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Variational hybrid quantum-classical al-
gorithms (VHQCAs) have the potential to
be useful in the era of near-term quan-
tum computing. However, recently there
has been concern regarding the number of
measurements needed for convergence of
VHQCAs. Here, we address this concern
by investigating the classical optimizer in
VHQCAs. We introduce a novel opti-
mizer called individual Coupled Adaptive
Number of Shots (iCANS). This adaptive
optimizer frugally selects the number of
measurements (i.e., number of shots) both
for a given iteration and for a given par-
tial derivative in a stochastic gradient de-
scent. We numerically simulate the perfor-
mance of iCANS for the variational quan-
tum eigensolver and for variational quan-
tum compiling, with and without noise. In
all cases, and especially in the noisy case,
iCANS tends to out-perform state-of-the-
art optimizers for VHQCAs. We therefore
believe this adaptive optimizer will be use-
ful for realistic VHQCA implementations,
where the number of measurements is lim-
ited.

1 Introduction

There are various strategies to make use of
noisy intermediate-scale quantum (NISQ) com-
puters [1]. One particularly promising strategy
is to push most of the algorithmic complexity
onto a classical computer while running only a
small portion of the computation on the NISQ
device. This is the idea behind variational hy-
brid quantum-classical algorithms (VHQCAs) [2].
VHQCAs employ a quantum computer to effi-
ciently estimate a cost function that depends on

Patrick J. Coles: pcoles@lanl.gov

the parameters of a quantum gate sequence, and
then leverage a classical optimizer to minimize
this cost. VHQCAs intend to achieve a quan-
tum advantage with NISQ computers by find-
ing short-depth quantum circuits that at least
approximately solve some problem. VHQCAs
have been proposed for many applications includ-
ing ground-state preparation, optimization, data
compression, simulation, compiling, factoring, di-
agonalization, and others [3–24].

A concern about VHQCAs is that they might
require prohibitively many quantum measure-
ments (shots) in order to achieve convergence of
the cost function [25], especially for applications
like quantum chemistry that require chemical ac-
curacy [26, 27]. In response to this concern, there
has been an recent explosion of papers looking to
improve the measurement frugality of VHQCAs
by simultaneously measuring commuting subsets
of the Pauli operators needed for the cost func-
tion [28–34].

Here, we approach the problem from a differ-
ent direction by aiming to improve the classical
optimizer. There have been several recent efforts
to improve optimizers for VHQCAs [35–39]. Our
approach is different from these works in that the
optimizer we propose is specifically constructed
to achieve measurement frugality. In particular,
we develop an adaptive optimizer that is adaptive
in two senses: it frugally adjusts the number of
shots for a given iteration and for a given partial
derivative.

Our method is inspired by the classical ma-
chine learning algorithm named Coupled Adap-
tive Batch Size (CABS) [40]. For pedagogical
reasons, we first directly adapt the CABS algo-
rithm to VHQCA applications and call the re-
sulting algorithm Coupled Adaptive Number of
Shots (CANS). In order to achieve greater mea-
surement frugality, we go beyond direct adapta-
tion and modify the optimizer to account for dif-
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ferences in the number of shots needed to esti-
mate individual components of the gradient. We
call this method individual-CANS (iCANS).

While iCANS is conceptually simple, it never-
theless performs very well. Using IBM’s simula-
tor [41], we implement iCANS and other state-of-
the-art optimizers such as Adam [42], SPSA [43],
and sequential gate optimization [37, 38] for both
the variational quantum eigensolver [3] and vari-
ational quantum compiling [14–16, 18]. We find
that iCANS on average performs the best. This
is especially true for our implementations in the
presence of noise, i.e., with IBM’s simulator of
their NISQ device. This is encouraging since
VHQCAs must be able to run in the presence
of noise to be practically useful.

Ultimately, one can take a multi-pronged ap-
proach to reducing measurements in VHQCAs,
e.g., by combining our measurement-frugal clas-
sical optimizer with the recent advances on Pauli
operator sets in Refs. [28–34]. However, one can
apply our optimizer to VHQCAs that do not
involve the measurement of Pauli operator sets
(e.g., the VHQCAs in [7–9]). In this sense, our
work is relevant to all VHQCAs.

In what follows, we first give a detailed re-
view of various optimizers used in the classical
machine learning and quantum circuit learning
literature. We remark that this lengthy review
aims to assist readers who may not have a back-
ground in classical optimization, as this article
is intended for a quantum-computing audience.
(Experienced readers can skip to Section 3.) We
then present our adaptive optimizer, followed by
the results of our numerical implementations.

2 Background

2.1 Gradient Descent

One standard approach to minimization prob-
lems is gradient descent, where the optimizer it-
eratively steps along the direction in parameter
space that is locally “downhill” (i.e., decreasing)
for some function f(θ). Mathematically, we can
phrase the step at the t-th iteration as

θ(t+1) = θ(t) − α∇f(θ(t)), (1)

where α is called the learning rate. If one takes
a large learning rate, one cannot be sure that
one will not go too far and possibly end up at a

higher point. For a small learning rate one is more
guaranteed to keep making incremental progress
(assuming the change in slope is bounded), but
it will take much longer to get to a minimum.
Knowing an upper bound on the slope is there-
fore very helpful in determining the appropriate
learning rate.

