The University of Connecticut SCHOOL OF ENGINEERING

Storrs, Connecticut 06268

AN ADAPTIVE OBSERVER
FOR SINGLE-INPUT SINGLE-OUTPUT
LINEAR SYSTEMS
Robert L. Carroll
D. P. Lindorff.

Technical Report 72-10

$$
\begin{aligned}
& \text { CASE FILE } \\
& \text { COPY }
\end{aligned}
$$

Department of Electrical Engineering

AN ADAPTIVE OBSERVER
 FOR SINGLE-INPUT SINGLE-OUTPUT LINEAR SYSTEMS
 Robert L. Carroll
 D. P. Lindorff
 Technical Report 72-10

October, 1972

This work has been sponsored by the National Aeronautics and Space Administration Research Grant NGL-07-002-002

Introduction

The Luenberger observer $[1,2,3]$ allows extraction of the state of an observable linear system when given .1. the system input, ' 2 the system output, 3 the form of the system, and :4: the parameter values of the system. In those cases for which the system parameters are unknown the state observation is subject to error. Some previous investigators of parameter ignorance in observers $[4,5]$ alleviate to some degree the observation error, but they are unable to guarantee the error vanishes or that their computational algorithm converges when the magnitude of parameter ignorance is large. We have previously reported [6] the basics of a full order adaptive observer which negates these disadvantages. Our present paper considerably simplifles the exposition of the previous paper and extends, both computationally and theoretlcally, the topic of that paper. Briefly, the full order adaptive observer for single-input single-output observable continuous stable llnear differential systems in the absence of a deterministic or random disturbance vector guarantees the vanishing of observation error regardless of the size of the constant or slowly varying parameter ignorance. The observer parameters are directly changed in a Liapunov adaptive way so as to eventually yleld the unknown full order Luenberger observer. The observer poles may throughout be placed freely in the stable region and no derivatives are required in the adaptive law.

The Problem

A differential system is assumed of the form

$$
\begin{aligned}
& \dot{w}=\hat{A} w+B r \quad w(0)=w^{0} \\
& y=\left[\begin{array}{llll}
1 & 0 & 0 & --
\end{array}\right] w \equiv C w \\
& \tilde{A} n \times n \\
& B n \times 1
\end{aligned}
$$

for which only the single output $y=C w=w$ is avallable for measurement. It is assumed that a similarity transformation has been made if necessary so that the single-input . single-output system has the form of (1). It is assumed that scme or all of the elements of matrices \tilde{A} and B are unknown, A is stable, w^{0} may be unknown, and the pair (C, \tilde{A}) is completely observable. The observer is of the form

$$
\begin{array}{ll}
\dot{z}=K z+G C w+D r+H u & z(0)=z^{0} \tag{2}\\
F n \times n & G n \times l \\
D n \times l & H n \times n \text { and diagonal }
\end{array}
$$

where K is arbitrary and u is a control vector yet to be defined but with the property that $u \rightarrow 0$ as $+\rightarrow \infty$. The problem is to adaptively form a triple (G, D, T) so that the error vector defined as $e=z-T^{-1} w$ vanishes as the system adapts. T is a non-singular square matrlx with the property that $C T=C$. Fig. I illustrates the adaptation. $\hat{T}(t)$ is a matrix which varies according to the adaptation procedure so that, when the adaptation is completed $\hat{T}(t)$ becomes T (i.e.
$\lim \hat{T}(t)=T)$.

$+\rightarrow \infty$

$$
\text { Define a transformation } x=T^{-1} w \text { so that } e=z-x \text {. Then (1) becomes }
$$

$$
\begin{align*}
& \dot{x}=\tilde{A}_{0} x+T^{-1} B r \quad x(0)=T^{-1} 0 \\
& y=C T x=C x \\
& \tilde{A}_{0}=T^{-1} \tilde{A} T
\end{align*}
$$

and (2) becomes

$$
\begin{align*}
& i=K_{0} z+G C x+D r+H u \tag{2A}\\
& z(0)=z^{0}
\end{align*}
$$

It is desired for subsequent development that $\tilde{A}_{0}=T^{-1}$ AT be in the "cutput" form

$$
\tilde{A}_{0}=\left[\begin{array}{cccccc}
-a_{11} & 1 & 0 & 0 & \cdots & \cdot \\
-a_{21} & 0 & 1 & 0 & \cdots & 0 \\
-a_{31} & 0 & 0 & 1 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
-a_{n 1} & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

wherein the first column contalns the system parameters and all other elements are zero save the super diagonal elements, which are unity. It is clear that for any non-zero matrix \tilde{A} with a single invarient polynomial there corresponds a similar matrix \tilde{A}_{0}, although the elements of the similarity transformation may be unknown if elements of \tilde{A} are unknown. The following thecrem defines the additional restriction that must be placed upon \dot{A} so that both $\tilde{A}_{0}=T^{-1} \tilde{A} T$ and $C T=C$. Theorem
[proof given in Appendix A]. Let A be an $n \times n$ matrix, $C=[k, 0,0, \ldots 0]$ a Ixn matrix with $k \neq 0, A_{0}$ an $n \times n$ matrix \ln output form, and $T=[. \quad C \quad$.$] in$ $n \times n$ nonsingluar matrix. There exists an ($n-1$) $\times n$ matrix \hat{T} such that ${ }^{\top} A=T A_{0} T^{-1}$. iff the pair (C, A) is completely observable.

As a result of the theorem, any observable system (1) may be placed by similarity transformation into system ($\mid A$) with $C T=C$. The elements of T may be unknown since \tilde{A} is unknown. The problem will be considered as defined by equation ($\mid A$) and (2A), so that $e=z-x$ must vanish. Eventually the problem of constructing w from \times will be solved.

