-

ous configurations, we assume 4-way set associative banks.

We modeled contention by implementing wormhole-routed flow

control, and by simulating the mesh itself and the individual switch

occupancy in detail as a part of our performance simulations. In our

simulations, each switch buffers 16-byte packets, and each bank

contains a larger buffer to hold an entire pending request. Thus,

exactly one request can be queued at a specific bank while another

is being serviced. A third arrival would block the network links,

buffering the third request in the network switches and delaying

other requests requiring those switches. Other banks along differ-

ent network paths could still be accessed in parallel, of course.

In the highest-performing bank organization presented, each bank

was sized so that the routing delay along one bank was just under

one cycle. We simulated switches that had buffer slots for four flits

per channel, since our sensitivity analysis showed that more than

four slots per switch gained little additional IPC. In our 16MB S-

NUCA-2 simulations, the cache incurred an average of 0.8 cycles

of bank contention and 0.7 cycles of link contention in the network.

Table 4 shows the IPC of the S-NUCA-2 design. For 4MB and

larger caches, the minimum, average, and maximum bank latencies

are significantly smaller than those for S-NUCA-1. The switched

network speeds up cache accesses because it consumes less area

than the private, per-bank channels, resulting in a smaller array and

faster access to all banks. At 50nm with 32 banks, our models

indicate that the S-NUCA-1 organization's wires consume 20.9%

of the bank area, whereas the S-NUCA-2 channel overhead is just

5.9% the total area of the banks.

The S-NUCA-2 cache is faster at every technology than 9 -

NUCA-1, and furthermore at 50nm with a 16MB cache, the av-

erage loaded latency is 24.2 cycles, as opposed to 34.2 cycles for

S-NUCA-1. At 16MB, that reduction in latency results in a 10%

average improvement in IPC across the benchmark suite. An ad-

ditional benefit from the reduced per-bank wire overhead is that

larger numbers of banks are possible and desirable, as we show in

the following section.

4. DYNAMIC NUCA IMPLEMENTATIONS
In this section, we show how to exploit future cache access non-

uniformity by placing frequently accessed data in closer (faster)

banks and less important-yet still cached-data in farther banks. We

evaluate a number of hardware policies that migrate data among the

banks to reduce average L2 cache access time and improve overall

performance. For these policies, we answer three important ques-

tions about the management of data in the cache: (1) mapping: how

the data are mapped to the banks, and in which banks a datum can

reside, (2) search: how the set of possible locations are searched to

find a line, (3) movement: under what conditions the data should be

migrated from one bank to another. We explore these questions in

each of the following three subsections.

4.1 Logical to Physical Cache Mapping

A large number of banks provides substantial flexibility for map-

ping lines to banks. At one extreme are the S-NUCA strategies, in

which a line of data can only be mapped to a single statically deter-

mined bank. At the other extreme, a line could be mapped into any

cache bank. While the latter approach maximizes placement flex-

ibility, the overhead of locating the line may be too large as each

bank must be searched, either through a centralized tag store or by

broadcasting the tags to all of the banks.

We explore an intermediate solution called spread sets in which

the multibanked cache is treated as a set-associative structure, each

set is spread across multiple banks, and each bank holds one "way"

of the set. The collection of banks used to implement this asso-

ciativity is called a bank set and the number of banks in the set

corresponds to the associativity.

A cache can be comprised of multiple bank sets. For example,

as shown in Figure 4a, a cache array with 32 banks could be orga-

nized as a 4-way set-associative cache, with eight bank sets, each

consisting of 4 cache banks. To check for a hit in a spread-set

cache, the pertinent tag in each of the 4 banks of the bank set must

be checked. Note that the primary distinction between this orga-

nization and a traditional set-associative cache is that the different

associative ways have different access latencies.

We propose three methods of allocating banks to bank sets and

ways: simple mapping, fair mapping, and shared mapping. With

the simple mapping, shown in Figure 4a, each column of banks

in the cache becomes a bank set, and all banks within that col-

umn comprise the set-associative ways. Thus, the cache may be

searched for a line by first selecting the bank column, selecting the

set within the column, and finally performing a tag match on banks

within that column of the cache. The two drawbacks of this scheme

are that the number of rows may not correspond to the number of

desired ways in each bank set, and that latencies to access all bank

sets are not the same; some bank sets will be faster than others,

since some rows are closer to the cache controller than others.

Figure 4b shows the fair mapping policy, which addresses both

problems of the simple mapping policy at the cost of additional

complexity. The mapping of sets to the physical banks is indicated

with the arrows and shading in the diagram. With this model, banks

are allocated to bank sets so that the average access time across all

bank sets are equalized. We do not present results for this policy,

but describe it for completeness. The advantage of the fair mapping

policy is an approximately equal average access time for each bank

set. The disadvantage is a more complex routing path from bank to

bank within a set, causing potentially longer routing latencies and

more contention in the network.