To formalize this discussion, we review the no-
tion of Lipschitz continuous gradients. The gradi-
ent of a function f is Lipschitz continuous if there
exists some L (called the Lipschitz constant) such
that

‖∇f(θ(t+1) −∇f(θ(t))‖ 6 L‖θ(t+1) − θ(t)‖,
(2)

for all θ(t+1) and θ(t). (We note that in our no-
tation the ‖ · ‖ without a subscript denotes the
ℓ2 or Euclidean norm.) When this holds, we can
see that the fractional change in the gradient over
the course of one step is bounded by αL, meaning
that for sufficiently small α we can be sure that
we are following the gradient. In fact, the con-
vergence of the basic gradient descent method is
guaranteed for deterministic gradient evaluations
so long as α < 2/L [40]. In machine learning con-
texts L is usually unknown, but for VHQCAs it
is often possible to determine a good bound. We
discuss this alongside an analytic formula for es-
timating gradients for VHQCAs in the next sub-
section.

2.2 Gradient Estimation

Working with the exact gradient is often difficult
for two reasons. First the gradient can depend
on quantities that are expensive to estimate with
high precision. Second, it might be that no ana-
lytic form for the gradient formula is accessible,
and hence the gradient must be approximated by
finite differences. In the following we discuss the
two scenarios in more detail.

2.2.1 Analytic gradients

If one has sufficient knowledge of the structure of
the optimization problem under consideration, it
might be possible to find analytic expressions for
the gradient of the function. In deep learning this
is what is provided via the backpropagation algo-
rithm, which allows one to take analytic deriva-
tives with respect to all parameters [44]. However
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these formulas are usually expressed as an aver-
age over the full sample one has available in a
learning task. To decrease the cost of evaluating
the gradient often only a subset of the full sample,
a so-called mini-batch, is used to get an unbiased
estimate of the gradient [44]. This introduces a
trade-off between the cost of the gradient estima-
tion and its achieved precision.

In VHQCAs there exist similar scenarios where
it is possible to analytically compute the gra-
dients [45–47]. For example if the parameters
describe rotation angles of single-qubit rotations
and the cost function is the expectation value of
some operator A, f = 〈A〉, partial derivatives
can be computed as

∂θi
f(θ) =

f(θ + π
2 êi)− f(θ − π

2 êi)

2
, (3)

i.e., the partial derivative is determined by the
value of the cost function if one changes the i-
th component by ±π/2. However, the value of
the cost function can only be estimated from a
finite number of measurements, and this number
of measurements as well as the noise level of the
computation itself determine the precision of the
gradient estimates. Therefore it is important to
understand how to choose the number of shots,
and keep in mind that for VHQCAs the gradi-
ent estimate is always noisy to some extent, even
though it is referred to as analytical.

An immediate extension of this is that (3) can
be used recursively to define higher derivatives.
This result then allows one to determine a use-
fully small upper bound on L in (2). In partic-
ular, we note for operators with bounded eigen-
spectra, the largest magnitude of a derivative of
any order we can find with (3) is precisely half
the difference between the largest and smallest
eigenvalues λmax and λmin, respectively. Thus,

L 6
λmax − λmin

2
. (4)

For the common case where the eigenspectrum
is unknown but we know how to decompose A

into a weighted sum over tensor products of Pauli
matrices, A =

∑

i aiσi, we can bound the high-
est and lowest eigenvalues in turn by

∑

i |ai| and
−∑i |ai|, respectively, which gives

L 6
∑

i

|ai|. (5)

By setting equality in (5) (or (4) when we have
more information), we therefore find a useful Lip-
schitz constant.

2.2.2 Finite Differencing

If one does not have access to analytical gradi-
ents, one way to approximate the partial deriva-
tives is by taking a finite δ step in parameter
space

∂θi
f(θ) ≈ f(θ + δêi)− f(θ − δêi)

2δ
. (6)

Again, as in the analytical case, the function val-
ues need to be estimated by a finite number of
shots introducing statistical noise. However, as
opposed to the analytic case, the estimate (6) is
systematically wrong, with an error that scales
with δ2. Therefore, one might want to decrease
the parameter δ during an optimization proce-
dure using such a gradient estimate. Intuitively
this makes the optimization harder, and was re-
cently discussed in the context of VHQCAs [48].

2.3 Noisy Gradient Descent

For the case where one has noise in one’s measure-
ment of the gradient, the analysis of a gradient
descent procedure becomes more complicated as
the best one can achieve are statements about the
behavior that can be expected on average. How-
ever, so long as one’s estimates are unbiased (i.e.,
repeated estimates average to the true gradient)
one should still end up near a minimum. This
idea is at the heart of all stochastic gradient de-
scent methods which we discuss now.

2.3.1 Stochastic/Mini-Batch Gradient Descent

In cases such as VHQCAs (as well as some ma-
chine learning applications), we cannot access the
gradients directly and therefore need to estimate
the the gradients by sampling from some distri-
bution. A standard approach to this case is to
choose some number of samples that are needed
to achieve a desired precision. This method is
known as either stochastic or mini-batch gradient
descent. (A mini-batch here refers to a collection
of samples, usually much smaller than the total
population.)

The number of samples as well as the learn-
ing rate are usually set heuristically, in order to
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balance competing interests of efficiency and pre-
cision. First, when collecting samples is compu-
tationally expensive, it can sometimes be more ef-
ficient to take less accurate gradient estimates in
order to converge faster, though doing so can be
detrimental if it means that one ends up needing
to perform an inordinate number iterations [49].
Second, it does not make sense to attempt to
achieve a precision greater than intrinsic accu-
racy of the distribution from which one samples.
If there is some error expected in the represen-
tation of the distribution one samples the gradi-
ents from, there is therefore an upper bound on
the number of samples that it is sensible to take
based on that accuracy [49]. For the case of VHQ-
CAs, this often means that the upper limit on the
number of samples, smax depends on the (usually
unknown) bias bnoise introduced to the gradient
measurements by the noise of the physical quan-
tum device:

smax ≃
Var(f(θ))

b2
noise

(θ))
. (7)

Since for VHQCAs this bias is a function of the
unknown, time varying device noise for the spe-
cific gate sequence, often the best one can do is
to make a rough estimate about its order of mag-
nitude and use that in the denominator.

