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Abstract - This paper presents an adaptive optimal control 
strategy for enhancement of the integrated AC/DC power 
system performance. The system modeling is general and 
applicable to large scale power systems with an embedded 
HVDC link. The control algorithm incorporates the nonlin- 
ear power system dynamic equations. A novel feature of this 
development is the use of real-time system measurements as 
inputs to the optimal controller. The closed loop optimal 
control law consists of both model and measurement based 
terms. The effectiveness of the optimal control algorithm in 
damping the electromechanical oscillations is illustrated with 
the use of a nine-bus AC/DC system. 

INTRODUCTION 

For a power system with an embedded HVDC link, the 
Fast acting converter control offers a feature for hierarchical 
control of the system following a system disturbance. The 
dynamic stability and voltage excursions of a power system 
with an embedded HVDC link can be significantly influ- 
enced by simultaneous high speed control of synchronous 
generator exciters and HVDC converters. The variation of 
the continuously changing operating condition of a power 
system requires an adaptive control strategy to respond to 
contingencies. 

The term adaptive control strategy, as referred to in this 
paper, is somewhat different from the usage in control liter- 
ature and it implies to a control strategy which considers the 
changing operating condition of the power system. 

In the literature, referentes [ 11-[4] used a simplified 
power system representation and investigated various con- 
ventional control strategies in order to control different sys- 
tem parameters such as rotor angle movement, AC power 
transfer, or frequency. Generally selection of the best control 
strategy involved many simulation runs to obtain the best 
choice of the controller parameters for optimum system per- 
formance. The effect of fast converter set point change to 
vary the DC power and control the generator rotor swing for 
a two machine system connected by a parallel AC/DC 
transmission system was investigated in [I]. Damping the 
power swings in a parallel AC and DC system for a genera- 
tor connected to an infinite bus with use of linearized power 
equation was discussed in [2]. Experimental studies for im- 
provement of the transient stability of AC system with the 
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use of equal area criterion for computation of the rate of 
change of the DC power in a perturbed parallel AC/DC 
system and consequent control of the converters’ ignition and 
extinction angles was carried out in [3]. The effect of the DC 
power changes and control of the frequency dip for two 
asynchronous systems connected by an HVDC link was 
documented in [4]. 

Improvement of the power system performance with ap- 
plication of the optimal control theory was investigated in 
[5,6,7]. In all cases a synchronous generator was connected 
to an infinite bus by parallel AC/DC transmission lines. In 
[5] the Park representation of the generator and the inverse 
cosine control method with integral feedback for the HVDC 
link was used to formulate the system model. The linearized 
version of the system nonlinear equations was used for design 
of the conventional, optimal, and suboptimal controllers. In 
design of the optimal controller, linearized system equations 
were utilized in conjunction with a quadratic type of per- 
formance measure. In [6] an attempt was made to improve 
the transient stability by optimal switching of the converter 
set points, and a simple generator model was considered. 
The maximum principle is applied to the nonlinear form of 
the system equations for computation of the optimal set 
point switching (bang-bang control). In  [7] various optimal 
and suboptimal controllers, including the strategies used in 
[ 5 ]  and [6] were compared for stabilization of a parallel 
AC/DC power system. 

The method of [5] in addition to using a simplified 
AC/DC power system uses the linearized system equations 
for design of the optimal controller which is no longer opti- 
mal as the values of the system states change. The method 
of [6] uses the nonlinear form of the system equations which 
requires the solution of the two boundary value problem and 
it is mainly applicable to systems with small order and simple 
geometry. The papers referred to for stabilization of the AC 
power system make valuable contributions. However, in 
application of the optimal control theory to a realistic power 
system the techniques presented in these papers have limited 
use, since they consider a simplified power system represen- 
tation, linearized power system equations, and locally meas- 
ured parameters. 

