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1. INTRODUCTION 

Motor current based fault detection relies on 
interpretation of the frequency components in current 
spectrum that are related to rotor asymmetries. 
However, the current spectrum is influenced by many 
factors, including electric supply, static and dynamic 
load conditions, noise, motor geometry, and fault 
conditions. Therefore, the motor current can be best 
modeled as a nonstationary random signal. Also, the 
dependency of motor current on the motor geometry 
requires a flexible, adaptive approach. For many years, 
the motor current analysis has been implemented using 
limited mathematical tools and computer capability. 
These methods are mostly deterministic and based on 
Fourier transformation [1]-[2]. However, it is well-known 
that Fourier transform techniques are not sufficient to 
represent nonstationary signals. Moreover, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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uncertainty involved in the system requires an adaptive 
statistical framework to address the problem in an 
efficient way. In recent years, advancement of statistical 
signal processing methods have provided efficient and 
optimal tools to process nonstationary signals. In 
particular, time-frequency and time-scale 
transformations provide an optimal mathematical 
framework for the analysis of time varying, non- 
stationary signals [3]-[4]. 

It is well known that the frequency content of the motor 
current evolves over time as the operations conditions 
of the motor changes. This time evolution of 
nonstationary signals can be captured by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGabor or 
short time Fourier transform [5]. This transform works 
by first dividing the signal into short consecutive or 
overlapping portions and then computing the Fourier 
transform of each portion. The idea is to introduce local 
frequency parameter so that the local Fourier transform 
looks at the signal through a window over which the 
signal is approximately stationary. Such a transform 
results in a two dimensional description of the signal in 
time-frequency plane composed of spectral 
characteristics depending on time. 

The mathematical description of short-time Fourier 
transform is given as follows: 

1 
F(w,n) =zjf(t)g(t-nto)9-"dt 

where g is an ideal cut-off function. Dividing the current 
signal into small portions amounts to multiplying f by a 
translate of g, i.e., g(t - nt,) where to is the length of 
the cut-off interval and n is an integer associated with 
the signal portion. The parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo is similar to the 
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Fourier frequency and many properties of Fourier 
transform carry over to the short time Fourier transform. 

The Fourier analysis makes it difficult to recognize fault 
conditions from the normal operating conditions of the 
motor. Time-frequency analysis, on the other hand, 
unambiguous represents the motor current which 
makes signal properties related to parameter 
estimation, and recognition more evident in the 
transform domain. To illustrate this situation, we 
acquired motor current from a 3/4 HP motor operating 
under three different load condition. The motor was first 
operating under 2 Ib-in of load, then 10 Ib-in and then 2 
Ib-in again. The analog signal was low pass filtered at 
800 Hz and digitized at 32 samples per 60 Hz voltage 
supply. Time-frequency spectrum shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
clearly unveils the load oscillations which are important 
for fault detection. The horizontal axis represents the 
frequency with 0.2 Hz/bin resolution and the vertical 
axis represents the time with 5 seconds resolution. The 
color represents the intensity of the time-frequency 
spectrum in dB. The Fourier spectrum, on the other 
hand, will reveal no information about the load 
oscillations because, the time variations of the 
frequency content will be spread out over the entire 
frequency range. 

In this paper, we propose an adaptive statistical time- 
frequency method to detect bearing faults. The block 
diagram of the proposed system is shown in Figure 2. 
The method consists of four stages: preprocessing, 
training, testing, and postprocessing. In the 
preprocessing stage, the analog data is subjected to 
typical signal conditioning procedures. During the 
training stage, the time-frequency spectrum of the 
current is computed and features relevant to fault 
conditions are extracted using torque and mechanical 
speed estimation. Next, the feature space is segmented 
into the normal operating conditions of the motor and a 
set of representatives and thresholds are determined for 
each normal operating mode. The segmentation is 
performed by either statistical segmentation or torque 
estimation. Once the algorithm is trained for all the 
normal operating conditions, the testing stage starts. In 
this stage, the time-frequency spectrum of the motor is 
acquired periodically and the features relevant to the 
fault conditions are extracted. Next the distance 
between the test feature and the representative of each 
normal operating condition is computed. If the test 
feature is beyond the threshold of all the normal 
operating conditions, it is tagged as a potential fault 
signal. During the postprocessing stage, the testing is 
repeated a number of times to improve the accuracy of 
the final decision. 