Typically, the number of samples as well as
the learning rate are heuristically adjusted based
on the structure of the cost landscape as well
as the error level. When little information is
known about the optimization problem, the min-
imization process is optimized either by manual
trial and error until an acceptable choice is found
or using a hyper-parameter optimization strat-
egy [50].

For a stochastic gradient approach to converge
quickly, it is often helpful to decrease the error in
the optimization steps during the run of the opti-
mization. This can be done by either decreasing
the learning rate α, or minimizing the noise in
the gradient estimates. The following two subsec-
tions introduce two methods from machine learn-
ing that respectively take these two strategies.

2.3.2 Adam

Adam is a variant of stochastic gradient in which
the step that is taken along each search direction
is adapted based on the first and second moment
of the gradient [42]. To do this, one takes an

exponential decaying average of the first and sec-
ond moment (mt and vt, respectively) for each
component of the gradient individually

mt = β1mt−1 + (1− β1)gt (8)

vt = β2vt−1 + (1− β2)g2
t , (9)

where the square is understood element-wise, gt is
the gradient estimate at step t, and β1, β2 are the
constants that determine how slowly the variables
are updated. The parameters are then updated
with the following rule:

θ(t+1) = θ(t) − α
m̂t√
v̂t + ǫ

, (10)

where m̂t (v̂t) is an initialization-bias-corrected
version of mt (vt), and ǫ is a small constant to
ensure stability [42]. One particular feature of
Adam is that the adaptation happens individu-
ally for each component of the gradient. We also
briefly mention that there is a recent modification
to Adam that looks promising, called Rectified
Adam (RAdam) [51]. RAdam essentially selec-
tively turns on the adaptive learning rate once
the variance in the estimated gradient becomes
small enough.

While Adam has made a large impact in deep
learning, to our knowledge it has not been widely
considered in the context of VHQCAs.

2.3.3 CABS

Balles et al. analyzed the problem of choosing
the sample size in the context of optimizing neu-
ral networks by stochastic gradient descent [40].
Their approach is to find the number of samples
s that maximizes the expected gain per sample
at each iteration.

In the following we denote the i-th component
of the estimated gradient by gi, the empirical
variance of the estimate gi by Si, the actual gra-
dient by ∇f , and the actual covariance matrix
(in the limit of infinite samples or shots) of the
gradient estimation by Σ. Balles et al. introduce
a lower bound G on the gain (improvement in the
cost function) per iteration. Accounting for the
finite sampling error, they find that the average
value of G is [40]

E [G] =

(

α− Lα2

2

)

‖∇f‖2 − Lα2

2s
Tr(Σ). (11)
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As an immediate consequence, they then find that
the expected gain at any step has a positive lower
bound if

α 6
2‖∇f‖2

L (‖∇f‖2 + Tr(Σ)/s)
. (12)

By taking a small but fixed α, Balles et al. then
maximize the lower bound on the expected gain
per sample by taking

s =
2Lα

2− Lα

Tr(Σ)

‖∇f‖2 (13)

samples [40]. Unfortunately, this formula de-
pends on quantities Σ and ∇f that are not acces-
sible. Therefore in CABS, Σ is replaced by an es-
timator Σ̂ and, specializing to the case where the
minimum value of f is known to be zero, ‖∇f‖2
is replaced by f/α as the gradient estimator is
biased. Since the Lipschitz constant is also of-
ten unknown in the machine learning problems
they were considering, they also drop the factor
of 2Lα/(2 − Lα) [40]. CABS then proceeds as a
stochastic gradient descent with a fixed learning
rate and a number of samples that is selected at
each iteration based on (13) with the quantities
measured at the previous point, making the as-
sumption that the new point will be similar to
the old point.

As discussed in the next section, our adaptive
optimizer for VHQCAs is built upon the ideas
behind CABS (particularly (13)), although our
approach differs somewhat.

2.4 SPSA

The simultaneous perturbation stochastic ap-
proximation (SPSA) algorithm [43] is explicitly
designed for a setting with only noisy evaluation
of the cost function, where no analytic formulas
for the gradients are available. It is also a de-
scent method, however, instead of estimating the
full gradient, a random direction is picked and the
slope in this direction is estimated. Based on this
estimate a downhill step in the sampled direction
is taken:

θ(t+1) = θ(t) − αtg(θ(t)). (14)

Here g(θ(t)) is the estimated slope in the random
direction and estimated as [52]:

g(θ(t)) =
f(θ(t) + ct∆t)− f(θ(t) − ct∆t)

2ct
∆

−1
t ,

(15)

where ∆t is the random direction sampled for the
t-th step and ∆

−1
t simply denotes the vector with

its element-wise inverses. In order to ensure con-
vergence the finite difference parameter ct as well
as the learning rate αt have to be decreased over
the optimization run. This is commonly done by
using a prefixed schedule [52]. In this approach,
we have

αt =
α0

(1 + k)β
and ct =

c0

(1 + k)γ
. (16)

In the original formulation, the idea is usually
to estimate the cost function in (15) by a single
measurement. However, in a quantum setting it
seems intuitive to take a larger number of mea-
surements for the estimation, as was done in [53].

2.5 Sequential Subspace Search

Another approach to optimizing a multivariate
cost function is to break the problem into sub-
parts which are independently easier to handle.
The generic idea is to define a sequence of sub-
spaces of parameter space to consider indepen-
dently. These methods then approach a local
minimum by iteratively optimizing the cost func-
tion on each subspace in the sequence. Now we
discuss two instances of this approach: the fa-
mous Powell method [54] as well as a recently pro-
posed method specialized to VHCQAs [37, 38].

