construct working set data sets, a subset of the original data set, having a substantial portion of all
data set activity. This working set data set is maintained in core via buffering, thereby reducing I/O overhead. To implement the interface and reduce the cost of storing data sets, one of the many
available compression routines was applied to the entire data base. (Received March 1975)

Redundancy reduction is a compression technique for recogRedung and removing those data values that are repetitive. These data values can be calculated from preceding or succeeding
values or by comparison with reference patterns. This method does not always permit reconstruction from compressed data
to the original data. Adaptive sampling varies the sampling rate with the information rate of the data source resulting in no redundant data. Using a sampling rate greater than the infor-
mation rate of the data source, redundancy reduction removes the redundant data from the sampled data to obtain data values corresponding to the information rate of the data source. The
two general classes of redundancy reduction algorithms are polynomial predictors based on finite differencing techniques and polynomial curve fitting algorithms. Davisson (1967,
1968a, b), Ehrman (1967), and Elias (1955) have done much work in redundancy techniques.

The final major class of compression techniques, statistical
encoding, transforms a given message into one or more code
高 ing on the success of the tree decoder (Slagle and Dixon, 1969;
1970; Slagle and Lee, 1971). Huffmann coding (1952) develops binary codes based on the frequencies of the various data

Most of the data compression research to date has been for telemetry systems use, with several exceptions. The first was Marron's (1967) ANPAK system which tolerated no loss of
information and yet achieved a 39 per cent savings in storage

 tokens to replace multiple English words occurring in air
traffic control language.

With the advent of time-sharing computer systems many of the functions and services provided by libraries can be automated. Storage devices such as discs contain information, mainanges provide a means of retrieval. If a system can perform these tasks, it is known as an information storage and retrieval system
(ISRS). If in addition it can detect trends in the da.a, it is

An ODCS must be designed to relieve the ISRS/MIS of the burden of physical file structure (list, tree, etc.). Allowing the
ISRS/MIS to maintain logical items in logical files simplifies (IIF), and the item value area (IVA). Each of these tables is he ISRS/MIS program complexity. Another interface function described in some detail below and summarised in Table 1. n-tuples not in use. The DSIML is a linearly linked list pointing to the DSIM for a given data base. The DSIM in turn describes the data set. Some of the data set parameters are specified by
Downloaded from https://academic.oup.com/comjnl/article/19/3/216/333580 by guest on 20 August 2022 is reducing the volume of space required to contain the data file thereby freeing storage devices for either other use or
lower rental rates for fewer devices. The compression, applied
on a record-by-record basis rather than on the entire file on a record-by-record basis rather than on the entire file, more data is transferred per request. The interface must also attempt to reduce I/O requests by physically grouping items
 Whenever a large number of data items must be maintained,

 always provide unique physical addresses. Intra-record collisions occur when the mapping generates the same address more than once and the item can be stored at the location

 the number of accesses, further reduction may be accomplished by performing buffering. This buffering is not to be confused computer. Instead, this buffering should be designed to retain computer. Instead, this buffering should be designed to retain
in memory for a 'reasonable' length of time those physical
records most frequently and last requested (least recently used
 requested but with fewer physical accessions. The relationship
and organisation of the new ISRS/MIS is shown in Fig. 2.

System implementation

 Agricultural Economics and Rural Sociology at Texas A. \& M. University. Various departmental standards and decisions
required the FORTRAN language to be used to implement the ODCS interface. Although FORTRAN is primarily for computations and not character and file manipulations, the results presented are indicative of the interface and not the language
performance.
 define interface parameters, to locate data sets in the data base, to define and describe data sets in the data base, to reduce
physical record.
A single table, system map (SYSMAP), initially defines the
interface parameters for system generation. These parameters include the current time or date, the initial and the incremental
 used to build other tables, threshold values for changing item
priorities, and threshold values for data set reorganisation.

 adapt to its environment.
The definition of the tables
The definition of the tables used to locate the data sets depends
on both system parameters and user specified parameters. The tables used for data set location include the available space for
information map list (AVSIML), the data set information information map list (AVSIML), the data set information
map list (DSIML), and the data set information map (DSIM). Tables associated with each data set include the data set statistics table (DSST), the frequent collision list of items
(FCLSTI), the most frequent item list (MFIL), the record

Fig. 7 Logical table relationship Fig. 8 Compression algorithm to remove redundant words physical record to the other system routines is performed by							

If, on the other hand, the item has been relocated, this entry is

 the back pointer is stored as a negative number. The final
 item priority should be increased, decreased, or should remain the same. The changing of item priority is discussed in detail

The last table to be described is the area containing the compressed data. The format, construction, and use of this table, VA, is dependent on the compression/decompression
algorithm. The particular algorithm used is discussed later. Fig. 7 illustrates the logical table relationship for data base, as opposed to data set, maintenance. The dashed line indicates communication of parameters while the solid line indicates
linking information. The two disc volumes shown in Fig. 7 are logical discs since they may physically be on one volume or require several volumes. Regardless of the physical size, the
logical relationship remains the same. The SYSMAP supplies logical relationship remains the same. The SYSMAP supplies defining the boundary areas for the data records comprising a
data set in the data base.

