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Introduction

The Luenberger observer Cl,2,3i] allows extraction of the state of an

observable linear system when given .1- the system input, '2 the system

output, .3 the form of the system, and v4" the parameter values of the system.

In those cases for which the system parameters are unknown the state observation

is subject to error. Some previous investigators of parameter ignorance In

observers [4,5] alleviate to some degree the observation error, but they are

unable to guarantee the error vanishes or that their computational algorithm

converges when the magnitude of parameter ignorance Is large. We have previously

reported C&3 the basics of a f u l l order adaptive observer which negates these

disadvantages. Our present psper considerably simplifies the exposition of

the previous paper and extends, both computationally and theoretically, the topic

of thet paper. Briefly, the f u l l order adaptive observer for single-input

single-output observable continuous stable linear differential systems in the

absence of a deterministic or random disturbance vector guarantees the vanishing

of observation error regardless of the size of the constant or slowly varying

parameter Ignorance. The observer parameters are directly changed in a

Liapunov adaptive way so as to eventually yield the unknown f u l l order Luenberger

observer. The observer poles may throughout be placed freely in the stable

region and no derivatives are required in the adaptive law.

The Problem

A differential system is assumed of the form

w = Aw + Br w(0) = w

y = Cl 00 03w = Cw

A nxn

B nxl
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for which only the single output y = Cw = w Is available for measurement.

It is assumed that a similarity transformation has been made if necessary so

that the single-input • single-output system has "the form of (I). It is

assumed that^scme or all of the elements of matrices A and B are unknown, A is

stable, w may be unknown, and the pair (C,A) is completely observable. The

observer Is of the form

z = Kz + GCw + Dr + Hu z(0) = z°
(2)

F nxn G nxl
D nxl H nxn and diagonal

where K is arbitrary and u is a control vector yet to be defined but with the

property that u-K) as t->«° . The problem is to adaptively form a triple (G,D,T)

so that the error vector defined as e=z-T w vanishes as the system adapts. T

is a non-singular square matrix with the property that CT=C. Fig. I illustrates

the adaptation. T(t) is a matrix which varies according to the adaptation

procedure so that, when the adaptation Is completed f(t) becomes T (i.e.

Mm T(t) = T).
t-*»

Define a transformation x * T w so that e = z-x. Then (I) becomes

x = AQx + T~*Br x(0) = r'w0

y = CTx = Cx (IA)

AO = T-'AT

and (2) becomes

i - Knz+ GCx + Dr + Hu
U (2A)

z(0) = Z°

It is desired for subsequent development that A^ = T~ AT be In the !:cutput;i

form
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-a,

32I

-a31

I 0 0

0 I 0

0 0 I

0

0

0

-a
nl 0 0

wherein the first column contains the system parameters and all other elements

are zero S3ve the super diagonal elements, which are unity. It is clear that for

any non-zero matrix A with a single invarient polynomial there corresponds a

similar matrix A», although the elements of the similarity transformation may be

unknown if elements of A are unknown. The following theorem defines the addftion-
"* "- i ~

a I restriction that must be placed upon A so that both AQ = T AT and CT = C.

Theorem

Cproof given in Appendix A]- Let A be an nxn matrix, C = Ck,0,0,.. .03 a
Q

Ixn matrix with k^O, A- an nxn matrix In output form, and T = C • • • 3 *n
T _i

nxn nonsingluar matrix. There exists an (n-l)xn matrix T such that A=TA T iff

the pair (C,A) is completely observable.