The Adaptive Law

It is now assumed, more for explanatory purpose than actual practical need, that some stable "nominal" plant matrix is elther known or is chosen so that $\tilde{A}_{0}=A_{0}+\Delta A_{0}$, where A_{0} has all known elements and is in output form. Consequently ΔA_{0} contains all zero elements except for the left columwich has elements that are to be adapted. Letting $e=z-x$, the vector error equation is

$$
\begin{aligned}
& \dot{e}=K e+\left(K+G C-A_{0}-\Delta A_{0}\right) x+\Delta B r+H u \\
& e(0)=e^{0}
\end{aligned}
$$

where $\Delta B=D-T^{-1} B$. A theorem of Luenberger [1] allows the eigenvalues of $A_{0}-G C$ to be arbitrarlly placed by selection of G (with the sole exception that $A_{0}-G C$ cannot have the same eigenvalues as A_{0}). For the above error equation, let $G=G_{1}+G_{2}$ and $K=A_{0}-G_{2} C$. Then as a result of the theorem of Luenberger and of the special forms of A_{0} and C, the vector error equation is

$$
\begin{equation*}
\dot{e}=K_{0} e+\left(G_{1} C-\Delta A_{0}\right) x+\Delta B r+H u \tag{3}
\end{equation*}
$$

where K_{0} is an arbitrary stable constant matrlx in output form with elgenvalues differing from A_{0}. The adaptive strategy is to change G and ΔB to eliminate the influence of x and r in (3); since by assumption K_{0} is a constant matrix, changing G is equivalent to changing G and will be considered as such in the ensuing.

For notational convenience in the next sections the following definitions are made.

$$
k_{0}=\left[\begin{array}{cccccc}
-k_{n-1} & 1 & 0 & 0 & \ldots & 0 \\
-k_{n-2} & 0 & 1 & 0 & \ldots & 0 \\
-k_{n-3} & 0 & 0 & 1 & \ldots & 0 \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
-k_{0} & 0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

$G C-\Delta A_{0}=\left[\begin{array}{ccccc}\alpha_{n-1} & 0 & 0 & \cdots & 0 \\ \alpha_{n-2} & 0 & 0 & \cdots & 0 \\ \alpha_{n-3} & 0 & 0 & \cdots & 0 \\ \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdot & & \cdot \\ \alpha_{0} & \dot{0} & 0 & \cdots & 0\end{array}\right]$

$$
\left.\Delta B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\beta_{m} \\
\beta_{m-1} \\
\beta_{m-2} \\
\vdots \\
\beta_{0}
\end{array}\right] \text {. } \quad \begin{array}{l}
\\
\rho_{n-1} \\
g_{n-2} \\
g_{n-3} \\
\vdots \\
g_{0}
\end{array}\right]
$$

$H=\operatorname{diag}\left[0, h_{n-2}, h_{n-3}, \cdots, h_{0}\right]$ and $n \times n$
$n=$ order of plant
$m=$ number of zeroes in system transfer function.
The error between plant state x and observer state z may be measured on!. by the scaley state variable $e_{1}=z_{1}-y=z_{1}-x_{1}$. To insure that only aval: \because measurements are called for in the adaptive laws, (3) is "collapsed" to y is a scalar differential equation of the form

$$
\begin{aligned}
\sum_{i=0}^{n} k_{i} e_{i}^{(i)} & =\sum_{j=0}^{n-1} \sum_{i=0}^{n-1-j}\binom{i+j}{i} \alpha_{i+j}^{(i)} x_{i}^{(j)} \\
& +\sum_{j=0}^{m} \sum_{i=0}^{m-j}\binom{i+j}{i} \beta_{i+j}^{(i)} r^{(j)} \\
& +\sum_{i=0}^{n-2} h_{i} u_{i}^{(1)}
\end{aligned}
$$

For simplicity let λ_{1}, be a real characteristic value of A_{0}-GC. Letting $\mathrm{p}=\mathrm{d} / \mathrm{d}+$, the left side of (5) may be written as

$$
\left(p+\lambda_{1}\right)\left(\sum_{i=0}^{n-1} a_{i} p^{i}\right] e_{1}
$$

where the $a_{i}, 0 \leq i \leq n-1$, are defined by equating the above expression with the left part of (5). If It is desired to have no real observer pole, an obvious modification to Eq. 6 is required. Now a reduction of order technique, similar to that of Gllbart and Monopoli [7], is applled to (5). The result is

$$
\begin{align*}
\left(p+\lambda_{1}\right)\left(\sum_{i=0}^{n-1} a_{i} p^{\prime}\right) e_{i}= & \left(\sum_{i=0}^{n-1} a_{i} p^{l}\right)\left[\sum_{i=0}^{n+m} \phi_{i} v_{i}\right] \\
& +f_{x}+f_{r}+\sum_{j=0}^{n-2} h_{j} u_{j}^{(j)} \tag{6}
\end{align*}
$$

