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Abstract: A new adaptive orthogonal search (AOS) algorithm is proposed for model subset selection 

and nonlinear system identification. Model structure detection is a key step in any system 

identification problem. This consists of selecting significant model terms from a redundant dictionary 

of candidate model terms, and determining the model complexity (model length or model size). The 

final objective is to produce a parsimonious model that can well capture the inherent dynamics of the 

underlying system. In the new AOS algorithm, a modified generalized cross-validation criterion, 

called the adjustable prediction error sum of squares (APRESS), is introduced and incorporated into a 

forward orthogonal search procedure. The main advantage of the new AOS algorithm is that the 

mechanism is simple and the implementation is direct and easy, and more importantly it can produce 

efficient model subsets for most nonlinear identification problems. 
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1.   Introduction 

A wide class of input-output nonlinear dynamical systems can be represented by the NARX 

(Nonlinear AutoRegressive with eXogenous inputs) model of the form  

  )())(,),1(),(,),1(()( tentutuntytyfty uy +−−−−= LL                                                    (1) 

where the nonlinear mapping is often unknown and needs to be identified from given observational 

data of the input and the output ; and  are the maximum input and output lags;  is 

the model prediction error, which can often be treated as an independent zero mean noise sequence 

providing that the function gives a sufficient description of the system. The nonlinear 
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mapping can be constructed using a variety of local or global basis functions including polynomials, 

kernel functions, splines, radial basis functions, neural networks and wavelets. A NARX model 

constructed using basis function expansions can be expressed using a linear-in-the-parameters form 

f
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where ))(()( tt mm ϕφφ = are model terms generated in some way from the regression vector )(tϕ  

, ,),1([ L−= ty ),( ynty − ,),1( L−tu T
untu )]( − mθ  are unknown parameters, and M  is the number 

of total potential model terms involved. One of the most popular representations is the polynomial 

model, which takes the form below 
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The degree of a multivariate polynomial is defined as the highest order among the terms, for example, 

the degree of the polynomial  is determined by the term 

 and thus 2+1+2=5. Similarly, a NARX model with a nonlinear degree lmeans that the 

order of each term in the model is not higher thanl . 

2
32

2
13322

4
11321 ),,( xxxaxxaxaxxxh ++=

2
32

2
1 xxx =l

The initial linear-in-the-parameters model (2) may involve a large number of candidate model 

terms whatever basis functions are employed to approximate the unknown nonlinear mapping , 

especially when the maximum lags and are large. Experience shows that in most cases only a 

small number of significant model terms are necessary in the final model to represent given 

observational data. Most candidate model terms are either redundant or make very little contribution 
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to the system output and can therefore be removed from the model. An efficient model structure 

determination approach has been developed based on the orthogonal forward regression (OFR) 

algorithm and the error reduction ratio (ERR) criterion (an index indicating the significance of each 

model term), which was originally introduced to determine which terms should be included in a 

model (Billings et al. 1989, Chen et al. 1989).  This approach has been extensively studied and widely 

applied in nonlinear system identification (Billings and Jones 1992, Chen et al. 1991, 2004a, 2004b, 

Zhu and Billings 1996, Hong et al. 2003, 2004, Wei et al. 2004). 

The standard OFR-ERR algorithm provides a powerful tool to effectively select significant model 

terms step by step, one at a time, by orthogonalizing the associated regressors and maximizing the 

ERR criterion, in a forward stepwise way. The standard OFR-ERR algorithm, however, does not 

provide information on how many significant model terms should be included in the final model, and 

the search procedure is often terminated when the ERR value arrives at a threshold that is heuristically 

or empirically chosen in advance. An additional separate procedure is therefore often needed to aid 

the determination of the optimal or suboptimal number of significant model terms. To ameliorate the 

effectiveness of the OFR-ERR algorithm, Hong et al. (2003) and Chen et al. (2004a, 2004b) have 

introduced a cross-validation type criterion, which was referred to as the leave-one-out (LOO) test 

score, also called the predicted residual sums of squares (PRESS), and have incorporated the criterion 

into the OFR algorithm, to facilitate the determination of the optimal number of model terms. 