System areas
The system has parameters to define the size of the reserved and overflow areas. Lum (1971) presented tables indicating the expected percentage overflow for various load factors. The size of the reserved and overflow areas, used in the implemented
ow area, as suggested While the system could handle variable size records, this size was selected simply to reduce program size, and to improve disc accesses, the system did not put several logical records into a single physical record, although the system is capable of
blocking logical records.

System operation
The system is first generated with a BLOCK DATA subroutine and data sets defined with both system- and user supplied parameters. Items which can be forced by type into partitioned areas may be entered, retrieved, or deleted. Items are relocated
when one of the following occurs when one of the following occurs: insufficient space is available
at the home record; the compression time was exceeded; the item activity forced a priority change; or the item enters the reserved area. The IIF handles intra-record collisions while the CRL controls inter-record collisions and item relocation into
the reserved area. The system automatically changes item the reserved area. The system automatically changes item
priorities and creates reserved records, both dependent on item activity. Excessive I/O activity is reduced by buffering and by using both the FCLSTI and reserved records.
To facilitate program development, mainten

To facilitate program development, maintenance, and modi-
fication, the system was written in modular subroutines. These program modules, with the exclusion of the main subroutine ODCS, can be divided into three main classes: buffering,
compression/decompression, and relocation The buffering compression/decompression, and relocation. The buffering
routines are GETREC and PUTREC; the compression decompression routines are TRYCMP and DECOMP; and the relocation routine is ANOTHR.

The purpose of the buffering routines, GETREC and PUTREC, is to maintain several physical records in memory
to reduce the physical volume of I / O traffic. Records are read to reduce the physical volume of $1 / \mathrm{O}$ traffic. Records are read
from disc when demanded by the system. Once in core, an activity counter is associated with each buffer in the buffer pool allowing frequently requested records to remain in core while other less-demanded records in the buffers can be replaced.
Reading from disc into memory and passing the requested

Downloaded from httos．／／academic．oup．com／con August 2022
in which cach letter represents a word，illustrates the technique．
Two half－word counters are used to count the number of con－颜
0
0
0
0
0
0
0
0
0 words respectively．The reason word manipulation is used is

 sion routines are TRYMM and DECOMP respectively． The relocation routine，ANOTHR，uses both the buffering and
compression／decompression routines to relocate an item from童 meters in the DSIM and the subroutine call arguments，the item
is relocated in either the collision overflow area or the reserved is relocated in enher heneser an item is relocated，the two tables MFIL and FCLSTI must be examined to determine if these tables contain this item so that the entries can be updated．
The relocation procedure is simply a sequential scan of the records in a predefined area．The scan stops whenever a record is located that can contain the item．
Changing item priority
The purpose of asiging priorities to items is to dictate the
．家 information．That is，if a priori knowledge is avaiable concern－
ing the demand for the items comprising the data set，the items

 number of passengers on a particular fight would be requested

 to
0
0
0
0
0
0
0 to trigger the process of determining whether the item＇s priority is to be increased，decreased，or remain the same．
Based on SYSMAP parameters and threshold values，if item activity is suffciently great，the item information will be

entered into the MFIL and FCLSTI reducing future system | entered into the MFIL and |
| :--- |
| overhead．This automatic，dynamic priocinity fulassification | process allows items to be grouped physically by priority，

reducing future $1 / 0$ overhead． reducing future $1 / O$ overnead．
The approach being followed by creating different organi－
 g
0.
0
0
0
0
0
 its proiority．
The creati
The creation of reserved records is performed by initially
entering into the MFIL only the most active items．Once the
MFIL is sufficienty full＇，these items are then physically

 item，updating the priority status and frequency counter
returned to the user．After completing the retrieval，the FCLST and MFIL checks are performed again． and MFIL checks are performed again
If the operation is to delete an item， If the operation is to delete an item，without searching the
 by DECOMP containing the item to be deleted．If the item is located via the IIF，it is deleted，the relocation record is retrieved，the item is deleted from that record，and any records deleted，all the activity and priority information is returned deleted，all the activity and priority information is returned
with the item to facilitate re－entry if the item is to be modified． To complete deleting the item from the data set，any reference