The rest of the paper is organized as follows: In Section 
II, we introduce the preprocessing and training stages. 
In Section I l l-IV, we discuss the testing and 
postprocessing stages. In Section V, we present 
experimental results. Finally in Section VI, we briefly 
discuss further items of interest in this context and 
conclude our discussion. 

II. TRAINING 

In the preprocessing stage, the analog data is low pass 
filtered and digitized. Next, the time-frequency spectrum 
of the digital data is computed and fed into the training 
process. The first step in the training stage is the 
feature extraction process in which the frequencies 
relevant to fault detection are estimated from the time- 
frequency spectrum. Next, the training features are 
segmented into the constant operating modes of the 
motor. Finally, the samples from each mode are 
statistically analyzed to determine a mode 
representative and threshold. These values are saved 
in a database to be used as a baseline later in the 
testing stage. Note that the segmentation process and 
feature extraction process can be interchanged. 
However, the computational load is much less if the 
feature extraction is performed prior to segmentation 
because, the size of the feature vector is much smaller 
than the size of the entire frequency spectrum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Feature Extraction 

In this section, we shall discuss the estimation bearing 
fault frequencies. Next, we shall select a window of 
frequencies around the estimates to form a feature 
vector. A feature vector is a highly informative 
compressed data which facilitates reliable detection 
while reducing the computational load. 

A bad ball bearing in a motor allows the shaft to move 
radially a small amount. For example, if there is a pit in 
the outer or the inner race, the balls encountering it will 
fall in and move radially. Thus the air gap geometry will 
be slightly disturbed leading to a modulation of the 
current. These modulation effects will show up at 
frequencies 

f, = f ,  k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn . f ,  , n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2,3, ... 

where fv is the mechanical vibration frequency whose 
value depends on the type of the race defect and 
geometry of the bearing. If the bearings have six to 
twelve rolling elements, the inner race bearing defect 
frequencies can be estimated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6]-[7] 
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f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=f,+n.0.6.fm, n=6,7 ,..., 12. (2.2a) 

Similarly, the outer race bearing defect frequencies can 
be estimated by 

f, = f ,  k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn .  0.4.fm, n = 6,7,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..,12. (2.2b) 

A window of frequencies around the estimated bearing 
frequencies 

(2.3a) 

n=6,7, ..., 12. (2.3b) 

is selected to form the bearing feature vector where S is 
the magnitude of the time-frequency transform. 
Typically, the length of the window is chosen to be at 
least 1 Hz on each side of the estimated frequency. 

B. Segmentation 

As discussed earlier, the motor current is a piecewise 
stationary signal in which different constant operating 
modes correspond to different statistically homogenous 
segments. Therefore, it is necessary to determine 
different baseline thresholds for different operating 
modes of the motor. To do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso, we compute the time- 
frequency spectrum of the motor for all possible normal 
operating modes of the motor during the training stage, 
and segment the spectrum into homogenous segments 
along the time axis. 

Let us assume a number of feature vectors F(n), 
n = 1, ..., N are available for the training process where 
N is the total training duration. We assume that the 
normal operating modes of the motor change slowly 
and contiguous feature vectors are likely to fall into the 
same mode. Given these assumptions, segmentation 
process can be viewed as detection of time instants n, 
at which F(n), n I ns and F(n) ,  n > n, exhibit different 
statistical properties. We shall call this instant split point. 
To implement the detection process, we divide the 
feature vectors F(n), n = 1, ..., N into contiguous 
windows along the time axis. The length of the time 
window T is chosen so that the motor can exhibit at 
most two different operating modes during T units of 
time. Within each time window, the location of the split 
point is detected by maximizing the conditional joint 
probability density function of the feature vectors within 
the window given the location of the split point. This can 
be mathematically expressed as 

i, =Ar maxPr(F(n,+i), i = O ,  ..., T-1 I i=n,) (2.4) 
"#3,.",T-l 

where no is the beginning of the time window, ns is the 
candidate location for the split point, and F(no + i ) ,  
i = O ,  ..., T-1 are the feature vectors within the time 
window. Note that h, = T - 1 is interpreted as no mode 
change during the time window T .  Once all the time 
windows are studied and the location of all the split 
points are estimated, segments that are similar are 
merged using the Bhattacharyya distance [8]. For more 
details on the probabilistic segmentation process, 
please refer to [9]. 