The shared mapping policy, shown in Figure 4c, attempts to pro-

vide fastest-bank access to all bank sets by sharing the closest banks

among multiple bank sets. This policy requires that if n bank sets

share a single bank, then all banks in the cache are n-way set asso-

ciative. Otherwise, a swap from a solely owned bank into a shared

bank could result in a line that cannot be placed into the solely

owned bank, since the shared bank has fewer sets than the non-
shared bank. In this study, we allow a maximum of two bank sets

to share a bank. Each of the n/2 farthest bank sets shares half of

the closest bank for one of the closest n/2 bank sets. This policy

215

(a) Simple Mapping

l l l l l l l
(b) Fair Mapping

Figure 4: Mapping bank sets to banks.

(c) Shared Mapping

1 2 3 4E~]5 6 7 8

results in some bank sets having a slightly higher bank associativ-

ity than the others, which can offset the slightly increased average

access latency to that bank set. That strategy is illustrated in Fig-

ure 4c, in which the bottom bank of column 3 caches lines from

columns 1 and 3, the bottom bank of column 4 caches lines from

columns 2 and 4, and so on. In this example the farthest four (1, 2,

7, and 8) of the eight bank sets share the closest banks of the closest

four (3, 4, 5, and 6).

4.2 Locating Cached Lines
Searching for a line among a bank set can be done with two dis-

tinct policies. The first is incremental search, in which the banks

are searched in order starting from the closest bank until the re-

quested line is found or a miss occurs in the last bank. This pol-

icy minimizes the number of messages in the cache network and

keeps energy consumption low, since fewer banks are accessed

while checking for a hit, at the cost of reduced performance.

The second policy is called multicast search, in which the re-

quested address is multicast to some or all of the banks in the re-

quested bank set. Lookups proceed roughly in parallel, but at dif-

ferent actual times due to routing delays through the network. This

scheme offers higher performance at the cost of increased energy

consumption and network contention, since hits to banks far from

the processor will be serviced faster than in the incremental search

policy. One potential performance drawback to multicast search is

that the extra address bandwidth consumed as the address is routed

to each bank may slow other accesses.

Hybrid intermediate policies are possible, such as limited multi-

cast, in which the first M of the N banks in a bank set are searched

in parallel, followed by an incremental search of the rest. Most of

the hits will thus be serviced by a fast lookup, but the energy and

network bandwidth consumed by accessing all of the ways at once

will be avoided. Another hybrid policy is partitioned multicast, in

which the bank set is broken down into subsets of banks. Each

subset is searched iteratively, but the members of each subset are

searched in parallel, similar to a multi-level, set-associative cache.

4.3 Smart Search
A distributed cache array, in which the tags are distributed with

the banks, creates two new challenges. First, many banks may need

to be searched to find a line on a cache hit. Second, if the line is

not in the cache, the slowest bank determines the time necessary

to resolve that the request is a miss. The miss resolution time thus

grows as the number of banks in the bank set increases. While the

incremental search policy can reduce the number of bank lookups,

the serialized tag lookup time increases both the hit latency and the

miss resolution time.

We applied the idea of the partial tag comparison proposed by

Kessler et al. [20] to reduce both the number of bank lookups and

the miss resolution time. The D-NUCA policy using partial tag

comparisons, which we call smart search, stores the: partial tag bits

into a smart search array located in the cache controller.

We evaluated two smart search policies: ss-performance and ss-

energy. In the ss-performance policy, the cache array is searched

as in previous policies. However, in parallel, the stored partial tag

bits are compared with the corresponding bits of the requested tag,

and if no matches occur, the miss processing is commenced early.

In this policy, the smart search array must contain enough of the tag

bits per line to make the possibility of false hits low; so that upon a

miss, accidental partial matches of cached tags to the requested tag

are infrequent. We typically cached 6 bits from each tag, balancing

the probability of incurring a false hit with the access latency to the

smart search array.

In the ss-energy policy, the partial tag comparison is used to re-

duce the number of banks that are searched upon a miss. Since the

smart search array takes multiple cycles (typically 4 to 6) to access,

serializing the smart search array access before any cache access

would significantly reduce performance. As an optimization, we

allowed the access of the closest bank to proceed in parallel with

the smart search array access. After that access, if a hit in the clos-

est bank does not occur, all other banks for which the partial tag

comparison was successful are searched in parallel.

4.4 Dynamic Movement of Lines
Since the goal of the dynamic NUCA approach is to maximize

the number of hits in the closest banks, a desirable policy would

be to use LRU ordering to order the lines in the bank sets, with

the closest bank holding the MRU line, second closest holding sec-

ond most-recently used, etc. The problem with that approach is

that most accesses would result in heavy movement of lines among

banks. In a traditional cache, the LRU state bits are adjusted to

reflect the access history of the lines, but the tags and data of the

lines are not moved. In an n-way spread set, however, an access to

the LRU line would result in n copy operations. Practical policies

must balance the increased contention and power consumption of

copying with the benefits expected from bank set ordering.

We use generational promotion to reduce the amount of copy-

ing required by a pure LRU mapping, while still approximating an

LRU list mapped onto the physical topology of a bank set. Gen-

erational replacement was recently proposed by Hallnor et al. for

making replacement decisions in a software-managed UCA called

the Indirect Index Cache [9]. In our scheme, when a hit occurs to

a cache line, it is swapped with the line in the bank that is the next

closest to the cache controller. Heavily used lines will thus migrate

toward close, fast banks, whereas infrequently used lines will be

demoted into farther, slower banks.