Motivated by the successful applications of the OFR-ERR algorithm for model structure detection 

and inspired by the affirmative potential of cross-validation for model selection, this study aims to 

develop a new adaptive orthogonal search (AOS) scheme that can be used to select significant model 

terms, to capture the inherent dynamics of the underlying system, and to determine the optimal 

number of model terms, to arrive at a good balance for the bias-variance trade-off. In the new AOS 

algorithm, a modified LOO type cross-validation criterion, called the adjustable prediction error sum 

of squares (APRESS), is introduced and integrated into a forward orthogonal search algorithm. The 

new AOS scheme has been developed to achieve the following objectives: i) to detect significant 

model terms and put the selected terms in order of significance and contribution made to the system 
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output; ii) to determine the optimal number of model terms to arrive at a good balance between the 

bias-variance trade-off and, iii) to estimate the unknown model parameters. 

The present study has a relationship with but does not focuses on the model variable and model 

order (or lag) selection problem (Tjostheim and Auestad 1994, Vieu 1995, Tschernig and Yang 2000, 

Gonzalez-Manteiga et al. 2002, Huang and Yang 2004). On the contrary, this study treats the model 

variable and model lag selection problem as a special case. However, if the model variable and model 

lag selection problem for a given system can be efficiently solved at the first stage, the model 

structure detection problem, which is the main focus here, can then be significantly simplified. 

This paper is organized as follows. In Section 2, the basic idea of adaptive orthogonal search 

algorithm for model selection is described. In Section 3, the performance of the new AOS algorithm is 

tested by studying two illustrative examples. The work is concluded in Section 4. 

2.   The adaptive orthogonal search algorithm 

2.1  The forward orthogonal search procedure 

Consider the term selection problem for the linear-in-the-parameters model (2). 

Let be a vector of measured outputs at N time instants, and TNyy )](,),1([ L=y ,),1([ Lmm φ=φ  

 be a vector formed by the mth candidate model term, where m=1,2, …, M. Let 

 be a dictionary composed of the M candidate bases. From the viewpoint of practical 

modelling and identification, the finite dimensional set D  is often redundant. The model term 

selection problem is equivalent to finding a full dimensional subset

T
m N )](φ

},,{ 1 Mφφ L=D

},,{ 1 nn αα L=D   of 

n ( ) bases, from the libraryD , where

},,{
1 nii φφ L=

Mn ≤
kik φα = , i },,2,1{ Mk L∈  and k=1,2, …, n, so that y can 

be satisfactorily approximated using a linear combination of  as below nααα ,,, 21 L

eααy +++= nnθθ L11                                                                                                           (6) 

or in a compact matrix form  

eAθy +=                                                                                                                               (7) 
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where the matrix  is assumed to be of full column rank,  is a parameter 

vector, and  is the approximation error.  

],,[ 1 nααA L= T
n ],,[ 1 θθ L=θ

e

Following Billings et al. (1989) and Chen et al. (1989), a squared correlation coefficient will be 

used to measure the dependency between two associated random vectors. The squared correlation 

coefficient between two vectors x and y of size N is defined as 
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The model structure selection procedure starts from equation (2). Let yr =0 , and 

)},({maxarg
11 jMj

C φy
≤≤

=l                                                                                                           (9) 

where the function ),( ⋅⋅C is the correlation coefficient defined by (8). The first significant basis can 

thus be selected as , and the first associated orthogonal basis can be chosen as . The 

model residual, related to the first step search, is given as 
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In general, the mth significant model term can be chosen as follows. Assume that at the (m-1)th 

step, a subset , consisting of (m-1) significant bases, , has been determined, and 

the (m-1) selected bases have been transformed into a new group of orthogonal bases 

via some orthogonal transformation. Let  
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where , and  is the residual vector obtained in the (m-1)th step. The mth significant 

basis can then be chosen as  and the mth associated orthogonal basis can be chosen as 