As a result of the theorem, any observable system (I) may be placed by simil-

arity transformation Into system (IA) with CT=C. The elements of T may be unknown

since A is unknown. The problem w i l l be considered as defined by equation (IA)

and (2A), so that e = z-x must vanish. Eventually the problem of constructing w

from x wiI I be solved.
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The Adaptive Law

It Is now assumed, more for explanatory purpose than actual practical need,

that some stable "nominal" plant matrix is either known o>r is chosen so that

AQ = AQ + AAQ, where AQ has all known elements and Is in output form. Consequent-

ly AA- contains all zero elements except for the left colurmwhfch has elements

that are to be adapted. Letting e = z-x, the vector error equation Is

e = Ke + (K+GC-AO-AAQ)X + ABr + HU

e(0) = e°

where AB = D-T B. A theorem of Luenberger CG allows the eigenvalues of AQ-GC

to be arbitrarily placed by selection of G (with the sole exception that A-.-GC

cannot have the same eigenvalues as An). For the above error equation, let

G=G. + G2 and K = AQ-G2C. Then as a result of the theorem of Luenberger and

of the special forms of A- and C, the vector error equation Is

e = KQe + (GjC-AA0)x -f ABr + Hu (3)

where K_ is an arbitrary stable constant matrix in output form with eigenvalues

differing from AQ. The adaptive strategy Is to change G. and AB to eliminate

the influence of x and r In (3); since by assumption K_. is a constant matrix,

changing G. is equivalent to changing G and w i l l be considered as such In the

ensuIng.

For notatlonal convenience In the next sections the following definitions

are made.

0 0 ... 0

0 ... 0

1 ... 0Ko=

~_k
n-l

-kn-2

-kn-3

I

0

0

0

0

1

0

0
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GC-AAQ =

l

2

n-3

0 0

0

0

0

A B =

0

0

m

Sm-l

Sm-2

0S,

G =

Vl

V2

V3

, •;•, hQ] and nxnH = dlag [0, hR_2,

n = order of plant

m = number of zeroes in system transfer function.

The error between plant state x and observer state z may be measured on!'-

by the scalar state variable e. = z(-y =
 zi~ xi- To Insure that only avallv ••

measurements are called for in the adaptive laws, (3) is "collapsed" to y •!<•'

a scalar differential equation of the form

(5)
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n

1=0

.... n-l n-1 - j
> l}- I I1 j=0 1=0

m m-j

I I
j=0 !=0

(5)

n-2
I
1=0

(I)

For simplicity let A. be a real characteristic value of AQ-GC. Letting

p=d/dt, the left side of (5) may be written as

(p + X )
n-l

1=0
a p
'

where the a., 0 < i < n-l, are defined by equating the above expression with
I "*"**" "̂

the left part of (5). If It is desired to have no real observer pole, an

obvious modification to Eq. 6 is required. Mow a reduction of order technique,

similar to that of Gilbart and Monopoli [7], is applied to (5). The result Is

n-hnf n-i .^ f n-l n f n̂ "1 ~]
I a p e = 'I a,p J cfr.v

I 1=0 ' > ' V 1=0 ' * L 1=0 ' ' -I

+ f

In which, assuming m < n-2, in (6)

n-2 (

fr + L 'J UJ^
(6)

a. - a, a .i i n-l i =0,1,2,...,n-2

I = n-l

i = n,n+l, n+2,..., m+n < 2n-l

and, defining the "state variable filters'5 v.,
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„ , o ... n-2
n- 1 ... ...

" X

Vl * x|

n-l ... , .I a v . J ) = r ~n> i = n, r r t - l , n+2, .... 2 (n- l )

j=0 J '

2n-l

f .v i,
k-l

n-2 n-2 n-Z-J
i *I*J+I

I t (^-"3
k=! j=0

n+m n-2 n- j-2 . j ...
tV *

k=n j=0 5=0

Should m=n-l then (1) should be changed to the extent that

= n'n"t"U n+2' •"' 2n"2

- ai-n Vl ' ? - a )

I = 2n-l

and (10) is changed
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It Is noted that (9) and (10) contain no other derivative of $ ,
K

0 1 k 1 n+m» but *k- According to the ac'eptive law (16), $ Is an available

measurement. By careful manipulation of the state-space generation of (8),

It is possible therefore to remove the totality of terms in C9':) and (10) from

(6). Generation of (8), it is pointed out, requires no derivatives of x..