The contribution of this paper is the development of an 
adaptive optimal control strategy for a large scale AC/DC 
power system which uses the nonlinear form of system state 
equation and real-time system-wide measurements. The ob- 
jective is to damp out the electromechanical oscillations in a 
power system by simultaneous optimal control of the syn- 
chronous generator exciters and the HVDC converters. 
However, the technique proposed in this paper can be ex- 
tended for minimization of the voltage excursions at  critical 
buses, although it is not explicitly studied here. The paper 
also formulates a power system state variable model appli- 
cable to large scale AC systems with an embedded two ter- 
mind HVDC transmission system. 
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A real-time measurement technique for field implemen- 
tation of the optimal controller is proposed which is dis- 
cussed in more detail in a following section. However, in the 
work presented here the state measurements are obtained 
from a transient stability program which simulates the power 
system dynamics. 

CONTROL STRATEGY 

The optimal control strategy developed in this paper uses 
the nonlinear representation of the power system equations. 
The nonlinear equations are linearized by the Taylor series 
expansion which forms the linearized system model. This 
provides the information about the system at the base oper- 
ating point. State feedback and input matrices obtained 
from the linearized equations are used for solution of the 
Riccati equation. Consequently, the Riccati equation is 
solved off-line and the solution is used for computation of the 
model based component of the optimal control law. 

The dynamics of the system as it moves away from the 
base operating point is incorporated in a term referred to as 
the residual. This residual appears as an additional term in 
the control law, constituting an adaptive optimal control law. 
This additional term which is the solution of a vector differ- 
ential equation with the residual as its forcing function, 
makes a proper contribution to the value of the optimal in- 
puts when the excursions are significantly large during the 
transient period. The values of the states, the nonlinear 
equations of the power system, and information regarding 
the linearized system model are used to compute the value 
of the residual in real-time. A prediction algorithm is used 
to predict the future value of the residual, so that it can be 
treated as an explicit function of time. 

For field implementation, in order to compute the value 
of residual and optimal inputs, a positive sequence phasor 
measurement technique is proposed [8]. This real-time 
measurement technique performs the system-wide synchro- 
nized measurements at  remote locations in a power system 
and transmits the data to power system control center via 
fast communication links. The computation of the optimal 
inputs is based upon this measured data. The high speed 
and high accuracy feature of this real-time measurement 
technique makes it ideal for use with the proposed control 
algorithm. 

Control Algorithm 

The main contribution of this paper to the problem of 
nonlinear system control is introduced here. For the first 
time an optimal control algorithm is formulated which uses 
the nonlinear representation of the system state equation and 
yields an adaptive optimal control law. In the following 
derivation it is shown that the optimal control is a closed 
loop feedback type of control law. 

The meaning of various symbols used in the derivation 
is explained at  the end of the paper in the section entitled 
'Nomenclature'. The nonlinear system is expressed by: 

2(t) = F(X(t) ,  U ( l ) )  (1) 

then the Taylor series expansion results in, 

where the A and B matrices are partials of the function F of 
equation ( I )  with respect to X(t) and U(t) evaluated at  X J t )  
and Udt) ,  respectively. This however results in time variable 
A and B matrices. At  this point we introduce the assumption 
that the A and B matrices are to be evaluated at X(t,,) and 
U(t,). Although at  first this assumption might seem to be too 

restrictive, it will be shown later that the error caused by this 
assumption is captured in the residual term of the state 
equation. Defining the translations: 

Z(r) = X(r) - Xdr) (3) 

V ( f )  = U(f) - Udt) (4) 

and substitution of equations (3) and (4) into equation (2) 
leads to: 

i ( r )  = ~ ( ~ d r ) ,  (/Ai)) + AZ(r) + Bv(t) (5 )  

Expressing the original form of the nonlinear state equation 
with inclusion of the terms from the Taylor series expansion 
results in: 

( 6 )  IF(X(0, (40) - F(XA0, udt)) - A Z ( 0  - BV(f)l 

Now a term &t) is subtracted from both sides of the 
equation (6), and the equation is expressed as: 

i(f) = F ( X d f ) ,  Lldl)) + A Z ( f )  + BV(f)  + 

(7) 

At) is the residual mentioned earlier, and as expressed by 
equation (8) captures the inaccuracies resulting from the 
evaluation of the A and B matrices at  initial value of the 
states and inputs rather than their desired values. The f i t )  
is computed during the control interval from the measured 
value of the state variables and its future value is extrapo- 
lated by the predictor. As more state measurements become 
available and time progresses, the accuracy in prediction of 
the future values of the residual improves. 