In which, assuming $m \leq n-2$, in (6)

$$
\phi_{i}= \begin{cases}\alpha_{i}-a_{i} \alpha_{n-1} & i=0,1,2, \ldots, n-2 \tag{97}\\ \alpha_{n-1} & 1=n-1 \\ \beta_{1-n} & i=n, n+1, n+2, \ldots, m+n<2 n-1\end{cases}
$$

and, defining the "state varlable filters" v_{1},

$$
\begin{align*}
& \sum_{j=0}^{n-1} a_{j} v_{i}^{(j)}=x_{1}^{(i)} \\
& v_{n-1}=x_{1} \\
& \sum_{j=0}^{n-1} a_{j} v_{i}^{(j)}=r^{(i-n)} \\
& i=n, n+1, n+2, \ldots, 2(n-1) \\
& v_{2 n-1}=r \\
& f_{x}=\sum_{k=1}^{n-2} \sum_{j=0}^{k-1} \frac{d^{j}}{d t^{j}}\left[x^{(k-j-1)} \dot{\phi}_{k}\right] \tag{9}\\
& -\sum_{k=0}^{n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2-j} a_{i+j+1} \frac{d^{j}}{d t^{j}}\left[v_{k}^{(1)} \dot{\phi}_{k}\right] \tag{10}\\
& f_{r}=\sum_{k=1}^{m} \sum_{j=0}^{k-1} \frac{d^{j}}{d t^{j}}\left[\dot{\phi}_{n+k} r^{(k-j-1)}\right] \\
& -\sum_{k=n}^{n+m} \sum_{j=0}^{n-2} \sum_{i=0}^{n-j-2} a_{i+j+1} \frac{d^{j}}{d t^{j}}\left[v_{k}^{(1)} \dot{\phi}_{k}\right]
\end{align*}
$$

Should $m=n-1$ then (7) should be changed to the extent that

$$
\phi_{i}= \begin{cases}\beta_{i-n}-a_{i-n} \beta_{n-1} & i=n, n+1, n+2, \ldots, 2 n-2 \\ \beta_{n-1} & i=2 n-1\end{cases}
$$

and (10) is changed to

$$
\begin{aligned}
f_{r}= & \sum_{k=1}^{n-2} \sum_{j=0}^{k-1} \frac{d^{j}}{d t^{j}}\left[\dot{\phi}_{n+k} r^{(k-j-1)}\right] \\
& -\sum_{k=n}^{2 n-2} \sum_{j=0}^{n-2} \sum_{i=0}^{n-2-j} a_{i+j+1} \frac{d^{j}}{d t^{j}}\left[v_{k}^{(1)} \phi_{k}\right]
\end{aligned}
$$

It is noted that (9) and (10) contain no other derivative of ϕ_{k}, $0 \leq k \leq n+m$, but $\dot{\phi}_{k}$. According to the aciaptive law (16), $\dot{\phi}$ is an available measurement. By careful manipulation of the state-space generation of (8), It is possible therefore to remove the totality of terms in (9) and (10) from (6). Generation of (8), it is pointed out, requires no derivatives of x_{1}. It is further noted that, since $\dot{\phi}_{k}$ is the change in parameters due to adaptation, as adaptation is completed $\dot{\phi}_{k} \rightarrow 0,0 \leq k \leq n+m$, and consequently $\lim _{t \rightarrow \infty} u_{j}=0$.

Table 1 gives the terms in u_{j} for systems ranging from second to fourth order when (8) has been chosen to be generated by a normal form. The table can be extended.

The implementation of u_{j} as described reduces (6) to

$$
\begin{equation*}
\left(p+\lambda_{1}\right)\left(\sum_{i=0}^{n-1} a_{i} p^{i}\right)_{e_{i}}=\left(\sum_{i=0}^{n-1} a_{i} p^{i}\right)\left[\sum_{i=0}^{n+m} \phi_{i} v_{i}\right] \tag{11}
\end{equation*}
$$

Taking Laplace transform of (11) and dividing by $\sum_{i=0}^{n-1} a_{i} s^{i}$ yields

$$
\begin{equation*}
\left(s+\lambda_{1}\right) \theta_{i}=\left[\sum_{i=0}^{n+m} \phi_{i} v_{i}\right]+\frac{\mathcal{L}(\text { initial conditions })}{\sum_{i=0}^{n-1} a, s^{1}} \tag{12}
\end{equation*}
$$

for which follows

$$
\begin{equation*}
\dot{e}_{1}+\lambda_{1} e_{i}=\sum_{i=0}^{n+m} \phi_{i} v_{i}+\sum_{i=2}^{n-1} \psi_{i} \exp \left[-\lambda_{1}+\right] \tag{i3}
\end{equation*}
$$

where ψ_{i} are unknown constants or time dependent functions depending upon ris initial conditions and $\left\{\lambda_{i}\right\}$, the set of characteristic values of $\sum_{i=0}^{n-1} a_{i}$;

A Liapunov function is now to be formed so that stabllity of the adaptive observer may be assured. To this end a positive definite function of the measured error e_{i} and the unknown parameter errors ϕ_{i} is defined as

$$
\begin{equation*}
V=\frac{1}{2}\left(m_{s} e_{1}^{2}+\sum_{i=0}^{n+m} m_{i} \phi_{i}^{2}\right) \tag{14}
\end{equation*}
$$

Following Shackcloth [8], \dot{V} can be made to be
when

$$
\begin{align*}
& \dot{v}=-m_{s} \lambda_{1} e_{1}^{2}+e_{1} \sum_{i=0}^{n-1} \psi_{i} \exp \left[-\lambda_{i}+\right] \tag{15}\\
& \dot{\phi}_{1}=-\frac{m_{s}}{m_{i}} v_{i} e_{1} \quad 0 \leq i \leq n+m \tag{16}
\end{align*}
$$

Other adaptive laws can easily be chosen instead if it is desired to increase convergence speed $[9,10]$.

Implementation of the adaptive law in (16) can be accomplished by reference to (7) and to the definitions of the varlables $\alpha_{;}$and β_{i}. For example

$$
\begin{aligned}
\dot{\phi}_{n-1} & =\dot{\alpha}_{n-1}=\dot{g}_{n-1}=-\frac{m_{s}}{m_{n-1}} x_{1} e_{1} \\
\dot{\varphi}_{n-2} & =\dot{a}_{n-2}-a_{n-2} \dot{a}_{n-1}=\dot{g}_{n-2}+a_{n-2} \frac{m_{s}}{m_{n-1}} x_{1} e_{1} \\
& =-\frac{m_{s}}{m_{n-2}} v_{n-2} e_{1}
\end{aligned}
$$

etc.
in which \dot{g}_{i} may be ascertained.
From the form of \dot{V}, e_{1} is stable in the sense of Lagrange with the reitor: of attraction determined by the unknown constants ψ_{i} and the decaying exp: antial time function. Clearly the region of attraction shrinks exponentially win time and eventually vanishes; consequently e_{j} is eventually asymptotic: : stable and $\lim _{t \rightarrow \infty} \epsilon_{1}=0$. All derivatives of e_{1} must vanish in the limit as al
since the scalar error equation (13) is IInear and of first order and possessing finite frequencies.