C. Mode Representatives and Thresholds 

For each constant operating mode of the motor, the 
sample mean and the covariance matrix of the feature 
vectors are chosen as the representatives of the mode. 
Mathematically these representatives are given by 

(2.5a) 

(2.5b) 

where L is the total number of distinct operating modes 
of the motor, Lj is the number of feature vectors 
belonging to the mode j ,  and nk is the time instance of 
a feature vector in a given homogenous mode. We shall 
refer the mean and covariance matrix of a mode as 
mode representative and denote it by 

Rj - ( M j , C j ) ,  j=1, ..., L .  (2.6) 

It is important to note that once the bearing mode 
representatives are obtained, the distance between the 
distinct operating modes with respect to are calculated 
and stored in the database to be used in the 
postprocessing stage. 

We now want to define the bearing fault thresholds for 
each normal operating mode of the motor. To do so, we 
first define a statistical distance between each member 
of the mode and its representative. 

j=1,  ..., L ,  k = l ,  ..., Li. (2.7) 

Note that the distance measure is chosen to be the 
well-known Mahalanobis distance in which each entry in 
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the Euclidean distance is down weighted by the 
variance of the entry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[lo]. 

In order to obtain an optimal bearing fault thresholds for 
each mode, the sample mean and standard deviation of 
the intra mode distances are calculated. 

(2.8a) 

j=1, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL .  (2.8b) 

The bearing fault thresholds, T ? ~ ,  for each operating 
mode are set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa unit standard deviation away from the 
mean distances, i.e., 

Note that in the case of normal distribution of the intra 
mode distances, a is typically chosen to be 2 to provide 
a 95% confidence interval. However in our approach, it 
is kept as an input parameter to allow the user to utilize 
one's engineering judgment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111. TESTING 

Similar to the training process, the test data is first 
subject to the operations in the preprocessing and 
feature extraction stage discussed above. Next, using 
the Mahanalobis distance introduced in Equation (2.7) 
the distance between the test feature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFt and the 
representatives of the normal operating modes Ri ,  s 
computed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A?@ = d(FF@,R/b@), = 1 ,..., L.  (3-1) 

Next, we check if the distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAbrg between the test 
feature and the representatives o/ each mode is less 
than the mode threshold zy. If the distance is greater 
than all the mode thresholds, zy, j=l, ..., L ,  then the 
test measurement is tagged as potentially faulty. 

To improve the accuracy of our decision making, we 
repeat this testing process for multiple test features. 
The decisions obtained from the test features and the 
distances are fed to the postprocessor to finalize the 
decision on the bearings of the motor. 

IV. POSTPROCESSING 

The assumption in the postprocessing stage is that, if 
there is a bearing fault, consecutive test samples are 
expected to be potential fault features and will 
eventually form a mode which is statistically distinct 

from all the normal operating modes of the motor. 
Therefore as the potential fault features are identified by 
the testing stage, the mean, M,, and the covariance 
matrix, C,, of the potential fault features are computed. 
Next, the distance, B(R,,R,), between the normal 
operating modes of the motor and the representatives, 
(M,,C,) of the faulty features are computed using the 
Bhattacharyya distance. The normal operating mode to 
which the potential fault representative is closest is 
identified, i.e., 

j = ~r minB R, , R ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,L ( 
The shortest Bhattacharyya distance, of the mode 

compared with the 
is greater than the 
faulty bearings is 

triggered. 

V. EXPERIMENTAL RESULTS 

For bearing fault detection experiments, a 3/4 HP motor 
was used. The analog current data was low pass 
filtered at 800 Hz, and digitized at 32 samples per 
power cycle. However, as we shall discuss, the 
algorithm does not require frequencies larger than 300 
Hz, and sampling frequency can be as low as 6 
samples per power cycle. Each data file in the 
experiments contains 8 channels which includes 3 
phase currents, 3 phase voltages, 60 Hz notch filtered 
first phase current, and accelerometer data. Notch 
filtered data was collected in anticipation of improving 
the dynamic range of the N D  converter. Accelerometer 
data was used to validate the location of the fault 
frequencies. 

The experiments were performed using the lst, 6th, and 
the 8th channels to evaluate the significance of notch 
filtering, and the accelerometer data. The data was 
collected for about 40 seconds yielding 80000 points 
per channel. Later, these data sets were down sampled 
to study the effect of lower rate sampling. The length of 
the windowing function was selected so that the time- 
frequency spectrum has 0.2 Hz/bin resolution. which 
resulted in 8 contiguous frequency spectra for each 
data set. 