It Is further noted that, since <{>, is the change In parameters due to adapt-

ation, as adaptation is completed <£.+0, 0 <k< n+m, and consequently I Im u.=0.
K t+co J

Table I gives the terms in u. for systems ranging from second to fourth

order when (8) has been chosen to be generated by a normal form. The table

can be extended. • . •: •*,.

The implementation of u. as described reduces (6) to

n- 1 . n- 1 . n+m
(p+X )( I a. p ' )e = ( I a p') [ I <j> v 3 ( I I)

1 1=0 ' ' i=0 ' 1=0 ' '

n-l
Taking Laplace transform of ( I I ) and dividing by J a.s yields

'1=0

_J / t - t j.: — i _«_,! t 4
(s+A. )e.= C J <)>, v.3 +

n+m c£( initial conditions)

1=0 ' ' °y' _ J (12)

1=0 '

for which follows

n+m n-I
e. + X.e, = ^ < j > , v . + Y fy. exp C-X,t]

1 ' ' i=0 ' ' 1=2 ' '

where ^ are unknown constants or time dependent functions depending upon v-.ro
n-l

initial conditions and {A.}, the set of characteristic values of I a.s'.
1=0 '
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A Liapunov function is now to be formed so that stability of the adaptive

observer may be assured. To this end a positive definite function of the

measured error e. and the unknown parameter errors <|>. Is defined as

. 9 n+m „
V = i (m ef + I m. <j,f) (14)

z s ' 1=0
»

Following Shackcloth C8D, V can be made to be

V = -msA,e? + e

m

*l

Other adaptive laws can easily be chosen instead if it is desired to increase

convergence speed C9,I03.

Implementation of the adaptive law In (16) can be accomplished by

reference to (7) and to the definitions of the variables a, and g.. For

example

_ • m

o n~ I
.ef + e, £ <K exp[-A.t] (15)
1 1 ' = 0 '

"s
when 4> i = v . e . 0 < i < n+m

I m, i I — —

s x .e .m , I I
n- I

m

»n-2 = V2 - 3n-2 Vl." ^n-2 + an-2 HT., x| el

ms
= — y e

m 0 n-2 In-z

etc.
*

in which g. may be ascertained.
*

From the form of V, e. is stable In the sense of Lagrange with the region

of attraction determined by the unknown constants ty. and the decaying exp-.-isr-tial

time function. Clearly the region of attraction shrinks exponentially w i i . - s

time and eventually vanishes; consequently e. is eventually asymptoticei. \

stable and I im e. = 0. All derivatives of e. must vanish In the l i m i t •:-;•? •.•:eii
- ' '
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since the scalar error equation (13) is linear and of first order and possessing

finite frequencies.

However, the Lfapunov function (14) Is defined on a non-compact manifold.

Consequently {<£.} is shown to be (eventually) stable but not necessarily

asymptotically stable [II]. It is evident from (3) that each <J>. must vanish

by adaptation In order to observe the correct plant state. Theorem 2 defines

the restriction placed upon r(t) in order to guarantee vector error convergence.

Theorem 2 [Proof In Appendix B3

Suppose there exists no set of real constants {q.}, i=0,l,2,..., n+m, for

which the (observable) system command Input r(t) in Its steady-state condition

is a solution of the homogeneous differential equation

n+m .
I q,r ( I )-0
i=0 '

where n and m are defined in (4).

Then I im <f> . (t) = 0, i = 0, 1 , 2, . . . , n+m, and I im e(t) = 0 is assured.

Corol lary

If the steady-state command input r(t) Is periodic, a sufficient condition

in order for I im £(t) = 0 In (3) is that r(t) contain at lesst [n+m+l]/2 distinct
t-K»

frequencies in its steady-state condition.

It is noted parenthetically that the corollary seems a generalization of a

theorem of Lion C 1 23 although the applicability of that theorem to the present

topic appears obscure.