. The residual vector  at the mth step is given by 

1−−∈ mj DDφ 1−mr
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Subsequent significant bases can be selected in the same way step by step. From (13), the vectors 

and  are orthogonal, thus  mr mq
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By respectively summing (13) and (14) for m from 1 to n, yields 
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The model residual  will be used to form a criterion for model selection, and the search procedure 

will be terminated when the norm satisfies some specified conditions. 

nr

2|||| nr

2.2   Parameter estimation 

It is easy to verify that the relationship between the selected original bases , and the 

associated orthogonal bases , is given by 

nααα ,,, 21 L

nqqq ,,, 21 L

nnn RQA =                                                                                                                         (17) 

where ,  is an matrix with orthogonal columns , and  is an 

unit upper triangular matrix whose entries 

],,[ 1 nn ααA L= nQ nN × nqqq ,,, 21 L nR

nn× )1( njiuij ≤≤≤  are calculated during the 

orthogonalization procedure. The unknown parameter vector, denoted by ,  for the 

model with respect to the original bases (similar to (6)), can be calculated from the triangular equation 

 with  , where  for k=1,2, …, n. 

T
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2.3  Model length determination 

The determination of model size is critical in dynamical modelling. Neither an over-fitting nor an 

under-fitting model is desirable in practical identification. In practice, however, the true model length 

is generally unknown and needs to be estimated during model identification. Model selection criteria 

are often established on the basis of estimates of prediction errors, by inspecting how the identified 
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model performs on future (never used) data sets. One general routine for model selection, which tries 

to avoid or reduce any possible bias introduced by relying on any particular test data sets, is cross 

validation (Stone 1974, Stoica et al. 1986). Cross-validation has a number of variations, two 

commonly used variants of which are the leave-one-out (LOO), also called predicted sum of squares 

(PRESS) (Allen 1974), and generalised cross-validation (GCV) (Craven and Wahba 1979, Golub et 

al. 1979). Generalised cross-validation, due to its convenience of use and effectiveness for avoiding 

overfitting, has been widely accepted. 

In this study, an adjustable prediction error sum of squares (APRESS), formed using the PRESS 

statistic, is employed to solve the model length determination problem. Consider the linear-in-the-

parameters model that is fitted using N available data point pairs and consists of n model terms given 

by (6) and (7). The PRESS statistic (Allen 1974) is defined as 
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where is the one-step-ahead prediction from a model of n model terms, fitted using a data set 

consisting of N-1 observational data point pairs, which are obtained by leaving the ith point pair out,  

 are the PRESS predicted residuals evaluated at the ith point. Let 
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residuals of a model fitted using the total N data points, it can be shown (Myers 1990) that the 

relationship between  and )()( ii
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where , and and A are defined as in (7). This shows that the PRESS statistic 

can be calculated by fitting only one model using the total N data points, but N “leave-one-out” 

matrices are still required. However, for the case , which is an often encountered scenario and 

which will be considered in the present study, the calculation work of (19) can be significantly 

reduced further (Miller 1990) 
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where , indicating the mean-squared-errors (residuals) calculated 

from the associated n-term model, is the one-step-ahead prediction sequence from the 

identified model of n model terms. Statistic (20) consists of two parts: the mean-squared-error of the 

fit to the data, and the penalty, , increasing model complexity (number of model terms). 

Clearly this is one version of commonly used generalized cross-validation. 