2.5.1 Powell Algorithm

The Powell algorithm [54] is a very useful
gradient-free optimizer that specializes the sub-
space search to the case of sequential line
searches. Specifically, starting with some input
set of search vectors V = {vi} (often the co-
ordinate basis vectors of the parameter space)
this method sequentially finds the set of displace-
ments {ai} along each search vector that mini-
mizes the cost function. Next, the method finds
the vj associated with the greatest displacement,
aj = max(ai). This vj is then replaced with
the total displacement vector for this iteration,
namely:

vj →
∑

i

aivi, (17)

and then the next iteration begins with this up-
dated set of search vectors. This replacement
scheme accelerates the convergence and prevents
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the optimizer from being trapped in a cyclic pat-
tern. In practice, the displacements ai are typ-
ically found using Brent’s method [55], but in
principle any gradient-free scalar optimizer could
work. (Gradient-based scalar optimizers would
make Powell’s method no longer “gradient-free.”)

2.5.2 Sequential Optimization by Function Fitting

In the special case of VHQCAs where the cost
function is expressed as an expectation value of
some Hermitian operator and the quantum cir-
cuit is expressed as fixed two-qubit gates and
variable single-qubit rotations, it is possible to
determine the functional form of the cost func-
tion along a coordinate axis [37]. After fitting a
few parameters, it becomes possible to compute
where the analytic minimum should be in order
to find the optimal displacement along any given
search direction. This can be scaled up to find-
ing the analytic minimum (exact up to distortions
from noise) on some subspace that is the Carte-
sian product of coordinate axes, though this is
hampered by the fact that the number of param-
eters that must be fit scales exponentially with
the dimension of the subspace [37]. We will refer
to this algorithm as the Sequential Optimization
by Function Fitting (SOFF) algorithm. We note
that a very similar method was published shortly
after SOFF [38]. The primary difference was the
incorporation of the Anderson and Pulay conver-
gence acceleration procedures used in computa-
tional chemistry [56, 57].

We note that, though SOFF and Powell are
closely related, due to the limitation to only
searching along coordinate axes, it is not possible
to take arbitrary search directions, thus SOFF is
not quite a special case of Powell’s method. For
VHQCA problems where it is applicable, SOFF
has been demonstrated to be highly competitive
with or better than other standard optimization
schemes like Powell’s method [37, 38].

3 Adaptive Shot Noise optimizer

As mentioned above, the basic idea behind our
approach is similar to that of CABS [40], but we
implement those ideas in a different way. Specifi-
cally, by implementing different estimates for the
inaccessible quantities in (13) that are suitable
to the number of shots in a VHQCA (rather than

the batch size in a machine learning method), we
arrive at a variant of CABS we name Coupled
Adaptive Number of Shots (CANS). Recognizing
that a different number of shots might be optimal
for estimating each component of the gradient in
VHQCAs, we further develop this variation into
individual-CANS (iCANS), which is our main re-
sult. For pedagogical purposes, we first introduce
CANS and then present iCANS.

3.1 CANS

We now discuss our adaptation of CABS to the
setting of VHQCAs. In order to use the number
of shots recommended by the CABS method, we
need to rewrite (13) using only quantities that
are accessible. Making use of the parameter shift
rule (3), we have access to the Lipschitz con-
stant L given by (5). An unbiased estimate of
Tr(Σ) is given by

∑d
i=1 Si = ‖S‖1, i.e., by the

empirical variances of the gradient components.
(Here and below d is the number of parameters
being optimized.) The naive estimate of ‖∇f‖2 is
‖g‖2, with g := (g1, ..., gl)

T the estimated gradi-
ent. This estimator is biased (see Equation (17)
of [40]), however using a bias-corrected version
is numerically unstable. With these choices, we
then define CANS as the CABS algorithm with
(13) replaced by

s =
2Lα

2− Lα

‖S‖1
‖g‖2 . (18)

We note that the learning rate α must be less than
2/L with this formalism. The CANS algorithm is
included in Appendix B for completeness. For the
remainder of the paper we will focus on iCANS,
which we introduce next.

3.2 iCANS

The CANS algorithm is inspired by CABS [40],
which was designed for applications in deep learn-
ing. Therein for each data point the full gradi-
ent is evaluated, and noise arises by considering
only a minibatch of the full sample. In VHCQAs,
however, each individual partial derivative is esti-
mated independently. This gives us the freedom
to distribute measurements over the estimation
of the partial derivatives more effectively. This is
the idea behind iCANS, which is shown in Algo-
rithm 1 and described below.
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Algorithm 1 Stochastic gradient de-
scent with iCANS1/2. The function
iEvaluate(θ, s) evaluates the gradient at θ

using si shots for the i-th derivative via
the parameter shift rule (3). This function
returns the estimated gradient vector g as
well as the vector S whose components are
the variances of the estimates of the partial
derivatives.

Input: Learning rate α, starting point θ0,
min number of shots per estimation smin,
number of shots that can be used in total N ,
Lipschitz constant L, running average con-
stant µ, bias for gradient norm b

1: initialize: θ ← θ0, stot ← 0, s ←
(smin, ..., smin)T , χ′ ← (0, ..., 0)T , ξ′ ←
(0, ..., 0)T , k ← 0

2: while stot < N do
3: g, S ← iEvaluate(θ, s)
4: stot ← stot + 2

∑

i si

5: ξ′
ℓ ← µξ′

ℓ + (1− µ)Sℓ

6: χ′
ℓ ← µχ′

ℓ + (1− µ)gℓ

7: ξℓ ← ξ′
ℓ/(1− µk+1)

8: χℓ ← χ′
ℓ/(1− µk+1)