A D-NUCA policy must determine the placement of an incoming

block resulting from a cache miss. A replacement may be loaded

216

Technology
(nm) L2 Size
130 2MB
100 4MB
70 8MB
50 16MB

Bank org. Unloaded Latency Loaded
(rows x sets) Bank min max avg. avg.

4x4 3 4 11 I 8 8.4
8x4 3 4 15 10 10.0
16x8 3 4 3 1 18 15.2
16x16 3 3 [47 . 25 18.3

Table 5: D - N U C A base performance

Miss Bank
IPC Rate Accesses/Set
0.57 0.23 73M
0.63 0.19 72M
0.67 0.15 138M
0.71 0.11 266M

¢.J

1 . 0 -

0.8 ¸

0.6-

0.4-

0.2-

0.0

D perfect LRU

o D-NUCA

•
• ..ll .o _= _a ,e Ill

0 1 2 3 4 5 6 7 8 9 101112131415

Associa t ive Way Number

Figure 5: Way distribution of cache hits

close to the processor, displacing an important block. The replace-

ment may be loaded in a distant bank, in which case an impor-

tant block would require several accesses before it is eventually

migrated to the fastest banks. Another policy decision involves

what to do with a victim upon a replacement; the two polices we

evaluated were one in which the victim is evicted from the cache

(a zero-copy policy), and one in which the victim is moved to a

lower-priority bank, replacing a less important line farther from the

controller (one-copy policy).

4.5 D-NUCA Policies
The policies we explore for D-NUCA consist of four major com-

ponents: (1) Mapping: simple or shared. (2) Search: multicast,

incremental, or combination. We restrict the combined policies

such that a block set is partitioned into just two groups, which may

then each vary in size (number of blocks) and the method of ac-

cess (incremental or multicast). (3) Promotion: described by pro-

motion distance, measured in cache banks, and promotion trigger,

measured in number of hits to a bank before a promotion occurs.

(4) Insertion: identifies the location to place an incoming block

and what to do with the block it replaces (zero copy or one copy

policies).

Our simple, baseline configuration uses simple mapping, multi-

cast search, one-bank promotion on each hit, and a replacement

policy that chooses the block in the slowest bank as the victim

upon a miss. To examine how effectively this replacement policy

compares to pure LRU, we measured the distribution of accesses

across the sets for a traditional 16-way set associative cache and

a corresponding 16MB, D-NUCA cache with an 16-way bank set.

Figure 5 shows the distribution of hits to the various sets for each

cache, averaged across the benchmark suite. For both caches, most

hits are concentrated in the first two ways of each set. These re-

sults are consistent with the results originally shown by So and

Rechtschaffen [28], which showed that more than 90% of cache

hits were to the most recently used ways in a four-way set asso-

ciative cache. So and Rechtschaffen noted that a transient increase

in non-MRU accesses could be used to mark phase transitions, in

which a new working set was being loaded.

The D-NUCA accesses are still concentrated in the banks corre-

sponding to the most recently used bank. However, the experiments

demonstrate a larger number of accesses to the non-MRU ways,

since each line must gradually traverse the spread set to reach the

fastest bank, instead of being instantly loaded into the MRU posi-

tion, as in a conventional cache.

5. PERFORMANCE EVALUATION
Table 5 shows the performance of the baseline D-NUCA config-

uration, which uses the simple mapping, multicast search, tail in-

sertion, and single-bank promotion upon each hit. As with all other

experiments, for each capacity, we chose the bank and network or-

ganization that maximized overall performance. Since our shared

mapping policy requires 2-way associative banks, we modeled all

banks in each experiment as being 2-way set associative.

As the capacities increase with the smaller technologies, from

2MB to 16MB, the average D-NUCA access latency increases by

10 cycles, from 8.4 to 18.3. The ML-UCA and S-NUCA designs in-

cur higher average latencies at 16MB, which are 22.3 and 30.4 cy-

cles, respectively. Data migration enables the low average latency

a! 161~IB, which, despite the cache's larger capacity and smaller de-

vice sizes, is less than the average hit latency for the 130nm, 2MB
UCA organization.

At smaller capacities such as 2MB, the base D-NUCA policy

shows small (,-~4%) IPC gains over the best of the S-NUCA and

UCA organizations. The disparity grows as the cache size increases,

with the base 16MB D-NUCA organization showing an average 9%

IPC boost over the best-performing S-NUCA organization.

Table 5 also lists miss rates and the total number of accesses to

individual cache banks. The number of bank accesses decreases

as the cache size grows because the miss rate decreases and fewer

cache fills and evictions are required. However, at 8MB and 16MB

the number of bank accesses increase significantly because the mul-

ticast policy generates substantially more cache bank accesses when

the number of banks in each bank set doubles from 4 to 8 at 8MB,

and again from 8 to 16 at 16MB. Incremental search policies re-

duce the number of bank accesses at the cost of occasional added

hit latency and slightly reduced IPC.