∑ =
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N

i
iyiyNn

1
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N
iiy 1)}(ˆ{ =

2)]/(1[ Nn−

Experience has shown that the criterion given by (20) is prone to produce an over-fitted model 

(Friedman and Silverman 1989, Barron and Xiao 1991). To avoid the tendency that the role of the 

penalty is mitigated by a large N, and thus to avoid overfitting, the present study, following Friedman 

and Silverman (1989) and Friedman (1991), suggests using an adjustable PRESS statistic (APRESS) 

defined as below 

]MSE[
/),(1
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2
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where NnnC /1),( αα −= , with 1≥α , is the complexity cost function, and 

 is the penalty function. The statistic is ready to incorporate into the 

forward orthogonal search procedure. Indeed, by using the relationship , the value 

for J[n] can easily and directly be calculated from . 

2)]/),([1/[1][ NnCnp α−=

Nn n /||||]MSE[ 2r=

2|||| nr

Notice that the PRESS statistic defined by (20) is different from that used in Hong et al. (2003) 

and Chen et al. (2004a, 2004b), where at each search step the PRESS statistic was calculated using 

the definition (19) and the orthogonal factorization property (17), and the criterion was formed in 

terms of the model residual  and the orthogonal bases  as: PRESS[n]= 

 and 

nr nqqq ,,, 21 L
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In the model selection procedure, regularised by the APRESS statistic here, any computation load on 

the vector and matrix calculations required by the original PRESS statistic (19) is avoided, and the 

time spent on the calculation of the APRESS statistic itself is negligible. 
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3.   Simulation studies 

This section investigates the efficiency and performance of the new AOS algorithm, by applying 

this algorithm to two examples. The first example is for a simulated data set, while the second 

example is for a real data set.  

Notice that in many cases the noise signal  in Eq. (1) may be a correlated or coloured noise 

sequence and this is likely to be the case for most real data sets of dynamical nonlinear systems. In 

this case the associated resulting models may fail to give a sufficient description due to the bias in the 

parameter estimates. Practical identification experience shows that the bias on the parameter estimates 

can be virtually eliminated by including the noise signals 

)(te

)(,),1( entete −− L in the model. Readers 

are referred to Billings et al. (1989), Billings and Chen (1998), and Billings and Wei (2005) for 

detailed discussions.  

In the simulation studies given below, a noise model of a linear polynomial form was used to 

reduce the bias on the initial estimated parameters, and noise terms were then omitted from the model 

when the models were used for prediction. 

3.1   A simulated data set 

Consider a nonlinear system described by the model below 

)2()1(5.0|)1(|)1()( 3 −+−+−−−= tututytuty )(tξ+                                                        (22) 

where the input u(t) was assumed to be bounded in [-1, 1], and )(tξ was a noise determined by 

)2(6.0)1(3.0)()( −+−+= twtwtwtξ                                                                                      (23) 

with  a Gaussian white noise of zero mean and a standard variation . The model was 

simulated by setting the input signal u(t) as a random sequence uniformly distributed in [-1,1] and 

1500 input-output data point were collected. The first 500 points were discarded and the remaining 

1000 data points were used for model estimation and model performance test. The 1000 data points 

were partitioned into two parts: the first 400 points were used for model estimation and the remaining 

600 points were used for model validation. 

)(tw 01.02 =wσ

 10



The regression vector (the ‘input’ vector), )(tϕ in the representation (2), was chosen to be 

Ttxtxtxtxt )](),(),(),([)( 4321=ϕ ),2(),1([ −−= tyty Ttutu )]2(),1( −− , and the initial model was chosen 

to be a polynomial form given by (3), with the nonlinear degree =l 3. The initial NARX model thus 

involves a total of 84 candidate model terms. The AOS algorithm was used to select and rank 

significant model terms. By setting the adjustable parameter α  to beα =0, 1, …, 8, the APRESS 

statistic, versus different model length, over the estimation (training) data set, were calculated and 

these are shown in Figure 1.  

The most interesting thing that can be seen in Figure 1 is that there is an apparent turning point at 

horizon 4, for different values of the adjustable parameterα . Does this distinct turning point suggest 

the right model size? To answer this question, the performance of the eight models, corresponding to 

α =1, 2, …, 8, was studied and compared further by inspecting the predicative capability of these 

models, and the associated results are shown in Table 1.  