Reconstruction of T

Using the "nominal" matrix AQ as i n i t i a l condition, the actual value ov the

system parameters may be determined by integrating the change in parameter:; -'>.},

defined in (16), until adaptation is complete and combining appropriately In t'ie



form of the matrix T. Thus T(t) ''drifts'' toward T as adaptation progresses and

I im T(t) = T. The example makes this technique clear.
t->°°

s*

w, the estimate of w, is constructed from the observer output z by forming

T(t)z. Consequently I im w = w.

Practical Considerations

Reference to Table I reveals that, speaking practically of analog implementa-

tion, for high order systems a prohibitively large number of multipliers must be

employed to generate the observer input u.(t). Since the magnitude of each u.(t)
J J

depends upon the magnitude of parameter change due solely to the adaptation

process, it is reasonable to Inquire whether u.(t) can be omitted altogether
J

(i.e. make H H 0) , especial ly when the adaptation proceeds slowly by choice of const-

ants ln(l6X By analysis of (14), it may be seen that omitting u.(t) tends to
\j

degrade the adaptation process due to the inclusion of disturbances f and f ,
X I

eq. (9.) and (10),

However a theoretical analysis of a second order system indicates that the

u term may be safely omitted when the observer eigenvalues lie left of a curve

passing through the left half-plane. This curve represents a trade off between

frequency filtering in the adaptive law and magnitude of the adaptive gains.

Generalization of this work awaits completion.

Examp I e

A third order plant with one zero Is considered for illustration. Let the

plant be described by

W =

0

0

~(aO+ Ct0) "

0 "

1

+a2\

w +

" 0

c.1

. C0.

(I*)

y = w.
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in which cu, a., a~, c_. and c. are unknown, a-., a., a,-, are the nominal values.

In output form, (I*) is

x =

0

-(aQ+a0) 0 0

x +

0

<IA*>

y = x, = w,

The error equation (3) is now

e =

-k2 I 0

-k, 0 I e + y +

0

r +

0

u,

and the scalar error equation (5) Is now

el + k2e| + k|®l + kOel = (otO + ai

6,r

2XI

(3*)

Employing the definitions given in (7), (8), and Table I when n=3 and m=l, the

scalar error equation (5*) is equivalent to

(5*)

2 2
) (p + a(p + a0)e, = <p + a( p t aQ) (

when u. and ufi have been implemented as

v.) (II*)

UQ = <0(v0(2) t a, VQ(D) + «|(V|(2) + a, v((l))

u = (I)
( ^

, v.d
4 40 I * I 33

As an illustration of the generation of v.(j) appearing above, consider v; which

1s def i ned by

v =
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and the generation of v.(j) in normal form.

Then, what is equivalent for vt>

v , < l > -

v ( ( 2 )
=

0 1 "

-ao -a i

v ( 1 f

v ( ( 2 )
*

1 "

Consequently v. = v.(l) and both v.(l) and v.(2) are available for measurement.

Other v.(j) are generated in a similar manner.

Defining <j. as in (16), the observer has the form

where

z=

_-ko

z +

92 "

g,

.9o.

y +

" 0 "

b.
bo

r +

" o "

ul

."2

msb. = e.I m. I

m
— e. vm, I 3

m
"~"""' ̂ i ^im0 I I

m m
g, =-

g0 = -

(— v, + a. — x.)"m. I

m

m

m

0 m

and

w = - f 9

a, - J g, dt a.

0

^

0 z=T(t)z
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w is the estimate of plant state w, and I Im w»». Note that CT = C.

A Simulation

The third order system of the example was simulated on a digital computer

using the following parameters

aQ = 24 a0 = 0 C, = 30 kQ = 24 m0/m3 = 8000

a( = 26 a( = 74 GZ = 195 k( = 26
 m

0/
m
5 =

 20°0

a2 = 9 a2 = 0 b, = 30 ^ = 9 gQ = g2 = 0

The eigenvalues of the observer (determined by {k.})were A. = -4, A2 = -2, A, = -3.

The input to the plant was a square wave of magnitude I and frequency 6t. Two

parameters, bQ and g., were adjusted by the adaptive law. These were i n i t i a l l y

set at b_ = 73, g. = -5 corresponding to a correct value of bQ = 75, g. = -74.