To minimize the error in the states and inputs of the or- 
iginal system from the desired values, the following regulator 
type of performance measure is utilized for the translated 
system of equation (7). 

J ( V )  = $$ZT(t)QZ(r) + Yr(t)RV(t)] dr (9) 

The optimal control law for the translated system is [ 151, 

v*(r) = R - 'BT[g(r) - K(t)Z(r)j (10) 

where K(t) is the solution of the Riccati equation: 

k(f) = - K ( f ) A ( f )  - A  '(f)K(f) + K(t)B(t)R - ' ( f ) B  T(t)K(r) - Q(f )  
( 1) K(9)  = 0 

The term g(t) is the solution of equation: 

~ ( r )  = - [ A T -  K(+w-'BTjg(r )  + K(tHr) , = o (12) 

The pre-disturbance state measurement vector initializes 
thefit) vector. As soon as the new state measurements are 
obtained they are used to compute and storefit). The col- 
lection of measurements and computation of fit) during a 
fault are avoided, since they are grossly in error. Imme- 
diately after the removal of a fault, as the new measurements 
arrive they are used to compute At) and the prediction algo- 
rithm is executed to reevaluate the future values ofAt) from 
their previously stored values. For this purpose a moving 
average predictor with a window of four samples is used. 
Then the vector differential equation (12) is solved for g(t) 
with the new estimate offit), thus forming an adaptive opti- 
mal control law. It is important to notice that according to 
the presented control algorithm, the solution of the Riccati 
equation is independent of the residualflt). Since the system 
A and B matrices remain unchanged, the time variable K(t) 
matrix remains unchanged. Therefore, the Riccati equation 
is solved off-line and its solution is stored. 
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Real-Time Measurement Technique 

Many measurement techniques are found in the litera- 
ture which measure the magnitude and angle of complex 
voltages of one phase. These measurement techniques are 
susceptible to errors resulting from unbalanced conditions 
and harmonic components of the waveform. Hence, these 
methods produce inaccurate values of the measured param- 
eters. The technique described in [SI measures digitally fil- 
tered positive sequence voltage and current phasors, which 
reduces the inaccuracies to a minimal value, in an appropri- 
ate time frame for real-time monitoring and control applica- 
tions. 

This technique was developed as a result of the intro- 
duction of microprocessors into substations for power system 
protection. These devices-better known as computer relays- 
measure the positive sequence voltage and current phasors 
at system buses in real-time. Synchronized sampling clocks 
are required in various substations in order to have the 
measurements in a common frame of reference. For clocks 
synchronized to within about 10 microseconds, the accuracy 
of the measured phase angles are within 0.2 degrees of their 
correct value on a 60 Hz basis. 

The use of this technique for the presented control algo- 
rithm provides the generator phase voltage, line current, and 
frequency. Further, the generator q-axis complex voltage 
can be computed and the value of the angle of this voltage 
(in polar coordinates) represents the value of generator rotor 
angle. Also, the generator speed can be deduced from the 
frequency measurement. Therefore, all the necessary infor- 
mation in regard to the value of parameters for the adaptive 
optimal controller is made available. 

POWER SYSTEM MODELING 

In order to test the control strategy presented here, real- 
time measurements are necessary. An AC/DC transient 
stability program is developed to provide the values of the 
states during the transient period, and simulate the perform- 
ance of the system with or without the optimal controller. 
The effects of turbines and governors are excluded, since the 
time constant associated with the change in mechanical 
power is 4 to 5 times larger than the control interval chosen 
for this study. Therefore, it is assumed that the turbine shaft 
power P,,, will remain constant during the control interval. 

The stability program requires usual types of component 
models, and the selected models are described next. In ad- 
dition, a state variable model (different from the component 
models) is required for computation of A, B, and K(t) ma- 
trices. They are described in a later section. The component 
models are used in the transient stability program which uses 
the Newton-Raphson technique for solution of the network 
equations, and a fixed time step Runge-Kutta method for 
numerical integration of the differential equations. The se- 
quential technique of [9] was used for implementation of the 
HVDC model. The sequential technique represents the DC 
link by real and reactive loads which are updated in each it- 
eration of Newton-Raphson method as the converter AC bus 
voltages change after each iteration. 