From Table 1, the PRESS statistic (the conventional generalized cross-validation) suggests 

choosing eight model terms, while the APRESS statistic, with the adjustable parameter 5≥α , 

suggests choosing four model terms. Compared with other models, the 4-term model is a good choice, 

because this model, with a fewer number of model terms, possesses a slightly better predictive 

capability. Clearly, for the simulated data set, the APRESS statistics is superior to the conventional 

PRESS statistic. 

To show that the 4-term model is valid and sufficient to describe the original system, a model 

validity test approach, based on high order statistic analysis (Billings and Van 1986), was applied to 

the model given below 

)1(49048.0)( −−= tuty )2(0002.1 −+ tu )1()1(41405.0 2 −−− tuty )1(46134.0 3 −+ tu )(te+     (24) 

Let )(tε  be the model residual (the one-step-ahead prediction). If the model structure and parameter 

values are correct, )(tε will be unpredictable from all linear and nonlinear combinations of past inputs 

and outputs. For nonlinear SISO systems, this can be tested by computing the following correlation 

functions (Billings and Van 1986) 
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Figure 1.  The APRESS statistic versus the model size, over the training data set. The 
lines from the bottom to the top corresponding to α =0,1, …, 8. The bottom line with 
circles, corresponding toα =0, indicates the mean-squared-errors (MSE). 

 

 

 
Table 1.  A compassion of the performance of different 
models for the system described in Example 1 .   

α  Model 
size 

MSE-T MSE-V MSE-V 
(MPO)  

1 8 0.0226 0.0239 0.0254 

2 6 0.0230 0.0240 0.0251 

3 

 
5 0.0233 0.0239 0.0249 

4  5 0.0233 0.0239 0.0249 

5 4 0.0238 0.0242 0.0248 

6 
 

4 0.0238 0.0242 0.0248 

7 4 0.0238 0.0242 0.0248 

8 
 

4 0.0238 0.0242 0.0248 
α :  the adjustable parameter in the APRESS statistic;  
Model size:  suggested by APRESS; 
MSE-T: MSE for one-step-ahead predictions, over the 

training data set; 
MSE-V: MSE for one-step-ahead predictions, over the 

validation data set; 
MSE-VMPO: MSE for the model predicted outputs, 

over the validation data set; 
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where )()()( 222 tututu −= = ) . The underlying rational of the correlation tests (25) 

is that for a model to be statistically valid, there should be no predictable terms in the residuals. In 

practice, however, only a finite data length will be available. This implies that confidence bands 

should be used to reveal if the correlation between variables is significant or not. For large N (the data 

length), the 95% confidence bands are approximately 

]([E)( 22 tutu −

N/96.1± and any significant correlation will 

be indicated by one or more points of the function lying outside these bands.  

The five correlation functions were calculated using model (24), over the test data set consisting 

of N=400 data points, and the results are shown in Figure 2, where the two horizontal lines with 

amplitudes of about N/96.1± , in each graph, indicate the 95% confidence interval of the 

associated correlation function. Clearly the correlation validity tests are all satisfied for the 4-term 

model. 

 

Figure 2.  Model validity tests for the model given by (24). (a) )(kεεγ ; (b) )(kuεγ ; 
(c) )(2 ku εγ ; (d) )(22 ku εγ ; (e) )()( ku εεγ . 
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3.2   A real data set—fruit fly modelling 

This data set contains 1000 experimental data points for a wild type fly, called Drosophila. The 

system input was the response of the photoreceptors, and the output was the response of the large 

monopolar cells. The relationship between the input and the output in the fruit fly experiment is 

complex, because in addition to the response from the photoreceptors, several other factors may also 

affect the output response of the large monopolar cells. The objective here was to find a model that 

reflects, as closely as possible, the relationship between the response of the photoreceptors (the input) 

and the response of the large monopolar cells (the output), to facilitate the analysis and understanding 

of the associate behaviour of this kind of insect.  