9: for i ∈ [1, ..., d] do
10: if iCANS1 then
11: θi ← θi − αgi

12: else if iCANS2 then
13: if α 6

g2

i

L(g2

i
+Si/si+bµk)

then

14: θi ← θi − αgi

15: else
16: α′ ← g2

i

L(g2

i
+Si/si+bµk)

17: θi ← θi − α′gi

18: end if
19: end if

20: si ←
⌈

2Lα
2−Lα

ξi

χ2

i
+bµk

⌉

21: γi ← 1
si

[(

α− Lα2

2

)

χ2
i − Lα2

2si
ξi

]

22: end for
23: smax ← sarg maxi γi

24: s← clip(s, smin, smax)
25: k ← k + 1
26: end while

iCANS prioritizes the individual partial deriva-
tives rather than the gradient magnitude as in
(11). For this purpose, we define Gi as our lower
bound on the gain (i.e., the improvement in the
cost function) associated with the change in pa-
rameter θi for a given optimization step. Further-
more, we define γi as the expected gain per shot
(i.e., the expectation value of Gi divided by the
number of shots) as follows:

γi :=
E [Gi]

si
=

1

si

[(

α− Lα2

2

)

g2
i −

Lα2

2si
Si

]

,

(19)

where si is the suggested number of shots for the
estimation of the i-th partial derivative. Note
that (19) is an adaptation of (11) to our setting.

In analogy with the CANS approach (see (18)),
we estimate the number of shots that maximizes
(19) with

si =
2Lα

2− Lα

Si

g2
i

. (20)

As with CANS, we again note that this formalism
is only valid if α < 2/L. The idea now is to up-
date each parameter with a gradient-descent step,
where each partial derivative is estimated with
its individual optimal number of shots. How-
ever, empirically those parameters that are close
to a local optimal value (hence have a small ex-
pected gain) require a large number of shots,
while parameters that are far from convergence
(and hence usually have a large expected gain)
require a small number of shots. We therefore
restrict our algorithm to not take more shots for
any partial derivative than a cap we will call smax.
We take smax to be the number of shots needed in
order to estimate the partial derivative for the pa-
rameter θimax

, where imax is the index associated
with highest expected gain per shot. In other
words:

imax = arg max
i

(γi) , (21)

smax = simax
, (22)

and we impose si 6 smax for all partial deriva-
tives.

We note that the introduction of this cap on
the number of shots is a heuristic choice which we
find to often be beneficial to shot frugality, but
which removes the guarantee that γi will be max-
imized or even positive. In order to preserve this
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frugality while retaining the guarantee of positive
expected gains, one can also introduce a step that
verifies that the learning rate to be used is ap-
propriate after the measurements are taken and
adapts it if it is not. Motivated by (12), we check
the following condition for each component of the
gradient:

α 6
g2

i

L
(

g2
i + Si/si

) . (23)

When this condition fails to hold for the i-th par-
tial derivative, we temporarily replace α with the
right hand side of (23) for the update along that
direction. Adding in this check results in a more
conservative procedure as it takes smaller steps
when needed in order to enforce that γi > 0, and
thus restores the guarantee that E [G] > 0. Be-
low, we will refer to iCANS without this learning
rate check as iCANS1 and with it as iCANS2.
The distinction between iCANS1 and iCANS2 is
made in Algorithm 1 with the conditional state-
ments on lines 10 and 12.

Beyond the core components of iCANS given
above, both implementations of iCANS also take
two more hyperparameters for increased stability.
Since iCANS is intended to be deployed on highly
noisy problems, we find that it is beneficial to use
smoothed quantities for the gradient and variance
when estimating γi and si. For this reason, we
use bias-corrected exponential moving averages
χi and ξi in place of gi and Si, respectively, when
implementing equations (19) and (20). These ex-
ponential moving averages introduce a new pa-
rameter, µ, which controls the degree of smooth-
ing and is bounded between 0 and 1. Since the
update step is independent of this smoothing, we
often find it beneficial to choose µ close to 1 to
achieve a steady progression of si’s. Finally, we
also add a regularizing parameter b to the denom-
inators of lines 13, 16, and 20 of Algorthim 1 for
numerical stability. By multiplying b by µk and
choosing b to be small, the bias from this regu-
larizing parameter begins small and exponentially
decays as the algorithm progresses.

4 Implementations

In order to compare the performance of iCANS1
and iCANS2 to established methods, we con-
sider two optimization tasks: variational quan-
tum compiling with a fixed input state [14–16, 18]
and a variational quantum eigensolver (VQE) [3]

Figure 1: The quantum circuit diagram for the ansatzes
we used to construct the unitary operators U(θ) in our
implementations. The angles in each rotation gate (de-
noted as Rj , where j denotes the axis being rotated
about) are varied independently. Panel a shows the
ansatz used in the compiling and Heisenberg spin chain
VQE task, and we note that this is the same ansatz used
in Ref. [37]. Panel b shows the ansatz used when do-
ing the size scaling comparison with the Ising spin chain
VQE task.

for a Heisenberg spin chain.
For our experiments we set the iCANS hyper-

parameters as α = 0.1, µ = 0.99, and b = 10−6,
except for the case of the system size scaling com-
parison. For that case, since the Lipschitz con-
stant L grows linearly with the system size, leav-
ing α = 0.1 leads to α > 2/L for larger systems,
which is invalid for iCANS. We therefore chose
α = 1/L for the different length Ising spin chains
we consider below.

For the other algorithms we compare to, we
will denote the number of shots per operator mea-
surement as s. We will denote algorithm A with
s shots per operator measurement as A-s (e.g.,
SOFF with s = 1000 is denoted SOFF-1000).
We also note that in the figures and tables be-
low we show the analytical cost and energies that
one could achieve with the parameters that the
optimizers output, i.e., without hardware noise
or shot noise. The optimizers did have to con-
tend with finite statistics and, where indicated,
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Figure 2: Comparison of performance for the compilation task across one hundred random target states and initial
starts. As mentioned in the text, we denote algorithm A with s shots per operator measurement as A-s. Panels a

and b show the average cost value attained as a function of the total number of shots (N) expended for the noiseless
and noisy cases, respectively.