However, the Llapunov function (14) is defined on a non-compact manifold. Consequently $\left\{\phi_{i}\right\}$ is shown to be (eventually) stable but not necessarily asymptotically stable [11]. It is evident from (3) that each ϕ_{i} must vanish by adaptation in order to observe the correct plant state. Theorem 2 defines the restriction placed upon $r(t)$ in order to guarantee vector error convergence. Theorem 2 [Proof In Appendix B]

Suppose there exists no set of real constants $\left\{q_{i}\right\}, i=0,1,2, \ldots, n+m$, for which the (observable) system command input $r(t)$ in its steady-state condition is a solution of the homogeneous differential equation

$$
\sum_{i=0}^{n+m} q_{i} r^{(i)}=0
$$

where n and m are defined in (4).
Then $\lim _{t \rightarrow \infty} \phi_{i}(t)=0, i=0,1,2, \ldots, n+m$, and $\lim _{t \rightarrow \infty} \underline{e}(t)=0$ is assured.

Corollary

If the steady-state command input $r(t)$ is periodic, a sufficient condition In order for $\lim _{t \rightarrow \infty} \underline{\epsilon}(t)=0 \ln (3)$ is that $r(t)$ contain at least $[n+m+1] / 2$ distinct frequencles in its steady-state condition.

It is noted parenthetically that the corollary seems a generalization of a theorem of Lion [12] although the applicabllity of that theorem to the present topic appears obscure.

Reconstruction of T

Using the "nominal" matrix A_{0} as initial condition, the actual value \bar{n} : the system parameters may be determined by integrating the change in parameter: $\%$, defined in (16), until adaptation is complete and combining appropriately in the
form of the matrix T. Thus $\hat{T}(t)$ 'drifts toward T as adaptation progresses and $\lim \hat{T}(t)=T$. The example makes this technique clear. $+\rightarrow \infty$
\hat{w}, the estimate of w, is constructed from the observer output z by forming $\hat{T}(t) z$. Consequently $\lim _{t \rightarrow \infty} \hat{w}=w$.

Practical Considerations

Reference to Table 1 reveals that, speaking practically of analog implementatimon, for high order systems a prohibitively large number of multipliers must be employed to generate the observer input $u_{j}(t)$. Since the magnitude of each $u_{j}(t)$ depends upon the magnitude of parameter change due solely to the adaptation process, it is reasonable to inquire whether $u_{j}(t)$ can be omitted altogether (le. make $H \equiv 0$), especially when the adaptation proceeds slowly by choice of constrants in (16). By analysis of (14), it may be seen that omitting $u_{j}(t)$ tends to degrade the adaptation process due to the Inclusion of disturbances f_{x} and f_{r}, eq. (9.) and (10),

However a theoretical analysis of a second order system indicates that the u term may be safely omitted when the observer eigenvalues lie left of a curve passing through the left half-planc. This curve represents a trade off between frequency filtering in the adaptive law and magnitude of the adaptive gains.

Generalization of this work awaits completion.

Example

A third order plant with one zero is considered for illustration. Let the plant be described by

$$
\begin{aligned}
& \dot{w}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\left(a_{0}+\alpha_{0}\right) & -\left(a_{1}+\alpha_{1}\right) & -\left(a_{2}+\alpha_{2}\right)
\end{array}\right] w+\left[\begin{array}{l}
0 \\
c_{1} \\
c_{0}
\end{array}\right] r \\
& y=w_{1}
\end{aligned}
$$

In which $\alpha_{0}, \alpha_{1}, \alpha_{2}, c_{0}$ and c_{1} are unknown. a_{0}, a_{1}, a_{2} are the nominal values. In output form, (1*) is

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{ccc}
-\left(a_{2}+\alpha_{2}\right) & 1 & 0 \\
-\left(a_{1}+\alpha_{1}\right) & 0 & 1 \\
-\left(a_{0}+\alpha_{0}\right) & 0 & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
b_{1}-\beta_{1} \\
b_{0}-\beta_{0}
\end{array}\right] r \tag{*}\\
& y=x_{1}=w_{1}
\end{align*}
$$

The error equation (3) is now

$$
\dot{e}=\left[\begin{array}{ccc}
-k_{2} & 1 & 0 \tag{3*}\\
-k_{1} & 0 & 1 \\
-k_{0} & 0 & 0
\end{array}\right] e+\left[\begin{array}{l}
\alpha_{2} \\
\alpha_{1} \\
\alpha_{0}
\end{array}\right] y+\left[\begin{array}{l}
0 \\
\beta_{1} \\
\beta_{0}
\end{array}\right] r+\left[\begin{array}{l}
0 \\
u_{1} \\
u_{0}
\end{array}\right]
$$

and the scalar error equation (5) is now

$$
\begin{align*}
\dddot{e}_{1}+k_{2} \ddot{e}_{1}+k_{1} \dot{e}_{1}+k_{0} e_{1}= & \left(\alpha_{0}+\dot{\alpha}_{1}+\ddot{\alpha}_{2}\right) x_{1}+\left(\alpha_{1}+2 \dot{\alpha}_{2}\right) \dot{x}_{1}+\ddot{x}_{1} \\
& +\beta_{1} \dot{r}+\left(\beta_{0}+\dot{\beta}_{1}\right) r+\dot{u}_{1}+u_{0} \tag{5*}
\end{align*}
$$