The 1000 input-output data points, which are shown in Figure 3, were partitioned into two parts: 

the first 750 points were used for model estimation, and the remaining 250 points were used for model 

performance test.  

 

 

Figure 3.   The input and output data for the fruit fly modelling. 
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A nonlinear finite impulse response (NFIR) model was employed to describe the input-output 

relationship of the fruit fly data. NFIR is a special case of the NARX model (3), where the regression 

)(tϕ vector contains no lagged output y(t-k), with . The regression vector 1≥k )(tϕ for the fruit fly 

data was chosen to be  ,Ttxtxtxt )](,),(),([)( 1521 L=ϕ ),2(),1([ L−−= tutu Ttu )]15( − , and the 

nonlinear degree was chosen to be 2. The initial NFIR model was thus of the form =l

∑∑∑
= ==

−−+−+=
15

1

15

,

15

1
0 )()()()(

i ij
ji

i
i jtuituituty θθθ )(te+                                                      (26) 

The initial model involves a total of 136 candidate model terms. By setting the adjustable parameter 

α  to beα =0, 1.0, 1.5, 2.0, 2.5, …, 5, the APRESS statistic, versus different model length, over the 

estimation (training) data set, were calculated and these are shown in Figure 4, where it can be seen 

that there are two apparent turning points at horizon 8 and 15, for different values of the adjustable 

parameterα . The PRESS statistic suggests choosing 15 model terms, while the APRESS statistic, 

with the adjustable parameter 5.2≥α , suggests choosing eight model terms. The performance of the 

two models, consisting of 15 and 8 model terms, is shown in Table 2 and Figure 5. It is clear from 

Table 2 and Figure 5 that the performance of the two models is comparable while the model of 8 

model terms is slightly better on the validation data set. Again, for the fruit fly data, the APRESS 

statistics provides more informative information, compared with the conventional PRESS statistic, for 

model subset selection. 

4.   Conclusion 

An efficient fast adaptive orthogonal search (AOS) algorithm has been developed for subset 

selection and nonlinear system identification. In the new AOS algorithm, a new indicator, the 

adjustable prediction error sum of squares (APRESS), has been introduced. The new AOS algorithm 

was developed by incorporating the APRESS statistic into an efficient forward orthogonal search 

algorithm. The combined AOS algorithm is multifunctional and can be used for model term selection, 

model size determination, and parameter estimation. The new AOS scheme thus provides an efficient 

tool to handle a wide class of nonlinear system identification problems. 
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Figure 3.   The input and output data for the fruit fly system. 

Figure 4.  The APRESS statistic versus the model size, over the training data set, for the fruit fly 
modelling problem. The lines from the bottom to the top corresponding toα =0, 1.0, 1.5, 2.0, 2.5, 
…, 5. The bottom line with circles, corresponding toα =0, indicates the mean-squared-errors (MSE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2.  A comparison of the performance of different 
models, for the fruit fly modelling problem. 
 

α  Model size MSE-T MSE-V 

1.0 

 

 
15 11.21 7.35 

1.5 15 

 16

11.21 7.35 

2.0 15 
 

11.21 7.35 

2.5 8  11.56 7.28 

3.0 8 11.56 7.28 

3.5 8  11.56 7.28 

4.0 8 11.56 7.28 

4.5 8 
 

11.56 7.28 

5.0 8 11.56 7.28 
α :  the adjustable parameter in the APRESS 

statistic;  
Model size:  suggested by APRESS; 

 

MSE-T: MSE over the training data set; 
MSE-V: MSE over the validation data set. 
 

 

 

 

 

 



 

 

Figure 5.  Model predicted output produced from the identified models of 8 and 15 model terms, 
over the validation data set, for the fruit fly modelling problem. The dashed line indicates the 
original measurements; the thin dotted line indicates the model predicted output of the 15-term 
model; and the thick solid line indicates the model predicted output of the 8-term model. 
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