Figure 3: Comparison of performance for the Heisenberg spin chain VQE task across one hundred random starts.
Panels a and b show the average ∆E value (i.e. energy above the ground state energy) attained as a function of
the total number of shots (N) expended for the noiseless and noisy cases, respectively.

hardware noise to find those parameters.
In addition to the fixed number of shots they

use, the other algorithms we compare to also
come with other hyperparameters, which were
chosen empirically in an attempt to get the best
performance from each. For Adam we used a
learning rate of α = 0.1 along with the momen-
tum parameter values of β1 = 0.9 and β2 = 0.999.
For SPSA, we found that the default parameters
were the best among those that we tried, and
thus we set A to be a tenth of the total number
of allowed iterations, β = 0.602, and γ = 0.101.

4.1 Variational Compiling with a Fixed Input

State

For our first optimization task, we follow [37] and
consider as a benchmark the optimization of the
following cost function:

C = 1−
∣

∣

∣〈0|U(θ∗)†U(θ) |0〉
∣

∣

∣

2
(24)

where θ∗ is a vector of fixed, randomly selected
angles and θ is the vector of angles to be op-
timized over. For this problem, we construct

the parametrized unitary operator U(θ) with the
ansatz described in Fig. 1(a), setting n = 3 qubits
and D = 6. (As adding depth and thus more pa-
rameters increases the difficulty of the optimiza-
tion task and amplifies the effect of the noise
model, D = 6 was chosen to increase the diffi-
culty of the task although shorter depth ansatzes
would work here.) We then simulate the opti-
mization procedure with one hundred different
random seeds (each of which generates a unique
random θ∗ and initial point) and a collection of
different optimizers. The results for both the case
of a noiseless simulator and the case of a simula-
tor using the noise profile of IBM’s Melbourne
processor [58] are shown in Fig. 2. For the lat-
ter, we emphasize that this noise profile reflects
the properties of real, currently available quan-
tum hardware. In addition, the average costs
obtained for each optimizer are listed in Tables
1 and 2 with the best value found for each to-
tal number of shots expended N shown in bold.
Furthermore, see Appendix C for the cumulative
probability distributions over cost values, which
provide more information than the average cost
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Table 1: Noiseless Compilation Average Cost Values

# Shots (N) 103 104 105 106 107

iCANS1 0.7140 0.0410 0.0037 0.0005 0.0001

iCANS2 0.7149 0.0386 0.0074 0.0022 0.0002

SOFF-1000 X 0.6483 0.0430 0.0020 0.0021

SOFF-100 0.6761 0.0652 0.0185 0.0162 0.0164

Adam-100 0.8814 0.8807 0.8578 0.1113 0.0007

Adam-10 0.8807 0.8576 0.1108 0.0072 0.0289

SPSA-1000 X 0.8693 0.8426 0.7587 0.5009

SPSA-100 0.8719 0.8455 0.7625 0.5077 0.1428

Table 2: Noisy Compilation Average Cost Values

# Shots (N) 103 104 105 106 107

iCANS1 0.8711 0.6984 0.1498 0.0402 0.0211

iCANS2 0.8527 0.6982 0.5236 0.1926 0.0310

SOFF-1000 X 0.7302 0.1634 0.1157 0.0912

SOFF-100 0.8272 0.6109 0.5506 0.4337 0.5740

Adam-100 0.8814 0.8813 0.8791 0.7911 0.0191

Adam-10 0.8813 0.8790 0.7918 0.0556 0.2583

SPSA-1000 X 0.8775 0.8744 0.8679 0.8504

SPSA-100 0.8761 0.8732 0.8669 0.8503 0.8006

Table 3: Noiseless VQE Average ∆ Energies

# Shots (N) 103 104 105 106 107

iCANS1 1.7732 1.3746 0.2478 0.0290 0.0034

iCANS2 1.9755 1.3813 0.0831 0.0124 0.0017

SOFF-1000 X 4.0944 0.7970 0.0207 0.0213

SOFF-100 4.2024 0.9666 0.1221 0.1536 0.0993

Adam-100 5.9849 5.9849 4.8078 0.0818 0.0157

Adam-10 5.9849 4.8293 0.1431 0.1126 0.1816

SPSA-1000 X 5.1937 2.5710 0.5067 0.0426

SPSA-100 5.9849 3.2301 0.6240 0.0485 0.0052

Table 4: Noisy VQE Average ∆ Energies

# Shots (N) 103 104 105 106 107

iCANS1 4.1202 3.3035 0.8363 0.0540 0.0086

iCANS2 4.0782 3.1897 0.4918 0.0796 0.0139

SOFF-1000 X 4.3083 1.1973 0.1137 0.0531

SOFF-100 4.6518 2.1337 0.6384 0.7574 0.4090

Adam-100 5.9382 5.9382 5.5313 0.8062 0.0301

Adam-10 5.9849 5.5759 1.0113 0.2428 0.4119

SPSA-1000 X 5.6286 4.3573 2.2965 0.6206

SPSA-100 5.9849 4.7220 2.5740 0.7463 0.1674

values.