Employing the definitions given in (7), (8), and Table 1 when $n=3$ and $m=1$, the scalar error equation (5*) is equivalent to

$$
\begin{equation*}
\left(p+\lambda_{1}\right)\left(p^{2}+a_{1} p+a_{0}\right) e_{1}=\left(p^{2}+a_{1} p+a_{0}\right)\left(\sum_{i=0}^{4} \phi_{i} v_{i}\right) \tag{*}
\end{equation*}
$$

when u_{1} and u_{0} have been implemented as

$$
\begin{aligned}
u_{0}= & \dot{\phi}_{0}\left(v_{0}(2)+a_{1} v_{0}(1)\right)+\dot{\phi}_{1}\left(v_{1}(2)+a_{1} v_{1}(1)\right) \\
& +\dot{\phi}_{3}\left(v_{3}(2)+a_{1} v_{3}(1)\right)+\dot{\phi}_{4}\left(v_{4}(2)+a_{1} v_{4}(1)\right) \\
u_{1}= & \dot{\phi}_{0} v_{0}(1)+\dot{\phi}_{1} v_{1}(1)+\dot{\phi}_{3} v_{3}(1)+\dot{\phi}_{4} v_{4}(1)
\end{aligned}
$$

As an illustration of the generation of $v_{1}(j)$ appearing above, consider v_{1} which
Is defined by

$$
\ddot{v}_{1}+a_{1} \dot{v}_{1}+a_{0} v_{1}=\dot{x}_{1}
$$

and the generation of $v_{i}(j)$ in normal form.
Then, what is equivalent for v_{1},

$$
\left[\begin{array}{l}
\dot{v}_{1}(1) \\
\dot{v}_{1}(2)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right]\left[\begin{array}{c}
v_{1}(1) \\
v_{1}(2)
\end{array}\right]+\left[\begin{array}{c}
1 \\
-a_{1}
\end{array}\right] x_{1}
$$

Consequently $v_{1} \equiv v_{1}(1)$ and both $v_{1}(1)$ and $v_{1}(2)$ are available for measurement. Other $v_{i}(j)$ are generated in a similar manner.

Defining $\dot{\phi}_{i}$ as in (16), the observer has the form

$$
\dot{z}=\left[\begin{array}{lll}
-k_{2} & 1 & 0 \\
-k_{1} & 0 & 1 \\
-k_{0} & 0 & 0
\end{array}\right] z+\left[\begin{array}{l}
g_{2} \\
g_{1} \\
g_{0}
\end{array}\right] y+\left[\begin{array}{c}
0 \\
b_{1} \\
b_{0}
\end{array}\right] r+\left[\begin{array}{l}
0 \\
u_{1} \\
u_{2}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \dot{b}_{1}=-\frac{m_{s}}{m_{4}} e_{1} v_{4} \\
& \dot{b}_{0}=-\frac{m_{s}}{m_{3}} e_{1} v_{3} \\
& \dot{g}_{2}=-\frac{m_{s}}{m_{2}} e_{1} x_{1} \\
& \dot{g}_{1}=-e_{1}\left(\frac{m_{s}}{m_{1}} v_{1}+a_{1} \frac{m_{s}}{m_{2}} x_{1}\right) \\
& \dot{g}_{0}=-e_{1}\left(\frac{m_{s}}{m_{0}} v_{0}+a_{0} \frac{m_{s}}{m_{2}} x_{1}\right)
\end{aligned}
$$

and

$$
\hat{w}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{2}-\int_{0}^{t} \dot{g}_{2} d t & 1 & 0 \\
a_{1}-\int_{0}^{\dagger} \dot{g}_{1} d t & a_{2}-\int_{z=\hat{T}(t) z}^{t} \dot{g}_{2} d t & \vdots \\
0 & \vdots
\end{array}\right]_{i}^{-1}
$$

\hat{w} is the estimate of plant state w, and $\lim _{t \rightarrow \infty} \hat{\text { winem }} w$. Note that $C T=C$.

A Simulation

The third order system of the example was simulated on a digital computer using the following parameters

$a_{0}=24$	$a_{0}=0$	$c_{1}=30$	$k_{0}=24$	$m_{0} / m_{3}=8000$
$a_{1}=26$	$\alpha_{1}=74$	$c_{2}=195$	$k_{1}=26$	$m_{0} / m_{5}=2000$
$a_{2}=9$	$\alpha_{2}=0$	$b_{1}=30$	$k_{2}=9$	$g_{0}=g_{2}=0$

The elgenvalues of the observer (determined by $\left\{k_{1}\right\}$) were $\lambda_{1}=-4, \lambda_{2}=-2, \lambda_{3}=-3$. The input to the plant was a square wave of magnitude 1 and frequency $6 t$. Two parameters, b_{0} and g_{1}, were adjusted by the adaptive law. These were initially set at $b_{0}=73, g_{1}=-5$ corresponding to a correct value of $b_{0}=75, g_{1}=-74$. Fig. 2 illustrates the behavior of $b_{0}, g_{1}, \epsilon_{2}$, and e_{3} as a function of time. Remark

As has been previously stated, $\hat{w}=\hat{T} z$ and $\lim \hat{w}=w$. In the general case of an arbitrary plant matrix \hat{A}, the determinant of \hat{T} may vanlsh for some instances of time. These monentary occurrences of course, have no deterimental effect on \hat{w} since convergence of \hat{w} to w is guaranteed. In the important particular case of the preceding example, however, advantage has been taken of the fact that det T is constant by writing equation $\left(^{*}\right.$) as $\hat{w}=\left(\hat{T}^{-1}\right)^{-1} \mathrm{z}$. Since for the case of phase variable plant of high order the literal form of T^{-1} is easlly produced, it is surmised that writing $\left(\hat{T}^{-1}\right)^{-1}=\hat{T}$ allows a particular simple construction of \hat{w} when digital computation, rather than antolog, is desired.