5.1 Policy Exploration
Table 6 shows the IPC effects of using the baseline configuration

and adjusting each policy independently. Changing the mapping

function from simple to fair reduces IPC due to contention in the

switched network, even though unloaded latencies are lower. Shift-

ing from the baseline multicast to a purely incremental search pol-

icy substantially reduces the number of bank accesses (from 266

million to 89 million). However, even though most data are found

in one of the first two banks, the incremental policy increases the

average access latency from 18.3 cycles to 24.9 cycles and reduces

IPC by 10%. The hybrid policies (such as multicast-2/multicast-6)

gain back most of the loss in access latency (19.1 cycles) and nearly

217

Policy Lat. IPC Rate Access Policy lat. IPC Rate Acce:;s__JJ

Search Promotion [[I I
Incremental 24.9 0.65 0.114 89M 1-bank/2-hit 1 1 8 . 5 1 0 . 7 1 1 0 . 1 1 5 [25~M
2 mcast + 6 inc 23.8 0.65 0.113 96M 2-bank/l-hit 17.7 0.71 0.114 26~ M
2 inc + 6 mcast 20.1 0.70 0.114 127M 2-bank/2-hit 18.3 0.71 0.115 25~ !vl
2 mcast + 6 recast 19.1 0.71 0.113 134M Eviction

Mapping insert head, evict random, 1 copy 15.5 0.70 0.117 261 lvl
Fastshared 116.6 I 0.73 I 0.119 266M insert middle, evict random, lcopy 16.6 0.70 0.114 2611

[I Baseline: simple map, multicast, 1-bank/l-hit, insert at tail 18.3 0.71 0.114 266] 3

Table 6: D-NUCA policy space evaluation

Configuration Loaded Average Miss Bank Tag Search
Latency IPC Rate Accesses Bits Array

Base D-NUCA 18.3 0.71 0.113 266M - -
SS-performance 18.3 0.76 0.113 253M 7 224KB

SS-energy 20.8 0.74 0.113 40M 7 224KB
SS-performance + shared bank 16.6 0.77 0.119 2661 6 216KB

SS-energy + shared bank 19.2 0.75 0.119 47M 6 216KB
Upper bound 3.0 0.83 0.114 - - - -

Upper bound + SS-performance 3.0 0.89 0.114 7 224KB

Table 7: Performance of D-NUCA with smart search

all of the IPC, while still eliminating a great many of the extra bank

accesses.

The data promotion policy, in which blocks may be promoted

only after multiple hits, or blocks may be promoted multiple banks

on a hit, has little effect on overall IPC, as seen by the three exper-

iments in Table 6. The best eviction policy is as shown in the base

case, replacing the block at the tail. By replacing the head, and

copying it into a random, lower-priority set, the average hit time

is reduced, but the increase in misses (11.4% to 11.7%) offsets the

gains from the lower access latencies.

While the baseline policy is among the best-performing, using

the 2 multicast/6-multicast hybrid look-up reduces the number of

bank accesses to 134 million (a 50% reduction) with a mere 1%

drop in IPC. However, the number of bank accesses is still signif-

icantly higher than any of the static cache organizations. Table 7,

shows the efficacy of the smart search policy at improving IPC and

reducing bank accesses. We computed the size and access width of

the different possible smart search configurations, and model their

access latencies accurately using Cacti.

By initiating misses early, the SS-performance policy results in a

8% IPC gain, at the cost of an additional 1-2% area (a 224KB smart

search tag array). In the SS-energy policy, a reduction of 85% of

the bank lookups can be achieved by caching 7 bits of tag per line,

with a 6% IPC gain over the base D-NUCA configuration. Cou-

pling the SS-energy policy with the shared mapping policy results

in a slightly larger tag array due to the increased associativity, so

we had to reduce the smart search tag width to 6 bits to keep the

array access time at 5 cycles. However, that policy results in what

we believe our best policy to be: 47M bank accesses on average,

and a mean IPC of 0.75. The last two rows of Table 7 shows two

upper bounds on IPC. The first upper bound row shows the mean

IPC that would result if all accesses hit in the closest bank with no

contention, costing 3 cycles. The second row shows the same met-

ric, but with early initiation of misses provided by the smart search

array. The highest IPC achievable was 0.89, which is 16% better

than the highest-performing D-NUCA configuration. We call the

policy of SS-energy with the shared mapping the "best" D-NUCA

policy D N - b e s t , since it balances high performance with a rel-

atively small number of bank accesses. The upper bound is 19%

than the DN-best policy.

5.2 Comparison to ML-UCA
Multi-level hierarchies permit a subset of frequently used data to

migrate to a smaller, closer structure, just as does a D-NUCA, but

at a coarser grain than individual banks. We compared the NUCA

schemes with a two-level hierarchy (L2 and L3), called HL-UCA.

We modeled the L2/L3 hierarchy as follows: we assumed that both

levels were aggressively pipelined and banked UCA structures. We

also assumed that the L3 had the same size as the comparable HUCA

cache, and chose the L2 size and L3 organization that maximized

overall IPC. The HL-UCA organization thus consumes more area

than the single-level L2 caches, and has a greater total capacity of

bits. In addition, we assumed no additional routing penalty to get

from the L2 to the L3 upon an L2 miss, essentially assuming that

the L2 and the L3 reside in the same space, making the multi-level

model optimistic.