Fig. 2 illustrates the behavior of b,., g., e?, and e, as a function of time.

Remark
A t. s.

As has been previously stated, w = jz and I im w = w. In the general case of an
, t-~>

arbitrary plant matrix A, the determinant of T may vanish for some instances of
A

time. These monentary occurrences of course, have no deterimental effect on w since
A

convergence of w to w is guaranteed. In the important particular case of the

preceding example, however, advantage has been taken of the fact that det T is
* *_ I _ I

constant by writing equation (*) as w = (T ) z. Since for the case of phase

variable plant of high order the literal form of T is easily produced, it is
A-l -Isurmised that writing (T ) = T allows a particular simple construction of w

when digital computation, rather than analog, Is desired.

Conclusion

An adaptive observer has been demonstrated for single- Input single-output

systems with constant or slowly varying parameters. Work is currently underway

to extend the observer to mu I ti variable systems as well as systems with rapidly
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varying parameters and systems with noise. It is hoped that the adaptive observer

w i l l be eventually used not only for observing the state of an unknown system

but in model reference paroblems and pole placement problems as well.
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APPENDIX A

In order to complete the proof of the theorem when A has repeated eigen-

values (and the number of eigenvectors of A is less than n), the following

lemma is needed.

Lemma

Let A be an nxn matrix, C = L"k, 0, 0, ..., 03, k t 0, and ijKA) =

{all nonsingluar matrices PJJ = P AP} where J is an nxn matrix of Jordan form.

Then there exists a Pe iJj(A) such that CP = [(p,,̂ ), <p2,(»,..., (p.,£)] where

each vector (p.,0) 5 [p., 0, 0, ..., CO has a dimension equal to the order of
i — I

the corresponding i—Jordan block in J.

Proof of theorem

Since the similarity transformation matrix that transforms the matrix A|'0

(in output form) into the normal form A ,

0

0

A =
n

an2 ••' Snn

is triangular, it suffices to show that the theorem is true with AQ replaced by

V
(a) Let A be partitioned into

A 1 -n

AM A !2

A
2] A22_
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where A., scalar and A.- is I x (n-l) row vector, A2( and A22 appropriately

formed. Then

A' =

k 0

7' T2

A , , A | 2

_A2[ A22_

k £

-T~'T T"'
_ 2 ' 1 2_

for I > I , and

= CTA!T"' = CA'Tn

since A. = 0 for i <_ n-l.

value.

AI2 =C6|i 62I Si ••

l '-J

The term -A.2 T? T. Is a scalar which may be any

Where

LetT

where t. are row vectors. Then

p = CcT : ATCT:. :...: CCA""') ]

'k * k.
• I

0
o -2 . n - l

0

. . . .
. -I . -2 . . -n-l
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Since T? nonsingular, _t. mutually independent as well as independent of C.

Therefore, observability matrix Q Is of rank n. Therefore, A observable.

(b) Suppose (A, C) completely observable but A ^ T AT for any T. Let P

be a modal matrix satisfying the lemma condition so that J = P AP and J is in

Jordan canonical form. Let V be a Van der Monde matrix corresponding to J

such,that A = VP~ APV~ . Since (A,C) observable, A possess but one invariant

polynomial under supposition of the form of C Cl33; therefore V exists. By

assumption^ t PV . Since T is arbitrary, this implies that CT £ CPV" , or

that

CTV = CV jt CP

Because of the lemma, the P chosen in such that

CP = [p,, 0, 0, ..., 03.

A necessary condition on CP for observability is that p be non-zero Cl^U.

By the form of the Van der Monde matrix, CV = Cq., 0, 0, ..., 03 with
I

q. £ 0 a constant.

CV ^ CP implies q. ^ p.. But q. is any non-zero constant; thus, q. r p.

implies p = 0 which implies (A,C) not observable. Thus a contradiction Is

reached.
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APPENDIX B

Proof of" Theorem 2

It has been shown that

I Im e (t) = 0
t -*» '

lim u.(t) = 0 for each j (Bl)
J

lim (J)j(t) = constant for each !