Component Models 

The models of different components of a power system 
as selected for this study are discussed here. The selection 
of simple models for transient stability program is to reduce 
the computational complexity of the program: These com- 
ponent models are connected through a complex trans- 

' mission network. The necessary equations for modeling of 
each dynamic element of the power system as used in the 

transient stability program are described in the following. 

1. Generator Model: 

Proper generator modeling is an important factor for in- 
vestigation of power system dynamics. A number of well 
accepted synchronous machine models are available which 
use the Park frame of reference [9,10]. In addition to a 
number of differential equations required for the generator 
model, two additional differential equations represent the 
mechanical equations of motion: 

(13) 

& = m - m o  (14) 

The optimal control of the power system of interest is a 
dynamic stability consideration, and as documented in [ 1 11 
a third order generator model satisfies the requirements for 
this study. Hence, the following equation is sufficient to de- 
scribe the generator d-axis dynamics. 

(15) 

-=A + D ( 0  - 00) = P, - Pe 
0, 

I??, = -!-(Efd - E,) 
Tam 

2. Exciter Model: 

A wide variety of standard exciter models are available 
for control of the generator field voltage. The IEEE Type 1 
exciter model with an auxiliary input as shown in [12] is 
adapted for this study. The time domain differential 
equation representation of the exciter model with this auxil- 
iary input is as follows. 

cy = *E, - VY) 

+'r- Vr + ( - Vy - Vz + Vrc/ + V,)41 

Efd = q v r  - (Se 4- Ke)Efd 

(16) 

(17) 

(18) 

(19) 

This is a fourth order exciter model. Thus, a generator and 
its excitation system forms a system of order seven. The 
auxiliary voltage V, is the exciter control input. 

3. HVDC Model: 

The quasi-steady state model of the HVDC converter is 
used for representation of the DC link [13]. This model ex- 
presses the DC voltage as a function of the primary converter 
AC voltage, converter transformer tap ratio, valve ignition 
angle, transformer commutating reactance, and the DC cur- 
rent. The DC voltages at  rectifier and inverter in per unit 
are obtained from the following equations. The conventional 
base values from reference [ 141 are adapted for expression of 
the equations in per unit. 

Tr 

cz = L { % V r  - (Se + K,)E/dJ - VJ 
T/ Te 

Tb 

= a,@"cosa - tc~f: (20) 

= qEf" COS y - fX$'l$' (21) 

(2) 

The relationship between the two terminal stations is ex- 
pressed by equation (22) as an algebraic equation. Even 
though this is not an exact relationship due to the inductance 
of smoothing reactors and the DC line, the associated time 
constant is small and it can be neglected for dynamic stabil- 

VP" - RP" + VP" 
dr - d Idc dl 
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ity studies. The time constant of the control circuitry is also 
neglected for the same reason. 

The above equations are necessary to compute the real 
and reactive powers of the DC link at the converter station. 
Neglecting the converter losses, 

(23) 

where P& is the per unit DC power at rectifier. The per unit 
reactive power at  rectifier for support of the DC link is 
computed from: 

( 24) 

where cp is the power factor angle and according to reference 
191 it is computed from: 

(25) 

p:," = pPU = V P U I P U  
dr dr dc 

@: = a,.krErI$F Si cp 

cos cp = 11 cos a + cos(a + U)] 
2kr 

And, 

(26) k r =  
4( cos a - cos(a + U)]  

For an inverter a is replaced by y and the subscript r is re- 
placed by i in equations (23) through (26). Therefore, the 
DC real and reactive powers are highly dependent on the 
converter ignition and extinction angles. 

State Variable Model 

In  this section the power system state variable model and 
modification of the component equations are described. This 
model is necessary in order to calculate the matrices A, B, 
and K(t) of equations (7) and (1  1). The network is repres- 
ented by its admittance matrix. Instead of the usual load 
and HVDC terminal representation by specified real and re- 
active powers in the stability program, in this system model 
the loads and the HVDC terminals are represented by the 
base value admittances in the admittance matrix. This does 
not impose a limitation on the loads and HVDC terminals 
which in reality are not constant impedances, since the de- 
partures from constant impedances are reflected in the state 
measurements obtained from the actual system and the resi- 
dual computation. The dimension of the network admittance 
matrix is equal to the number of AC buses. To form the 
connection of the generators to the network, their q-axis 
synchronous reactances are used to form additional buses. 
Hence, the dimension of the network admittance matrix is 
increased by the number of generators in the system. The 
network reduction technique reduces the size of the 
admittance matrix, by preserving the identity of the genera- 
tor q-axis buses in addition to the reference bus and elimi- 
nating all the other system buses. Therefore, the partitioned 
admittance matrix is: 