Conclusion

An adaptive observer has been demonstrated for single-lnput single-output systems with constant or slowly varying parameters. Work is currently underway to extend the observer to multivariable systems as well as systems with rapidiy
-15-
varying parameters and systems with noise, it is hoped that the acaptive observer will be eventually used not only for observing the state of an unknown system but in model reference paroblems and pole placement problems as well.

APPENDIX A

In order to comflete the proof of the theorem when A has repeated eigenvalues (and the number of eigenvectors of A is less than n), the following lemma is needed.

Lemma
Let A be an $n \times n$ matrix, $C=[k, 0,0, \ldots, 0], k \neq 0$, and $\psi(A)=$ \{ali nonsingluar matrices $\left.P \mid J=P^{-1} A P\right\}$ where J is an $n \times n$ matrix of Jordan form. Then thero exists a $P \varepsilon \psi(A)$ such that $C P=\left[\left(P_{1}, \underline{0}\right),\left(P_{2}, \underline{0}\right), \ldots,\left(P_{j}, \underline{0}\right)\right]$ where each vector $\left(p_{i}, \underline{0}\right) \equiv\left[p_{i}, 0,0, \ldots, 0\right]$ has a dimension equal to the order of the corresponding $i=$ th Jordan block in J .

Proct of theorem
Since the similarity transformation matrix that transforms the matrix A_{0} (in output form) into the normal form A_{n},

$$
A_{n}=\left[\begin{array}{ccccc}
0 & \cdot & & & \\
0 & \cdot & & & \\
\cdot & \cdot & & I & \\
\cdot & \cdot & & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right],
$$

is triangular, it suffices to show that the theorem is true with A_{0} replaced by A_{n}.
(a) Let A_{n} be partitioned into

$$
A_{n}^{i}=\left[\begin{array}{ll}
A_{11}^{1} & A_{12}^{1} \\
A_{21}^{1} & A_{22}^{i}
\end{array}\right]
$$

where A_{11} scalar and A_{12} is $1 \times(n-1)$ row vector, A_{21} and A_{22} appropriately formed. Then

$$
A^{i}=\left[\begin{array}{ll}
k & \underline{0} \\
T_{1} & T_{2}
\end{array}\right]\left[\begin{array}{ll}
A_{11}^{i} & A_{12}^{1} \\
A_{21}^{i} & A_{22}^{1}
\end{array}\right]\left[\begin{array}{ll}
k & \underline{0} \\
-T_{2}^{-1} T_{1} & T_{2}^{-1}
\end{array}\right]
$$

for $1 \geq 1$, and

$$
C A^{i}=C T A_{n}^{1} T^{-1}=C A^{I^{-1}}=\left[-A_{12}^{1} T_{2}^{-1} T_{1} \vdots A_{12} T_{2}^{-1}\right]
$$

since $A_{11}^{\prime} \equiv 0$ for $1 \leq n-1$. The term $-A_{12}^{1} T_{2}^{-1} T_{1}$ is a scalar which may be any value.

$$
\begin{aligned}
& A_{12}^{i}=\left[\begin{array}{lllll}
\delta_{1 i} & \delta_{21} & \delta_{31} & \cdots \delta_{(n-1) i}
\end{array}\right] \text { where } \\
& \delta_{i j}=\left\{\begin{array}{lll}
1 & i=j & \\
0 & i \neq j
\end{array}\right.
\end{aligned}
$$

where I_{i}^{\top} are row vectors. Then

$$
Q \equiv\left[C^{\top} \vdots A^{\top} C^{\top}: A^{2 \top} C^{\top}: \ldots \vdots\left(C A^{n-1}\right)^{\top}\right]=
$$

$$
\left[\begin{array}{ccccccc}
k & \cdot & k_{1} & \cdot & k_{2} & \cdot & \cdot \\
0 & \cdot & & \cdot & & k_{n-1} \\
0 & \cdot & \pm_{1} & \cdot & \pm_{2} & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & { }_{n-1} \\
\cdot & \cdot & & \cdot & & \cdot & \cdots \\
\cdot & \cdot & & \cdot & & \cdot & \cdot \\
0 & \cdot & & \cdot & & \cdot & \cdot \\
0 & \cdot & & \cdot & & \cdot & \cdot
\end{array}\right]
$$

Since T_{2} nonsingular, I_{1} mutually independent as well as independent of C. Therefore, observability matrix Q is of rank n. Therefore, A observable.
(b) Suppose (A, C) completely observable but $A_{n} \neq T^{-1}$ AT for any \hat{T}. Let P be a modal matrix satisfying the lemma condition so that $J=P^{-1} A P$ and J is in Jordan canonical form. Let V be a Van der Monde matrix corresponding to J such thet $A_{n}=V P^{-1} A P V^{-1}$. Since (A, C) observable, A possess but one invariant polynomial under supposition of the form of $C[13]$; therefore V exists. By assumption, $T \neq \mathrm{PV}^{-1}$. Since $\hat{\mathrm{T}}$ is arbitrary, this implies that $\mathrm{CT} \neq \mathrm{CPV}^{-1}$, or that

$$
C T V=C V \neq C P
$$

Because of the lemma, the P chosen in such that

$$
C P=\left[p_{1}, 0,0, \ldots, 0\right]
$$

A necessary condition on CP for observabllity is that p, be non-zero [14].
By the form of the Van der Monde matrix, $C V=[q, 0,0, \ldots, 0]$ with $a_{1} \neq 0$ a constant.
$C V \neq C P$ implies $q_{1} \neq p_{1}$. But q_{1} is any non-zero constant; thus, $q_{1} \neq p_{1}$ implies $p_{1}=0$ which implies (A, C) not observable. Thus a contradiction is reached.