4.2 VQE

For our second optimization task, we follow [53]
in considering the Heisenberg spin chain with
wrapped boundary conditions and the Hamilto-
nian:

H = J
∑

<ij>

(XiXj + YiYj + ZiZj) + B
∑

i

Zi,

(25)
where the <> bracket denotes nearest-neighbor
pairs. For the purpose of our comparison, we
fix J = 1 and B = 3 and again consider the
ansatz described in Fig. 1(a). Running the com-
parison with n = 3 qubits in a triangle and D = 6
for the ansatz, we simulate running VQE with
one hundred different random seeds and initial
points, along with the same set of optimizers as
in the benchmark case above. As before, the re-
sults for the both a noiseless and a noisy simu-
lator (also using the IBM Melbourne processor’s
noise profile [58]) are shown in Fig. 3. Again,
the average energies obtained for each optimizer
are listed in Tables 3 and 4 with the best value
found for each total number of shots expended N
shown in bold. In addition, see Appendix C for
the cumulative probability distributions over en-
ergy values, which provide more information than
the average energy values.

4.3 Comparison of Scaling

In order to compare the performance of iCANS to
that of other optimizers when one scales up the
number of qubits, we now consider VQE applied
to Ising spin chains of differing lengths with open
boundary conditions and the Hamiltonian:

H = −
∑

<ij>

ZiZj − g
∑

i

Xi, (26)

where the <> bracket again denotes nearest-
neighbor pairs. In order to generate enough en-
tanglement in the ground state to require a mod-
est depth, we choose g = 1.5 so that we are near
but not at the critical point g = 1. For this
problem, we used the ansatz shown in Fig. 1(b)
with D = 3 (two repetitions of the block shown
in braces), as its performance for this problem
was significantly better than the simple ansatz in
Fig. 1(a).

The results for a noiseless simulator for 4, 6, 8,
10, and 12 qubit Ising spin chains are shown in
Fig. 4.

5 Discussion

Here we report on the behavior of the various
optimizers we studied. First we consider SOFF,
which is the only optimizer studied here other
than iCANS that was formulated specifically
for VHQCAs. By leveraging analytical knowl-
edge about the optimization landscape, SOFF’s
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Figure 4: Comparison of performance for the Ising VQE task with different numbers of sites (i.e., qubits) without
hardware noise. Each panel shows the average ∆E per site value attained as a function of the total number of shots
expended (N) for each number of qubits. Each curve represents the average over ten random starts.

gradient-free method of making single parameter
updates allows it to quickly train in low noise en-
vironments. However, the limit of the precision
when fitting the analytical function with a finite
number of shots means that SOFF hits a preci-
sion floor and cannot improve past that point.
Additionally, hardware noise tends to distort the
landscape in such a way that the analytical form
no longer provides as good of a fit, making SOFF
struggle more relative to the other optimizers con-
sidered. In the optimization tasks we looked at
here, we found that SOFF was often competitive
with iCANS shortly before hitting its precision
floor, with SOFF-100 sometimes doing better for
a brief interval early on. For example, SOFF-100
was the best performing optimizer for the compi-
lation task with N = 103 (noiseless and noisy)
and N = 104 (noisy only), as well as for the
Heisenberg VQE with N = 104 (noiseless and
noisy).

Adam was originally conceived in the context
of machine learning and excels at optimizing in
noisy environments. However, in our numerical
studies we found that Adam suffered from an in-
stability given the hyperparameters we chose and
the number of shots we allowed at each partial
derivative evaluation. This instability appears to
enter later in the optimization when we are work-
ing with more shots, and it can be seen in the
upturn of the curves in Figs. 2–4. For the case
of the noisy compilation task, Adam-100 looks
like it might just be reaching that instability at
the end of the allowed shot budget, and slightly
outperformed iCANS1 to be the best on aver-
age. We note that, similar to what was seen with
SOFF, Adam was usually competitive with the
iCANS methods before it reached the point where
it stopped improving.

Unlike SOFF and Adam, SPSA did not seem

to hit a point at which it stopped improving with
shot budget, for the chosen hyperparameters. We
note though that SPSA is the most sensitive to
perturbations of the hyperparameters among the
methods studied here and can become very unsta-
ble if they are incorrectly chosen. However, if one
hits upon the correct hyperparameters, SPSA can
be very effective. While for our cases we did not
find SPSA outperforming iCANS, we note that
for the noiseless Heisenberg VQE task, SPSA-100
was the most competitive with iCANS.

Overall, we find that iCANS performed well
on all optimization tasks considered, with either
iCANS1 or iCANS2 usually providing the best re-
sult for a given total shot budget N . Even when
scaling up the system size in the Ising model VQE
task (see Fig. 4), we found that iCANS continued
to outperform the other optimizers studied. We
also note that empirically iCANS1 usually out-
performed iCANS2. While iCANS2 provides a
benefit by reducing the sensitivity to the input
learning rate, so long as the learning rate is cho-
sen well we expect that iCANS1 may tend to per-
form better.

We remark that while we do not report full
results for RAdam [51], we found with prelim-
inary results that it did not seem to provide a
substantial improvement over the simpler Adam
algorithm for our use cases. Similarly, we found
that SOFF with the Anderson acceleration step
proposed in [38] did not noticeably improve upon
the performance of basic SOFF, and therefore the
curves for this method are not shown.

We finally remark about the different perfor-
mance for the various fixed-shot optimizers with
different numbers of shots (e.g., Adam-10 versus
Adam-100). This performance difference can be
understood as a trade-off between reducing the
statistical uncertainty and achieving more itera-
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tions before hitting the limit on the total number
of shots. When few shots are used, many more
iterations might be allowed but the update steps
are much noisier, usually meaning that the opti-
mizer can perform more quickly early on but then
potentially hits an effective floor due to the pre-
cision. Increasing the number of shots will allow
more precise updates and thus lowers the preci-
sion floor (if present) but means that far fewer
iterations can be performed. This is the idea at
the heart of iCANS. iCANS uses few shots early
on and so achieves a period of noisy but fast de-
scent, but then slows down and computes with
greater and greater precision to continue making
progress. This strategy allows for shot frugality
as well as in principle removing such a precision
floor for iCANS.