[ c o s  2a - cos 2(a + U)]' + 12u + sin 2a - sin 2(a + U)]' 

where I, is the vector of current injections at non-generating 
buses, I, is the vector of current injections at generating 
buses, El is the vector of voltages at non-generating buses, 
E2 is the vector of the q-axis voltages at generating buses. 
The Kron formula is used to obtain the reduced order 
admittance matrix, or 

(28) 

This equivalent admittance matrix represents the reduced 
order static model of the network. 

Next the generator dynamic equations are modified in 
order to include interaction of the generators through the 
network, and to create the desirable state variable form of 
the equations. The complex power of generator i is: 

Yeq = Y4 - Y,Y,-'Yz 

Si = , i = 1, . . . j  (29) 

where j is the number of generators in the system, E, is the 
fictitious bus voltage behind the q-axis synchronous 
reactance, and I,, is the generator i terminal current. Then, 
the complex power in terms of the admittances of the 
admittance matrix of equation (28) is: 

j+ 1 

Si=$i I&:, Y & J *  , i = l d  (30) 

The generator i real and reactive powers are: 
Pi = Re[&] , i = 1, ...j (31) 

(32) Qi = Im[Si] , i = 1, ...j 

Substitution of the Pi relation of equation (31) into the 
equation (13) for each generator forms the primitive state 
variable form of the swing equation which will be modified 
later. Equation (14) remains unchanged, and the third dy- 
namic equation for a cylindrical rotor generator is: 

(33) 

As shown in [I51 the differential equation dependency on 
E', is eliminated and a new differential equation in terms E, 
replaces equation (33). It is also shown that the magnitude 
of the generator d-axis current is: 

which is used to express the generator terminal voltage (not 
a state variable) in terms of the q-axis voltages and the rotor 
angles (state variables) for connection of the generator and 
exciter equations. 

It is important to notice that the network model com- 
pletely ignores the effect of the DC power change. To in- 
clude this factor, the network sensitivity technique is used to 
modify the swing equation (13). This method shows the ap- 
proximate change in the output power of each generator as 
a result of a change in DC power [16]. The rectifier and 
inverter powers are related by the following equation [15]. 

(35) 

Thus, equation (35) shows the relationship between the 
rectifier and inverter powers as a function of inverter DC 
voltage and DC line resistance. Now the rate of change of 
the DC power at rectifier in terms of the change in inverter 
power is: 

From the network sensitivity method (generation shift factor) 
a change in rectifier power causes a change in the generator 
i power by the following expression: 

(37) 

Also, a change in the inverter power causes a change in gen- 
erator i power by: 

The inverter power is a positive generation while the rectifier 
power is a negative generation. I n  order to maintain con- 
sistency, the sign of the generation shift factor corresponding 



to the change in rectifier power is reversed and the rectifier 
power increment is assumed to be a positive quantity. Since 
the network sensitivity technique uses the linearized 
equations of the system, the superposition theorem applies 
and the total change in the generator i power as a result of 
a change in DC link power transfer is: 

(39) 

where AP& and APm are both positive quantities in the above 
equation. Now substitution of equation (36) into equation 
(39) results in: 

APi = - Gi,APdr + GijAPd 

APi = - GiJl + *P:]APd + Gi,APdl (4) 

or the total change in generator i power due to a change in 
HVDC link power is: 

APi Q A P d  (41) 

where, 

v:, 

0, = - GiAl + * P i ]  + Gi, (42) 

Finally the swing equation of (13) is put in the proper state 
variable form as follows: 

(43) 

vi 

=& + D ( o  - coo) = P,,, - R d q  - QAP, 
0, 

which includes the effect of DC power modulation. 