Proof of Theorem 2

It has been shown that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} e_{1}(t)=0 \tag{BI}
\end{equation*}
$$

$\lim _{t \rightarrow \infty} u_{j}(t)=0$ for each j
$\lim _{t \rightarrow \infty} \phi_{i}(t)=$ constant for each 1
Therefore from (7) and (7.a)
$\lim _{t \rightarrow \infty} \alpha_{i}(t)=$ constant for each 1

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \beta_{1}(t)=\text { constant for each } 1 \tag{B2}
\end{equation*}
$$

Referring to n equations (3), each equation may be differentiated in a manner so as to form the vector ${\underset{-}{-}}_{(t)}^{(t)}\left[e_{1}^{(n)}, e_{2}^{(n-1)}, e_{3}^{(n-2)}, \ldots, \dot{e}_{n}\right]^{\top}$. Employing ($B 1$) and ($B 2$) in determining $\lim _{t \rightarrow \infty} \underline{e}_{-}(t)$ and letting $\beta_{i} \equiv 0$ for $1>m$, equations (B3) result.

$$
\begin{aligned}
& 0=e_{2}^{(n-1)}+\alpha_{n-1} y^{(n-1)}+\beta_{n-1} r^{(n-1)} \\
& e_{i}^{(n+1-i)}=e_{i+1}^{(n-1)}+\alpha_{n-i} y^{(n-1)}+\beta_{n-i} r^{(n-1)} \quad 1=2,3,4, \ldots n-1 \\
& \dot{\epsilon}_{n}=\alpha_{0} y+\beta_{0} r
\end{aligned}
$$

All e's may be easily eliminated from (B3) yielding

$$
\begin{equation*}
0=\left(\sum_{i=0}^{n-1} \alpha_{i} s^{i}\right) y+\left(\sum_{i=0}^{m} \beta_{i} s^{i}\right) r \tag{B4}
\end{equation*}
$$

Let the stable (but unknown) plant transfer function be

$$
\begin{align*}
& \left(\sum_{i=0}^{n} \dot{a}_{i} s^{i}\right) y=\left(\sum_{i=0}^{m} b_{i} s^{i}\right) r \tag{By}\\
& a_{n} \equiv 1
\end{align*}
$$

Combining (B4) and (B5) yields

$$
\begin{equation*}
0=\left[\left(\sum_{i=0}^{n-1} \alpha_{i} s^{i}\right)\left(\sum_{i=0}^{m} b_{i} s^{i}\right)+\left(\sum_{i=0}^{m} \beta_{i} s^{i}\right)\left(\sum_{i=0}^{n} a_{i} s^{l}\right)\right] r \tag{86}
\end{equation*}
$$

(B6) represents a condition upon $r(t)$ which is assured in the limit, by: (${ }^{(1)}$) and (B2) that is to say, after adaptation has forced e, to vanish. Two distinct possibilities exist regarding the solution of the $(n+m)$-th order linear homogeneous differential equation (B5): (a) elther the steady-state system command input $r\left(+\right.$) obeys (B5) for some values α_{1} and β_{p}, or (b) the $n+m+1$ coefficients of polynomial in brackets are in the limit each zero. By supposition of the theorem, (a) cannot occur; consequently (b) must be true.

Using the assumption of cbservabllity to insure that (B5) is relatively prime, it is easy to show by mathematical induction that condition (b) implies that the constants α_{i} and β_{i} are each zero, which was to be proved. Corollary

The corollary is a direct result of placing the characteristic values of (B6) along the imaginary axis. The least number of distinct poles required of r so that it is not a solution of (B6) is exactly one more than the order of (B6), or $n+m+1$. Therefore r must contain at least $\frac{n+m+1}{2}$ distinct frequencles in its steady-state condition.

References

1. Luenberger, D. G., "Observing the State of a Linear System", IEEE Trans. Mil. Electron., Vol. MIL-8, pp. 74-80, April 1964.
2. Luenberger, D. G., "Observers for Multivariable Systems," IEEE Trans. Automatic Control, Vol. AC-11, pp. 190-197, April, 1966.
3. Luenberger, D. G., "An Introduction to Observers," IEEE Trans. Automatic Control, Vol. AC-16, pp. 596-602, December, 1971.
4. Athans, Michael. "The Compensated Kalman Filter," Second Symposium on NonLinear Estimation Theory, San Diego, Sept. 1971.
5. Goldstein, Fred, B., "Control of Linear Uncertain Systems Utilizing Mismatched State Observers," Ph. D. Thesis, Univ. of Connecticut, Storrs, 1972.
6. Carroll, R. L., and D. P. Lindorff, "An Adaptive Scheme for Observing the State of an Unknown Linear System," 1972 International Conference on Cybernetics and Society, Washington, D. C., October 9-12.
7. Monopoli, R. V. and Gilbart, G. W., "Model Reference Adaptive Control Systems With Feedback and Prefilter Adjustable Gains," 4th Princeton Conference, March, 1970.
8. Shackcloth, B., "Lyapunov Synthesis Techniques," Proc. IEEE, Vol. II4, pp. 299. 302, Feb., 1967.
9. Gilbart, J. W., and Monopoli, R. V., "A Modified Liapunov Design for Model Reference Adaptive Control Systems," Seventh Annual Allerton Conference, October, 1969.
10. Narendra, K. S., Shiva S., Tripathi, G. Lüders, and P.Kudva, "Adaptive Control Using Lyapunov's Direct Method," Yale Univ. Tech. Report No. CT-43., New Haven, Conn. Oct., 1971.
11. Hahn, Wolfgang, Stability of Motion, p. 267, Springer-Verlag, New York, 1967.
12. Lion, Paul Michel, "Rapid Identification of Linear and Nonlinear Systems," AlAA Journal, Vol. 5, pp. 1835-1842, Oct. 1967.
13. Vogt, W. G. and Gunderson, R. W., "Canonical Representations," Proc. Ist Asilomar Conference on Clrcuits and Systems, pp. 782-790, 1967.
14. Chen, C. T., "Introduction to Linear System Theory," Holt, Rinehart, and Winston, Inc., New York, 1970.