to the item in FCLSTI or MFIL is removed．
Deleting a single item from the data set begs the question
How do you delete a data set？＇No restrictions are placed on the establishment of record area boundaries；moreover，no
restrictions are set on data set boundaries．Consequently， restrictions are set on data set boundaries．Consequently，
multiple data sets could reside in the same physical set of records with a resulting mix of different data set items on a single record．If this mix of records is desirable，then the only way to delete an entire data set is to delete each item in that data set so as not to disturb other items from other data sets．Con－ sequently，the system offers no mechanism for data set deletion
en masse．Naturally，if the data sets are segregated，a separate en masse．Naturally，if the data sets are segregated，a separate
program can be used to destroy all pointers in the system maps

remained in that classification for an extended period．Again
the eliminated I／O was at the expense of self－organisation．
Attempting to establish these parameter setting requires some
guidelines．If the data set is dynamic with the frequency
varying rapididy over time，low values of UPTHRS，RTTHRS，
UDTTHRS，RDTHRS，and SDTHRS should be used to allow
for quick reaction to the changing item priorities．If the trans－
actions appear to reference the same set of items for an extended
time period，then the UDTHRS，RDTHRS，and SDTHRS
should be large to allow the items to remain at their respective
priority level for longer periods．．n addition，if information is
known about those items to be requested and those less fre－
quently requested，then the UPTHRRS and RTTHRS values
should be set to prevent the less frequently accessed items from
being considered for reclassification．The setting of the
UPTHRS and RTTHRS values should be based on the expected
item activity level for those items referenced．The creation of
reserved records is dependent on the values assinged to
MFLNTH and NITMFL．Whenever an item is placed in the
reserved area a minimum of two accessions is required；one to
retrieve the item and one to restore the home record with an
updated CRL，assuming the reserved record is in core．Con－
structing reserved records becomes an expensive process when
low MFLNTH and NITMFL values are used．To emphasise，
this extra activity is in addition to any activity required to
change item prorities．
Modifications and extensions
The concept of reserved records as implemented was unsuccess－i．
by an internal assignment of items to various priority classes.
Moreover, if the records containing these items can be kept
dense (a function of the relocation routine), I/O traffic can be
reduced further. If a memory area is set aside for storing the
most active items, substantial I/O savings can be made.
Naturally these results hold for data sets having a majority of
the activity associated with a subset of that data set. The amount
of reduction in I/O is a function of the number of items per
record, which in turn is a function of the item length, track
space, compression savings, and IIF space required.
The compression results are encouraging in that storage
requirements can be reduced. However, compression systems
in themselves are nothing new. The use of the compression
algorithm with the self-adaptive capability to produce fewer I/O
accessions is unique. Moreover, implementing both a self-
optimising program to set parameters for acceptable compres-
sion limits and a tree searching program to select a particular
algorithm would be unique.
Reserved records as used in this set of programs cannot be
considered for any future implementation. Instead, a set of
telescoping priority classes developing a working set data see
should be used. The threshold levels, while presently manually
set, could be set dynamically at execution time to improve
system performance.
In summary, for data sets of thousands of items having
substantial activity on a subset of that data set, the application
of an interface with suggested modifications would reduce I/O
traffic, storage costs, and user delay time. Cache memory
assignments can be easily and efficiently made for furthee
reduction in cost and delay time. Finally, self-adaptive self
organising systems indicate performance improvement oven
strictly manually directed systems. . within a certain distance of the mean should be put in a par-
ticular class. The use of these means and standard deviations for ticular class. The use of these means and standard deviations for
parameter re-valuation at execution time leads immediately to self-optimising via linear or integer programming techniques. A set of equations could be developed such that the cost func-
tion would include the cost of storage, transmission speed, I / O accessions, delay time for the uses, etc. and the constraints
would put bounds on the compression time, number of acceswould put bounds on the compression time, number of acces-
sions, delay time, etc. Since optimisation of the cost function should produce better system performance at reduced cost,
tests of hypothesis could be applied to the statistics gathered

Using multiple compression routines would allow selection of the 'best' tecchniques to compress a given record. By maintaining
the history of previous applications of each compression algorthe history of previous applications of each compression algor-
ithm to recordd in the data set a test of hypothesis could be performed tod determine if if should be considered as a a can-
didate for compressing a record Given a set of tandidates the didate for compressing a record. Given a set of candidates, the
routine selection could be performed by using game trees whose
 compress versus the amount of compression achieved. Con-
sequently, even though extra effort would be spent selecting the