The state variable model of the large scale system re- 
quires modification of the generator equations for represen- 
tation of the overall power system. The reason for the 
modifications is to formulate the proper state variable form 
of the equations which expresses the dynamics of an inter- 
connected system. The state and input vectors of the non- 
linear state equation (1) are defined as follows: 

x(t) = IXG, XG2 xG3 ... XGjIT (4) 

U(?) = [ [ I E t  ... UEj U&]T (45) 

X,, through X,, are the state vectors for generators 1 through 
j. U,, through UE, are the input vectors for excitation systems 
1 through j, and U,, is the input for the HVDC link. The 
definition of each component of the state vector is: 

(46) 

where V,,., V,, and V, are the exciter internal voltages. And 
the definition of each component of the input vector is: 

X G  = [o 6 Eq vy v, v, EfdIT 

UE = IVr@+ 51 (47) 

, udc = [Apdil I (48) 

CONTROLLER IMPLEMENTATION 

The schematic representation of the optimal controller is 
shown in Figure 1. The synchronized real-time measure- 
ments are processed to compute and dispatch the optimal 
inputs to the system exciters and rectifiers. This optimal 
controller is formulated in the transient stability program for 
computation of the optimal inputs. For a selected control 
interval of 5 seconds, the adaptive optimal controller block 
executes the following steps in every 5 cycles of the simu- 
lation time. First, it collects and stores the measurements in 
an array. Second, it computesflt). Third, it estimates the 
future values of residual from the previous values, using a 
moving average predictor with a window of 4 samples. 
Fourth, it computes the new value of g(t) from the new 
knowledge offlt), and also computes Z(f). Fifth, if necessary 
it reads the new value of K(t) from off-line computations, 
and computes the optimal inputs. Sixth, it maintains the 
computed value of the optimal inputs for the next 5 cycles 
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and dispatchs them to the control locations. 

m m e a s u r e m e n t  Looation@conrrox Looation 

Real -T ime R e O t + F + e r .  
C o m p u t a t i o n  o i  

I 1 

optimal controller 
1 

I 

I 
4 

I 

Figure 1. Representation of the optimal controller 

SIMULATION RESULTS 

The one line diagram of the nine-bus system is shown in 
Figure 2. The system has two generators, three transformers 
with two of them having the capability of off-nominal turns 
ratio, a two terminal HVDC link, a load bus, and an infinite 
bus. The disturbance simulated is a three phase fault on one 
of the parallel AC lines between buses 2 and 3, and the fault 
location is close to bus 3. The three phase fault is modeled 
as a low impedance connection between bus 3 and ground. 
The duration of the fault simulated is three cycles. Finally, 
one of the AC lines is removed to clear the fault. 

- 1:1.03 @* 
820 M W  

Figure 2. Integrated AC/DC system 
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The simulation results of this system are illustrated and 
discussed in the following. The rotor angles of generator 1 
and 2 (DELTA) are plotted in degrees. Also, the exciter op- 
timal inputs (VS) and the DC current are plotted in per unit. 
The time axis is in seconds. The plotted parameters for the 
optimally controlled system are compared to the parameters 
of the system with classical control strategy. In this paper 
classical control strategy refers to the control strategy which 
maintains a constant DC current at the rectifier and a con- 
stant DC voltage at the inverter. It does not refer to any 
control strategy involving the modulation of AC or DC con- 
trols with the use of some feedback signals. 

Figure 3 shows the simulation results when the time 
variable solution of the Riccati equation is used. The future 
values of the vector At) are predicted by a straight line, ob- 
tained from computation of the moving average of the pre- 
vious values of At) from the state measurements. The rotor 
angle swings of generators 1 and 2 have a very small and 

The simulation results using the steady state solution of 
the Riccati equation are not shown, since their trajectories 
are almost identical to the trajectories of Figure 3. The only 
disadvantage of using the steady state solution of the Riccati 
equation instead of the time variable solution of this 
equation is the small errors in the final value of the optimal 
inputs. However, use of the steady state solution of the 
Riccati equation reduces computational burden and memory 
requirements significantly. 