TABLE 1
Notation for generation of v_{i} in normal form. In $v_{i}(j)$, j denotes the state variable, i denotes the function in (8). Example: for $n=4, v_{1}$ is defined by

$$
\dddot{v}_{1}+a_{2} \ddot{v}_{1}+a_{1} \dot{v}_{1}+a_{0} v_{0}=\dot{x}_{1}
$$

and generated by

$$
\left[\begin{array}{l}
\dot{v}_{1}(1) \\
\dot{v}_{1}(2) \\
\dot{v}_{1}(3)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]\left[\begin{array}{c}
v_{1}(1) \\
v_{1}(2) \\
v_{1}(3)
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
-a_{1}
\end{array}\right] x_{1}
$$

$$
\begin{array}{ll}
n=2 \\
m=0 & u_{0}=\dot{\phi}_{2} v_{2}+\dot{\phi}_{0} v_{0} \\
n=2 & u_{0} \dot{\phi}_{0} v_{0}+\dot{\phi}_{2} v_{2} \\
m=1
\end{array} \quad \begin{array}{ll}
n=3 & u_{0}=\dot{\phi}_{1} v_{1}(2)+a_{1} \dot{\phi}_{1} v_{1}(1)+\dot{\phi}_{0} v_{0}(2)+a_{1} \dot{\phi}_{0} v_{0}(1)
\end{array}
$$

$$
\begin{aligned}
& +a_{1} \dot{\phi}_{3} v_{3}(1)+\dot{\phi}_{3} v_{3}(2) \\
= & \dot{\phi}_{1}\left(v_{1}(2)+a_{1} v_{1}(1)\right)+\dot{\phi}_{0}\left(v_{0}(2)+a_{1} v_{0}(1)\right) \\
& +\dot{\phi}_{3}\left(v_{3}(2)+a_{1} v_{3}(1)\right) \\
u_{1}= & \dot{\phi}_{0} v_{0}(1)+\dot{\phi}_{1} v_{1}(1)+\dot{\phi}_{3} v_{3}(1) \\
n=3 \quad: \quad u_{0}= & \dot{\phi}_{0}\left(v_{0}(2)+a_{1} v_{0}(1)\right)+\dot{\phi}_{1}\left(v_{1}(2)+a_{1} v_{1}(1)\right) \\
m=-1 \quad & \\
& +\dot{\phi}_{3}\left(v_{3}(2)+a_{1} v_{3}(1)\right)+\dot{\phi}_{4}\left(v_{4}(2)+a_{1} v_{4}(1)\right)
\end{aligned}
$$

$$
u_{i}=\sum_{i=0}^{4} \dot{\phi}_{i} v_{i}(1)
$$

$$
n=4 \quad \text { same as } n=4 m=2
$$

$$
m=3 \quad \text { with }\left\{\phi_{i}\right\} \text { defined in (Ta) }
$$

$$
\begin{aligned}
& \begin{array}{ll}
n=3 & \text { same as } n=3 m=1 \\
m=2 & \text { with }\left\{\phi_{i}\right\} \text { define in (aa) }
\end{array} \\
& \begin{aligned}
n=4 \\
m=0
\end{aligned} \quad u_{0}=\sum_{i=0}^{2} \sum_{j=1}^{3} \dot{\phi}_{i} a_{j} v_{i}(j)+\dot{\phi}_{4} \sum_{j=1}^{3} a_{j} v_{4}(j) \\
& u_{1}=\sum_{i=0}^{2} \sum_{j=1}^{2} \phi_{i} a_{j+1} v_{i}(j)+\phi_{4} \sum_{j=1}^{2} a_{j+1} v_{4}(j) \\
& u_{2}=\sum_{i=0}^{2} \dot{\phi}_{i} v_{i}(1)+\dot{\phi}_{4} v_{4}(1) \\
& \begin{array}{l}
\mathrm{n}=4 \\
\mathrm{~m}=1
\end{array} \\
& u_{0}=\sum_{\substack{i=0 \\
i \neq 3}}^{5} \sum^{3} \dot{\phi}_{i} a_{j} v_{i}(j) \\
& u_{i}=\sum_{i=0}^{5} \sum_{j=1}^{2} \dot{\phi}_{i} a_{j+1} v_{i}(j) \\
& u_{2}=\sum_{\substack{i=0 \\
i \neq 3}}^{5} \phi_{i} v_{i}(1) \\
& \begin{array}{l}
n=4 \\
m=2
\end{array} \quad u_{0}=\sum_{\substack{i=0 \\
i \neq 3}}^{6} \sum_{j=1}^{3} \dot{\phi}_{i} a_{j} v_{i}(j) \\
& u_{1}=\sum_{\substack{i=0 \\
i \neq 3}}^{6} \sum_{j=1}^{2} \dot{\phi}_{i} a_{j+1} v_{i}(j) \\
& u_{2}=\sum_{\substack{i=0 \\
i \neq 3}}^{6} \dot{\phi}_{i} v_{i}(1)
\end{aligned}
$$

Pigute?