Table 8 compares the IPC of the ideal two-level ML-UCA with a

D-NUCA. In addition to the optimistic ML-UCA assumptions listed

above, we assumed that the two levels were searched in parallel

upon every access 2. The IPC of the two schemes is roughly com-

parable at 2MB, but diverges as the caches grow larger. At 16MB,

overall IPC is 17% higher with D N - b e s t than with the ML-UCA,

since many of the applications have working sets greater than 2MB,

incurring unnecessary misses, and some have working sets smaller

than 2MB, rendering the HL-UCA L2 too slow.

The two designs compared in this subsection are not the only

points in the design space. For example, one could view a simply-

mapped D-NUCA as an n-level cache (where n is the bank associa-

tivity) that does not force inclusion, and in which a line is migrated

to the next highest level upon a hit, rather than the highest. A D-

NUCA could be designed that permitted limited inclusion, support-

ing multiple copies within a spread set. Alternatively, a ML-UCA in

which the two (or more) levels were each organized as S-NUCA-

2 designs, and in which inclusion was not enforced, would start

to resemble a D-NUCA organization in which lines could only be

mapped to two places. However, our experiments with many D-

NUCA policies indicate that the ability to effectively adjust the size

of the active working set, clustered near the processor, provides

2IPC of ML-UCA was 4% to 5% worse when the L2 and L3 were
searched serially instead of in parallel.

218

Techology
(nm)
130
100
70
50

L2/L3 Num. Unloaded Loaded ML-UCA DN-best
Size Banks Latency Latency IPC IPC

512KB/2MB 4/16 6/13 7.1/13.2 0.55 0.58
512KB/4MB 4/32 7 /21 8.0/21.1 0.57 0.63

1MB/8MB 8/32 9/26 9.9/26.1 0.64 0.70
1MB/16MB 8/32 10/41 10.9/41.3 0.64 0.75

Table 8: Performance of an L2/L3 Hierarchy

0 - 6 ~ l 1.0) 0.4
0.5

0.2
0.0 0.0

172.mgrid

1 . 0 - ' ~ 0.60"S

0.5- 0.4

0.2
0.0 0.0

197.parser

1.0

0.5

0.0
173.applu

~ l L0
0.5

0.0
253.perlbmk

0.5- 1.0 0.5

0.0- 0.0 0.0
176.gcc

~ l 1.0
0.5

0.0
256.bzip2

177.mesa

~ l 0"8 0.6
0.4
0.2
0.0

300.twolf

178.galgel

• 0.8

0.6

0.4

0.2

0.0

sphinx

•
0.6

0.4

0.2

0.0
179.art

~ l 0"6 0.4

0.2

0.0
cg

Figure 6: 16MB Cache Performance

0 . 4 ~

0.2

0.0

181.mcf 183.equake

~ l 0"6 0.4

0.2

0.0
sp

13 UCA
D S-NUCAI

ML- UCA

0 S-NUCA2

bt

better performance and performance stability than competing alter-

natives.

5.3 Cache Design Comparison
Figure 6 compares the 16MB/50nm IPC obtained by the best of

each major scheme that we evaluated: (1) UCA, (2) aggressively

pipelined S-NUCA-1, (3) S-NUCA-2, (4) aggressively pipelined,

optimally sized, parallel lookup ML-UCA, (5) D N - b e s t , and (6)

an ideal D-NUCA upper bound. This ideal bound is a cache in

which references always hit in the closest bank, never incurring any

contention, resulting in a constant 3-cycle hit latency, and which

includes the smart search capability for faster miss resolution.

The results show that D N - b e s t is the best cache for all but

three of the benchmarks (mgrid, gcc, and and bt). In those three,

D N - b e s t IPC was only slightly worse than the best organization.

The second-best policy varies widely across the benchmarks; it is

ML-UCA for some, S-NUCA-1 for others, and S-NUCA-2 for yet

others. The D N - b e s t organization thus offers not only the best

but the most stable performance. The ideal bound (labeled Upper
on the graphs) shows the per-benchmark IPC assuming a loaded

L2 access latency of 3 cycles, and produces an average ideal IPC

across all benchmarks of 0.89. Surprisingly, the D N - b e s t IPC is

only 16% worse than Upper on average, with most of that differ-

ence concentrated in four benchmarks (applu, art, mcf, and sphinx).

This result indicates that DN-be s t is close to ideal and unlikely to

benefit from better migration policies or compiler support to place

data in the right banks.

Figure 7 shows how the various schemes perform across technol-

ogy generations and thus cache sizes. The IPC of art, with its small

working set size, is shown in Figure 7a. Figure 7b shows the same

information for a benchmark (mcf) that has a larger-than-average

working set size. Figure 7c shows the harmonic mean IPC across
all benchmarks.