Therefore from (7) and (7. a)

lim ot.(t) = constant for each I
t-x» (B2)

lim gj(t) = constant for each I
t+co '

Referring to n equations (3), each equation may be differentiated in a manner

so as to form the vector e (t) = [ejn), e("~n , e!n"2), . .., e 3T.— s i /- -> n

Employing (Bl) and (B2) in determining lim e (t) and letting g. = 0 for i > m,
t-v~ "S '

equations (B3) result.

n _ (n-l) , (n-l) . 0 (n-l)0 = e 0 + a , y + g . r2 n-l y n-l

(n+l-i) (n-l) . (n-i) , Q ((n-l) , 0 , . .
i = ei + l +an-i y + 6n-i r ' = 2, 3,4,. ..n-l

(B3)

All e's may be easi ly eliminated from (B3) yie ld ing

C n-l i 1 f m ; ~\
0 = 1 a s 1 y + I 8,8' r (B4)

( 1=0 ' ) ( 1=0 )

Let the stable (but unknown) plant transfer function be

n . -i r m . ~\
I a.s1 y « \ I b s1 r (B5)
1=0 > ^ 1=0 j

a H In
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Combining (B4) and (B5) yields

n-1 . m . m . n .
0 = [( I a s') ( I b.s1) + ( I 6s 1) ( I a.s!» (B6)

1=0 ' 1=0 ' i=o ' 1=0 ' (m)

(B6) represents a condition upon r(t) which is assured In the limit, by.(gl)

and (82) that Is to say, after adaptation has forced e. to vanish. Two distinct

possibilities exist regarding the solution of the (n+m)-th order linear

homogeneous differential equation (86): (a) either the steady-state system

command input r(t) obeys (B6) for some values a. and 6,, or (b) the n+m+l co-

efficients of polynomial In brackets are in the limit each zero. By supposi-

tion of the theorem, (a) cannot occur; consequently (b) must be true.

Using the assumption of cbservabiIity to insure that (B5) Is relatively

prime, it is easy to show by mathematical induction that condition (b) implies

that the constants a. and B. 'are each zero, which was to be proved.

Corollary

The corollary Is a direct result of placing the characteristic values

of (B6) along the imaginary axis. The least number of distinct poles required

of r so that it is not a solution of (B6) is exactly one more than the order

of (B6), or n+m+l. Therefore r must contain at least -̂?— distinct

frequencies In Its steady-state condition.
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TABLE I

Notation for generation of v. in normal form. In v.(j), j denotes

the state variable, i denotes the function in (8). Example: for

n=4, v. is defi ned by

V | + a 2 V ! 3 0 V 0 = X I

and generated by

v ( I )

v , ( 2 )

0

0

-a, -a.

v (2)

v. (3) -a.

n=2
m=0

uo =

n=2
m=l

U0 *0 V0 + *2 V2

n=3
m=0

v , ( 2 ) + a, $ v Q (2 )

a. <J>3 v ( v,(2)

(vQ(2) + a ( v Q (D )

(v 3 (2 ) + a,

v Q ( l ) t o v 3 ( l )

n=3
m=-|

= <j>0 (v Q (2 ) + aj v Q d ) ) + $ ( ( V j ( 2 ) + a ,

(v3(2) + a, (v 4 (2 )

u, = I *, v (I)
1=0
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n=3 same as n=3 m=l
m=2 with {£.} define in (7a)

2 3 . . 3
n=4 U

0
 = I I <h aj vj(j) + *4 ̂

m=0 u i=0 i=l ' J ' ^ i=l

2 2

u = I <, v (I) + <J>4 v 4 ( l )
i=0

5 2

I I
1=0 j=l

u = I $ v (I)
^ 1=0

u ' = , t j, *' Vi V j )

u = J J v (I)
1=0 '

n=4 same as n=4 m=2
m=3 with {(*>.} defined in (7a)
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