6 Conclusions

In order to bring about the promise of VHQCAs
solving usefully large and complex problems on
NISQ devices, one needs a way to perform the
requisite optimizations efficiently. As the rate-
limiting step of these optimizations will likely be
the number of times one must prepare and mea-
sure quantum states, it will be important to have
optimizers that are frugal in the number of times
physical measurements must be performed on a
quantum computer.

In this work we introduced two versions of a
measurement-frugal, noise-resilient optimizer tai-
lored for VHQCAs. Both of the strategies we
propose, iCANS1 and iCANS2, address measure-
ment frugality by dynamically determining the
number of measurements needed for each par-
tial derivative of each step in a gradient descent.
iCANS1 is the more aggressive version, always
taking the same learning rate, while iCANS2 is
more cautious and limits the learning rate for
steps so that the expected gain is always guar-
anteed to be positive. Our numerical results in-
dicate that these optimizers may perform com-
parably or better than other state-of-the-art op-
timizers. The performance compares especially
well in the presence of realistic hardware noise.

iCANS has already found use in the very re-
cent VHQCA literature [18]. Furthermore, after
our article was originally posted, a related study
of stochastic gradient descent for VHQCAs found
that small shot counts can provide rapid improve-

ment in early stages of training [59], which pro-
vides further motivation for iCANS.

One potential direction for future work is ex-
ploring the possibility of extending our frugal
adaptive approach to non-gradient methods, such
as SPSA.
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A The Expected Lower Bound on the

Gain per Shot

Here we repeat the derivation provided by [40] for
the lower bound on the expected gain per shot
(given in (11)), and extend it to our expression
lower bounding the expected gain per shot per
partial derivative (19).

Assuming that the cost function is admits a
Taylor series representation about the current
point in parameter space, to quadratic order we
have

f(θ′) = f(θ) +
d
∑

i=1

(θ′
i − θi)∂if(θ)

+
1

2

d
∑

i=1

d
∑

j=1

(θ′
i − θi)(θ

′
j − θj)∂i∂jf(θ). (27)

In this way, we approximate the gain (the change
in the cost function) we expect after the update
step, with θ′ = θ − αg:

f(θ)− f(θ′) = α
d
∑

i=1

gi∂if(θ)

− α2

2

d
∑

i=1

d
∑

j=1

gigj∂i∂jf(θ). (28)

If the gradients are Lipschitz continuous, we can
achieve a lower bound G on this quantity using
the Lipschitz constant L:

G = α∇f(θ) · g − α2L

2
‖g‖2. (29)

Next we assume that the gradient estimates g

have mean E [g] = ∇f(θ) and covariance Σ/s,
where s is the number of shots used in the esti-
mate. We then have

E

[

‖g‖2
]

=
d
∑

i=1

E

[

g2
i

]

= ‖∇f(θ)‖2+
d
∑

i=1

Σii/s.

(30)

Plugging this back into (29) then gives us

E [G] =

(

α− Lα2

2

)

‖∇f‖2 − Lα2

2s
Tr(Σ), (31)

which is (11). Dividing both sides by s then gives
the expected lower bound on the gain per shot. In
order to arrive at (19), we rewrite this expression
as:

E [G] =
d
∑

i=1

[(

α− Lα2

2

)

(∂if)2 − Lα2

2si
Σii

]

(32)

=
d
∑

i=1

E [Gi]

Finally, defining γi = E [Gi] /si and replacing ∂if
and Σii with their estimators gi and Si, respec-
tively, gives (19).

B CANS Algorithm

For the interested reader, we present the algo-
rithm for CANS (Coupled Adaptive Number of
Shots) in Algorithm 2, which is an adaptation of
the CABS algorithm [40] to the VHQCA setting.

C Cumulative probability distributions

for 3-qubit implementations

Here we show the cumulative distribution plots
of the cost values or energies achieved by the
optimizers we studied for the compilation task
(Fig. 5) and the Heisenberg spin chain VQE task
(Fig. 6) for various shot budgets.
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Algorithm 2 Stochastic gradient descent
with CANS. The function Evaluate(θ, s)
evaluates the gradient at θ using s measure-
ments for each component of the derivative
using the parameter shift rule (3) and returns
the estimated gradient vector g as well as the
vector S with the variances of the individual
estimates of the partial derivatives.

Input: Learning rate α, starting point θ0,
min number of shots per estimation smin,
number of shots that can be used in total N ,
Lipschitz constant L, running average con-
stant µ, bias for gradient norm b

1: initialize: θ ← θ0, stot ← 0, s ← smin, χ ←
(0, ..., 0)T , ξ ← 0, k ← 0

2: while stot < N do
3: g, S ← Evaluate(θ, s)
4: stot ← stot + 2s
5: θ ← θ − αg

6: ξ ← µξ + (1− µ)‖S‖1
7: χ← µχ + (1− µ)g

8: s←
⌈

2Lα
2−Lα

ξ
‖χ‖2+bµk

⌉

9: s← max(s, smin)
10: k ← k + 1
11: end while
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Figure 5: Comparison of performance for the varaitional compiling task across one hundred random starts. Each
panel shows the cumulative probability distribution of the cost values acheived by each optimizer for a different value
of total shots N . Note that the further to the left a curve is, the better the optimizer has minimized the cost.
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Figure 6: Comparison of performance for the Heisenberg spin chain VQE task across one hundred random starts.
Each panel shows the cumulative probability distribution of the energy difference from the ground state acheived by
each optimizer for a different value of total shots N . Note that the further to the left a curve is, the better the
optimizer has minimized the energy.
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