First, the IPC improvements of D-NUCA over the other organi-

zations grows as the cache grows larger. The adaptive nature of

the D-NUCA architecture permits consistently increased IPC with

increased capacity, even in the face of longer wire and on-chip com-

munication delays. Second, the D-NUCA organization is stable, in

that it makes the largest cache size the best performer for twelve

applications, within 1% of the best for two applications, within 5%

for one application, and within 10% for one application. Figure 7a

shows this disparity most clearly in that D-NUCA is the only orga-

nization for which art showed improved IPC for caches larger than

4MB.

6. TECHNOLOGY PROJECTIONS
We initially performed this study using the technology projec-

tions from the 1999 SIA roadmap. Subsequently, the 2001 SIA

projections were released, in which wire latencies are projected to

grow more severe in future technologies. All results presented in

this paper thus far assume the 2001 projections. However, it is in-

structive to compare the ideal NUCA designs using both the 1999

and 2001 projections, since the technology projections have a ma-

jor effect on the ideal cache organization. Table 9 shows the effect

of technology projections on different NUCA configurations. For

example, at 50nm technology, the 2001 projections reduce the wire

aspect ratio from 2.8 to 2.5. They also increase the conductor re-

sistivity and interlevel dielectric constant from 1.8 to 2.2 and from

1.5 to 2.1, respectively.

These changes in the projections of material properties results in

increased wire resistance and capacitance, and therefore increased

delay. The increased projected wire delays causes an increase in the

optimal number of D-NUCA banks, from 64 to 256, to reduce the
channel delay between banks. However, the area overhead of pri-

vate channels in the S-NUCA-1 organizations restricts the number

of banks. The performance of $-NUCA- 1 drops by 9% when the

219

1.0

" 0.5

0.C
2 MB 4 MB 8 MB
130nm 90nm 70nm

(a) 179.art

0,6

0,4

0.2

UPPER

D-NUCA / 0.8 -

~ S-NUCA2 g /

-,-ML-UCA /
.... S-NUCA1 / / 0.6-

-+. UCA l i d r

• ~ 0.4-

0.2- -4.-...

16MB 0.0 2MB 4MB 8MB 16MB 0,0 2MB 4MB 8MB

50rim 130nm 90nm 70nm 50nm 130rim 90rim 70rim

(b) 181.mcf (c) All Benchmarks

Figure 7: Performance summary of major cache organizations

16 MB
50nm

Tech. Global wire
model Aspect Ratio

SIA 1999 2.8

SIA 2001 2.5

Conductor Insulator Dielectric
Resistivity Constant

1.8 1.5

2.2 2.1

Num. Configuration
banks

32 S-NUCA1
64 Shared bank D-NUC,~

SS-energy + shared bank

3526 S-NUCA 1
Sharedbank D-NUCA

SS-energy + shared bank

Table 9: Effect of technology models on results

Loaded Average Miss Bank [
latency IPC rate accesses I

21.9 0.68 0.13 15M I

I
12.5 0.78 0.12 144M
15.6 0.78 0.12 36M

30.2 0.62 0.13 15M I

I 16.6 0.73 0.12 266M
19.2 0.75 0.12 47M

2001 technology projections replace those from 1999, whereas the

DN-BE S T performance is reduced by a smaller 4%. Because of the

data migration capability, which permits more numerous, smaller

banks as the wires slow, D-NUCA organizations are more robust,

when faced with slowing wires, than are S-NUCA-1 designs. Fi-

nally, we note that the smart search capabilities become more im-

portant for technologies with slower wires, as the increased number

of banks would otherwise result in a corresponding increase in bank

accesses.

7. RELATED W O R K

This work is the first to propose novel designs for large, wire-

dominated on-chip caches, but significant prior work has evaluated

large cache designs. Kessler examined designs for multi-megabyte

caches built with discrete components [17]. Hallnor and Rein-

hardt [9] studied a fully associative software-managed design for

large on-chip L2 caches, but not did not consider non-uniform ac-

cess times.

While our concept of bank-mapped spread sets is new, other

work has examined using associativity to balance power and perfor-

mance. Albonesi examines turning off "ways" of each set to save

power when cache demand is low [2]. Poweil et al. evaluate the

balance between incremental searches of the sets to balance power

and performance [24], as we do with our multicast versus incre-

mental policies, and as Kessler et al. did to optimize for speed [20].

Bank sets do not lend themselves to less regular set mappings that

reduce conflicts, such as skewed associativity [4].

Other researchers have examined using multiple banks for high

bandwidth, as we do to reduce contention. Sohi and Franklin [29]

proposed interleaving banks to create ports, and also examined the

need for L2 cache ports on less powerful processors than today's.

Wilson and Olukotun [32] performed an exhaustive study of the

trade-offs involved with port and bank replication and line buffers

for level-one caches. Our work aims to flatten deepening hierar-

chies; a goal that should be compared with Przybylski's disserta-

tion, in which be exhaustively searched the space of multi-level

caches to find the performance-optimal point [25].

Finally, many researchers have examined adaptive cache poli-

cies, a concept which is inherent in the D-NUCA organization.