In obtaining the value of optimal inputs from the opti- 
mal control law, the term g(t) which is the solution of 
equation (12) is needed. However, if the steady state solution 
of g(t) is used rather than the actual value of g(t) from the 
differential equation (12), the need for time consuming iter- 
ative solution of this differential equation is eliminated and 
the term g(t) is computed simply from a matrix multipli- 
cation as follows. 

g(t) = [ A T -  KER-lET]-lKf (49) 
negligible final value error. The error in the final value of the 
optimal inputs are however zero. 

The steady state solution of the Riccati equation must be 
used for this approximation. The use of the steady state 
solution of g(t) and also the steady state solution of the 
Riccati equation result in an approximate optimal control 

x CLQSSltQL law. Figure 4 shows the simulation results for the approxi- 
mate optimal control law. The rotor angle swings of genera- 
tors 1 and 2 as shown in the figure illustrate no substantial 
difference between the exact and approximate approaches. 
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As shown in Figures 3 and 4, the optimal controller per- 
forms very well and improves the power system performance 
significantly. The rotor angle swings of generator 1 are 
damped out very rapidly, but in case of generator 2 it takes 
a longer time. This is due to the fact that controllability is 
governed by the system structure. Even though the control 
objective for this study was damping the generator rotor an- 
gle swings, a performance criterion can be formulated to 
minimize the voltage excursions at  critical load buses with or 
without consideration for damping the system 
electromechanical oscillations. 

CONCLUSIONS 

Simulation results illustrated the excellent performance 
of the optimal controller in damping the electromechanical 



solution of the Riccati equation is used. Comparison of the 
rotor angle swings of generators 1 and 2, when the exact and 
approximate optimal control law is used shows that there are 
no significant differences in the two trajectories. Therefore, 
the approximate control law can be implemented rather than 
the exact optimal control law for the adaptive optimal con- 
trol of the system. The approximate optimal control law is 
computationally much faster than the exact optimal control 
law. This is due to the fact that the numerical integration for 
solution of the differential equation involving the term g(t) 
as required by the exact optimal control law is replaced by a 
simple matrix multiplication for the approximate optimal 
control law. Also, the need for storage of the time variable 
solution of the Riccati equation is eliminated. Consequently, 
implementation of the approximate control law removes the 
computational time limitations which can be a serious prob- 
lem for implementation of the exact optimal control law as 
an on-line optimal controller. 

ACKNOWLEDGEMENT 

This work was sponsored by the ASEA Power Systems Cen- 
ter - Wisconsin contract number 808649-1. 

NOMENCLATURE 

X(t) : 
X k t )  : 
U(t) : 
U&) : 

wg : 
6 :  
H :  
D :  
P, : 
P, : 
E, : 
E :  
E’, : 
EI : 

I, : 
Id : 
T& : 
v, : 
v, : 
v, : 
Vref : v, : 
v* : 
Vd : 

E, : 
Ei : 
a, : 
a , :  
x, : 
x, : 
% :  
a :  
Y :  
P, : 
Pa, : 
Pd : 
Gi,r : 

a :  

: 

Idc : 

U :  

Gi,i : 
X ’  : I.iilti, K.,ti : corresponding components ofreactance matrix 

state vector 
desired value of the state vector 
input vector 
desired value of the input vector 
generator speed 
generator reference speed 
generator rotor angle 
inertia constant 
damping coefficient 
generator mechanical power 
generator electrical power 
terminal voltage 
voltage behind q-axis synchronous reactance 
voltage proportional to field flux linkages 
voltage proportional to field current 
field voltage acting along the q-axis 
terminal current 
d-axis component of the terminal current 
d-axis open circuit time constant 
output voltage of the filter block 
output voltage of the feedback block 
output voltage of the regulator block 
exciter reference voltage 
auxiliary input for control purposes 
rectifier DC voltage 
inverter DC voltage 
DC current 
primary AC voltage at  rectifier 
primary AC voltage at inverter 
transformer tap ratio at  rectifier 
transformer tap ratio at  inverter 
transformer short circuit reactance at  rectifier 
transformer short circuit reactance at  inverter 
DC line resistance 
rectifier ignition angle 
inverter extinction angle 
overlap angle 
electrical power of generator i 
rectifier DC power 
inverter DC power 
generator i shift factor for a change in rectifier power 
generator i shift factor for a change in inverter power 
a-axis synchronous reactance of generator i 

- 

1. 

-2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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