Table 1 shows the data sets used during the training 
stage of the bearing fault detection algorithm. The data 
was collected at different loads and speed. The bearing 
C2 is a healthy ball bearing which was pressed on the 
motor shaft, and then soaked with oil before it was 
installed. The motor was run continuously for about 5 
minutes during the various tests. In one case, an 
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artificial turn fault was induced to check if the algorithm 
would be able to distinguish between the turn faults and 
bearing faults. Note that for the healthy modes non zero 
label is used, the label 0 is reserved for the fault modes. 

Table 2 shows the data sets acquired from the same 
motor with faulty bearings. The inner and outer race 
defects were simulated by mounting the faulty bearing 
in different configurations. In the first case, the ball 
bearing with a hole mounted towards the outer part of 
the rotor shaft inducing a severe outer race defect. In 
the second case, the bearing mounted towards the 
inner part of the rotor shaft inducing a mild outer race 
defect. Figure 3 illustrates the time-frequency spectrum 
of the motor current with healthy bearings around the 
bearing frequency. Ideally, the estimated frequency has 
to be at the middle of the window. However, the true 
bearing frequency usually shows up 2 to 5 bins off the 
estimated frequency. Figure 4 illustrates the time- 
frequency spectrum of the same motor with faulty 
bearings. 

During the testing process, data from both Table 1 and 
Table 2 were used. The training data was included in 
testing to validate the threshold selection criteria. The 
threshold was set as 2 unit standard deviations. Out of 
11 2 samples from the 6th channel, 11 0 samples were 
correctly identified. 2 samples from a normal operating 
mode with healthy bearings were misclassified as 
potential fault signals, yielding 98% accuracy and 2% 
false positive error. Samples from a normal operating 
mode were mostly within two standard deviation of the 
representatives. The false positive error is produced by 
those samples which are beyond two standard 
deviations. Nevertheless, these samples were still 
within at most 3.5 standard deviations of the 
representatives, which is very small as compared to the 
distance of even the closest fault signal. The detailed 
results of this test are tabulated in Table 3. The 
diagonal entries in the matrix show the number of 
correctly classified samples and the off diagonal entries 
show the number of misclassifications. For example, the 
entry at the ith row and jth column shows the number of 
samples from mode i which are classified as mode j. In 
case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof perfect classification, the matrix becomes 
diagonal. The average distance of the measurements 
from faulty bearings to the normal operating modes are 
at least in the order of hundred unit standard deviations. 
Therefore, the misclassifications can be easily avoided 
by analyzing the threshold setting further which was 
arbitrarily selected as two unit standard deviations. 

The experiments with the unfiltered data yielded the 
same result as the filtered data. In fact, visual inspection 

of the feature vectors from both data sets did not reveal 
any significant difference. The tests were repeated with 
the data down sampled to 12 samples per power cycle. 
The notch filtered data resulted in 95% accuracy and 
5% false positive rate. The unfiltered data resulted in 
93% accuracy and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7% false positive rate. These results 
suggest that the proposed method does not require a 
high sampling rates. 

Bearing experiments were also carried out with 
defective bearings of 1,2, and 3 scratches on the outer 
race, 1,2, and 3 scratches on the balls, and 1,2, and 3 
cage defects. All the defective measurements were 
correctly classified as defective. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

VI. CONCLUSIONS 

In this paper, we discussed an adaptive time-frequency 
method to detect bearing faults. It was shown that the 
time-frequency spectrum reveals the properties relevant 
to fault detection better than the Fourier spectrum in the 
transform domain. The method is based on a training 
approach in which all the distinct normal operating 
modes of the motor are learned before the actual 
testing starts. Our study suggests that segmenting the 
data into homogenous normal operating modes is 
necessary, because, different operating modes exhibit 
different statistical properties due to nonstationary 
nature of the motor current. Overlooking at this fact will 
deteriorate the performance of the detection. We 
showed that signals from faulty motors are several 
hundred standard deviation away from the normal 
operating modes which indicates the power of the 
proposed statistical approach. 

Our study suggests that the proposed method is a 
mathematically general and powerful which can be 
utilized to detect any fault that could show up in the 
motor current. 
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TABLE 1 

OTOR WITH GOOD BEARINGS 

TABLE 2 

DATA FROM A 314 HP MOTOR WITH DAMAGED BEARINGS 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

72 
TABLE 3 

RESULTS OF THE DETECTION TESTS FOR THE NOTCH FILTERED DATA SAMPLED AT 1923 HZ 
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