Dahlgren et al. studied creative ways to avoid conflicts in direct-

mapped on-chip caches by virtually binding regions of the address

space to portions of the cache [5]. They also studied, as did John-

son and Hwu [15], adapting the block size to different workload

needs. While the D-NUCA scheme leaves data with low locality in

banks far from the processor, an alternative approach is not to cache

low-locality lines at all. Gonzfilez, Aliagas, and Valero examined

both a cache organization that could adaptively avoid caching data

with low locality, and a locality detection scheme to split the cache

into temporal and spatial caches [7]. Tyson et al. also proposed a
scheme to permit low-locality data to bypass the cache [31].

8. S U M M A R Y AND CONCLUSIONS
Non-uniform accesses have started to appear in high performance

cache designs [23]. In this paper, we proposed several new de-

signs that treat the cache as a network of banks and facilitates non-

uniform accesses to different physical regions. We have shown that

these non-uniform cache access (NUCA) architectures achieve the

following three goals:

Low latency access: the best 16MB D-NUCA configura-

tion, simulated with projected 50nm technology parameters,

demonstrated an average access time of 17 cycles at an 8 FO4

clock, which is a lower absolute latency than conventional L2

caches.

Technology scalability: Increasing wire delays will increase

access times for traditional, uniform access caches. The D-

NUCA design scales much better with technology than con-

ventional caches, since most accesses are serviced by close

banks, which can be kept numerous and small due to the

switched network. Keeping cache area constant, the average

loaded D-NUCA access times increase only slowly, from 8.4

cycles for a 2MB, 180nm cache to 18.3 cycles for a 16MB,

50nm cache.

220

• Performance stability: The ability of a D-NUCA to migrate

data eliminates the trade-off between larger, slower caches

for applications with large working sets and smaller, faster

caches for applications that are less memory intensive.

• Flattening the memory hierarchy: The D-lqUCA design out-

performs multi-level caches built in an equivalent area, since

the multi-level cache has fixed partitions that are slower than

an individual bank. This D-IqUCA result augurs a reversal

of the trend of deepening memory hierarchies. We foresee

future memory hierarchies having two or at most three lev-

els: a fast L1 tightly coupled to the processor, a large on-chip

NUCA L2, and perhaps an off-chip L3 that uses a memory

device technology other than SRAM. Future work will ex-

amine a further flattening of the cache hierarchy into a single

NUCA structure.

While the emergence of non-uniform cache latencies creates dif-

ficulties for some traditional optimization techniques, such as load-

use speculation or compiler scheduling, we view the emergence of

non-uniform accesses as inevitable. Those optimization techniques

must be augmented to handle the non-uniformity where possible,

or simply discarded where not.

Maintaining coherence among multiple NUCA caches presents

new challenges. A variant of the partial tag compare scheme of

Kessler et al. [20] may make snooping feasible. The undesirable

alternatives to a smart search coherence array are (1) maintaining a

huge centralized tag bank for snooping, or (2) broadcasting snoops

into the NUCA array upon every bus read and write request.

Finally, emerging chip multiprocessors (CMP) architectures will

likely benefit from the flexibility and scalability of NUCA memory

systems. A natural organization places multiple processors and an

array of cache banks on a single die. As the workload changes,

NUCA cache banks can be dynamically partitioned and reailocated

to different processors. Since the banks are individually address-

able, the memory system may be reconfigured to support different

programming models-such as streaming or vector workloads-by

sending configuration commands to individual banks.

ACKNOWLEDGMENTS

We gratefully acknowledge Chuck Moore and Seongmoo Heo for

their helpful comments on the final version of this paper. We also

thank Mark Hill for his suggestion to use the partial tag match-

ing scheme, which resulted in our highly effective smart search

policy. This research is supported by the Defense Advanced Re-

search Projects Agency under contract F33615-01-C-1892, NSF

CAREER grants CCR-9985 i 09 and CCR-9984336, two IBM Uni-

versity Partnership awards, and a grant from the Intel Research
Council.

REFERENCES

[1] V. Agarwal, M. S. Hrishikesh, S.W. Keckler, and D. Burger.

Clock rate vs. IPC: The end of the road for conventional mi-

croprocessors. In_ Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, pages 248-259,

June 2000.

[2] D.H. Albonesi. Selective cache ways: On-demand cache re-

source allocation. In Proceedings of the 32nd International

Symposium on Microarchitecture, pages 248-259, December
1999.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS

parallel benchmarks. Technical Report RNR-91-002 Revision

2, NASA Ames Research Laboratory, Mountain View, CA,

August 1991.

[4] F. Bodin and A. Seznec. Skewed associativity enhances per-

formance predictability. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, pages

265-274, June 1995.

[5] F. Dahlgren and P. Stenstr0m. On reconfigurable on-chip data

caches. In Proceedings of the 24th International Symposium

on Microarchitecture, pages 189-198, November 1991.

[6] R. Desikan, D. Burger, S.W. Keckler, and T.M. Austin. Sim-

alpha: A validated execution-driven alpha 21264 simulator.

Technical Report TR-01-23, Department of Computer Sci-

ences, University of Texas at Austin, 2001.

[7] A. Gonzfilez, C. Aliagas, and M. Valero. A data cache with

multiple caching strategies tuned to different types of local-

ity. In Proceedings of the 1995 International Conference on

Supercomputing, pages 338-347, July 1995.

[8] L. Gwennap. Alpha 21364 to ease memory bottleneck. Micro-

processor Report, 12(14), October 1998.

[9] E.G. Hallnor and S.K. Reinhardt. A fully associative

software-managed cache design. In Proceedings of the 27th

International Symposium on Computer Architecture, pages

107-116, June 2000.

[10] J.M. Hill and J. Lachman. A 900MHz 2.25 MB cache with

on-chip CPU now in Cu SOl. In Proceedings of the IEEEln-

ternational Solid-State Circuits Conference, pages 171-177,
February 2001.

[11] M. Horowitz, R. Ho, and K. Mai. The future of wires. In

Seminconductor Research Corporation Workshop on Inter-

connects for Systems on a Chip, May 1999.

[12] M.S. Hrishikesh, Norman P. Jouppi, Keith I. Farkas, Doug

Burger, Stephen W. Keckler, and Premkishore Shivakumar.

The optimal logic depth per pipeline stage is 6 to 8 FO4
inverter delays. In Proceedings of the 29th Annual Interna-

tional Symposium on Computer Architecture, pages 14-24,
May 2002.

[13] J. Huh, D. Burger, and S.W. Keckler. Exploring the design

space of future CMPs. In Proceedings of the lOth Interna-

tional Conference on Parallel Architectures and Compilation

Techniques, pages 199-210, September 2001.

[14] J. Rubinstein, P. Penfield, and M.A. Horowitz. Signal delay

in RC tree networks. IEEE Transactions on Computer-Aided

Design, CAD-2(3):202-211, 1983.

[15] T.L. Johnson and W.W. Hwu. Run-time adaptive cache hier-

archy management via reference analysis. In Proceedings of

the 24th Annual International Symposium on Computer Ar-

chitecture, pages 315-326, June 1997.

[16] N. Jouppi and S. Wilton. An enhanced access and cycle time

model for on-chip caches. Technical Report TR-93-5, Com-

paq WRL, July 1994.

[17] R.E. Kessler. Analysis of Multi-Megabyte Secondary CPU

Cache Memories. PhD thesis, University of Wisconsin-

Madison, December 1989.

[18] R.E. Kessler. The alpha 21264 microprocessor. IEEE Micro,

19(2):24-36, March/April 1999.

[19] R.E. Kessler, M.D. Hill, and D.A. Wood. A comparison of

trace-sampling techniques for multi-megabyte caches. IEEE

Transactions on Computers, 43(6):664-675, June 1994.

[20] R.E. Kessler, R. Jooss, A. Lebeck, and M.D. Hill. Inexpen-

sive implementations of set-associativity. In Proceedings of

the 16th Annual International Symposium on Computer Ar-

chitecture, pages 131-139, May 1989.

221

[21] K.-F. Lee, H.-W. Hon, and R. Reddy. An overview of the

SPHINX speech recognition system. IEEE Transactions on

Acoustics, Speech and Signal Processing, 38(1):35---44, 1990.

[22] D. Matzke. Will physical scalability sabotage performance

gains? IEEE Computer, 30(9):37-39, September 1997.

[23] H. Pilo, A. Allen, J. Covino, P. Hansen, S. Lamphier, C. Mur-
phy, T. Traver, and P. Yee. An 833MHz 1.5w 18Mb CMOS

SRAM with 1.67Gb/s/pin. In Proceedings of the 2000 IEEE

International Solid-State Circuits Conference, pages 266-

267, February 2000.

[24] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and

K. Roy. Reducing set-associative cache energy via way-

prediction and selective direct-mapping. In Proceedings of the

34th International Symposium on Microarchitecture,-pages

54-65, December 2001.

[25] S.A. Przybylski. Performance-Directed Memory Hierarchy

Design. PhD thesis, Stanford University, September 1988.

Technical report CSL-TR-88-366.

[26] The national technology roadmap for semiconductors. Semi-

conductor Industry Association, 1999.

[27] P. Shivakumar and N.P. Jouppi. Cacti 3.0: An integrated cache
timing, power and area model. Technical report, Compaq

Computer Corporation, August 2001.

[28] K. So and R.N. Rechtshaffen. Cache operations by MRU

change. IEEE Transactions on Computers, 37(6):700-109,

July 1988.

[29] G.S. Sohi and M. Franklin. High-performance data mem-

ory systems for superscalar processors. In Proceedings of

the Fourth Symposium on Architectural Support for Program-

ming Languages and Operating Systems, pages 53-62, April
1991.

[30] Standard Performance Evaluation Corporation. SPEC

Newsletter, Fairfax, VA, September 2000.

[31] G. Tyson, M. Farrens, J. Matthews, and A. Pleszkun. A mod-

ified approach to data cache management. In Proceedings

of the 28th International Symposium on Microarchitecture,

pages 93-103, December 1995.

[32] K.M. Wilson and K. Olukotun. Designing high bandwidth on-

chip caches. In Proceedings of the 24th Annual' International

Symposium on Computer Architecture, pages 1.21-132, June

1997.

[33] S. Wilton and N. Jouppi. Cacti: An enhanced cache access

and cycle time model. IEEE Journal of Solid-State Circuits,

31(5):677-.-688, May 1996.

222

