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ABSTRACT The intelligent environment monitoring network, as the foundation of ecosystem research,

has rapidly developed with the ever-growing Internet of Things (IoT). IoT-networked sensors deployed

to monitor ecosystems generate copious sensor data characterized by nonstationarity and nonlinearity

such that outlier detection remains a source of concern. Most outlier detection models involve hypothesis

tests based on setting outlier threshold values. However, signal decomposition describes stationary and

nonstationary relationships sensor data. Therefore, this paper proposes a three-level hybrid model based on

the median filter (MF), empirical mode decomposition (EMD), classification and regression tree (CART),

autoregression (AR) and exponential weighted moving average (EWMA) methods called MF-EMD-CART-

AR-EWMA to detect outliers in sensor data. The first-level performance is compared to that of the

Butterworth filter, FIR filter, moving average filter, wavelet filter and Wiener filter. The second-level

prediction performance is compared to support vector regression (SVR), K-nearest neighbor (KNN), CART,

complementary ensemble EEMD with CART and AR (EEMD-CART-AR) and ensemble CEEMD with

CART and AR (CEEMD-CART-AR) methods. Finally, EWMA is compared to Cumulative Sum Control

Chart (CUSUM) and Shewhart control charts. The proposed hybrid model was evaluated with a real dataset

from the hydrometeorological observation network in the Heihe River Basin, yielding experimental results

with better generalization ability and higher accuracy than the compared models, and providing extremely

effective detection of minor outliers in predicted values. This paper provides valuable insight and a promising

reference for outlier detection involving sensor data and presents a new perspective for detecting outliers.

INDEX TERMS Environmental monitoring, sensor data, outlier detection, integrated model, statistical

analysis.

I. INTRODUCTION

The intelligent environment monitoring network consists of

numerous sensor devices that form a ubiquitous, reliable

and distributed internet of things (IoT) network for sensing

and communicating which is gradually driving the evolution

of ecosystem research, and massive amounts of time series

sensor data have been collected [1]–[3]. According to a pub-

lished report, the total amount of global Earth monitoring

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang .

data is increasing exponentially each year and the IDC report

predicts that global data might be excepted to reach 163 ZB

approximately by Sen and Jayawardena [4]. Outlier detection

in bulk sensor-collected data has been a matter of great con-

cern and major challenge. In particular, devices deployed in

high altitude and harsh regions often generate spatiotemporal

variations in networked sensor data [5], [6]. In addition,

the sensed data are largely affected by the environment of the

underlying surface of the atmosphere in cold and arid regions,

where high uncertainty can be caused by local climate

change with non-stationary and nonlinear characteristics [7].

175192 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0002-5178-586X
https://orcid.org/0000-0003-2999-9818
https://orcid.org/0000-0001-6401-264X
https://orcid.org/0000-0002-4408-9153


M. Zhang et al.: Adaptive Outlier Detection and Processing Approach Towards Time Series Sensor Data

Data outliers have posed a considerable challenge for scien-

tific research. It is of practical significance and importance to

develop a suitable outlier detection approach for sensor data.

A sensor data outlier is defined as an observed value that

is far from others. Outlier detection focuses on the pro-

cess of discovering data deviations [8]–[10]. In fact, out-

lier detection and processing play vital roles in identifying

abnormal patterns and have been applied in many different

fields, such as process control [11], environmental monitor-

ing [12] and traffic monitoring [13]. Many existing detec-

tion methods based on hypothesis tests setting the threshold

values of outliers have been proposed to identify outliers

through uniformly inspecting the main characteristics of a

set of objects [14], including distance-based methods [15],

K-nearest neighbor (KNN) methods and prediction-based

methods [16]. The autoregressive (AR)model, autoregressive

moving average (ARMA) model, and autoregressive inte-

grated moving average (ARIMA) model based on statistics

were used to detect outliers in complicated multivariate sen-

sor data involving single-variable time series [17]–[19].

Similarly, the physical, statistical, and machine learning

models that have been developed to detect outliers are not suf-

ficiently capable of analyzing non-stationary data [20]–[23].

Signal decomposition is a processing method that describes

stationary and non-stationary relationships. This approach

decomposes non-stationary sensor data into stationary data

and retains the structure of the raw data. Therefore, to solve

the problems noted above, some signal processing methods,

such as empirical mode decomposition (EMD), complemen-

tary ensemble EMD (CEEMD), ensemble EMD (EEMD),

variational mode decomposition (VMD) and wavelet trans-

form (WT), have been widely applied to recursively decom-

pose data into different intrinsic modes and improve the

effectiveness of outlier detection [24]–[26]. To a large extent,

signal processing methods have a limited capacity to improve

the performance and accuracy of a detection model. There-

fore, researchers have extended these methods, for instance,

a hybrid model based on EMD and AR aimed at transforming

data from the time domain to the frequency domain was

successfully applied for outlier detection to assess the con-

struction and precisely track the frequency of signals [27].

WT provides a high temporal resolution in the high-frequency

range of a time series signal. However, WT in outlier detec-

tion has led to shortcomings in analyses of big data, and WT

is time consuming compared to existing models [28].Simi-

larly, researchers have extended the applications of EMD to

process sensor data with non-stationary due to its prominent

advantages [29].

Although single, hybrid and combined methods have

achieved some success, the existing approaches have not

achieved exceptional performance. Considering the above

shortcomings, a high-level outlier detection model called the

MF-EMD-CART-AR-EWMA model is presented for outlier

detection in this paper. Of this model, a three-level ensemble

method is leveraged, where MF is used as the preprocessor

to preliminarily screen a series data that contains outliers,

such as large sudden changes. EMD is chosen due to its flex-

ibility in processing nonstationary data. CART with the AR

method are employed as the base learner for the prediction

task, and then we use the EWMA control chart to detect

outliers. The proposed outlier detection model is designed

with a black-box scenario in mind. We define that out-

liers are deviation-based or significant changes in time-series

sensor data. Specifically, the outliers that deviate from the

upper (UCL) and lower (LCL) control limits of EWMA can

be addressed for further investigation, while implementing

replacement with the prediction value.

The ultimate objective of the proposed approach is to

provide a highly accurate and robust outlier detection model

to overcome the challenges of large-scale sensor data. The

model proposed in this paper aims at not only detecting

outliers but also processing the outliers so that an improved

dataset is obtained. To investigate and evaluate the perfor-

mance of the model, the proposed method was thoroughly

evaluated and benchmarked based on real sensor data from

the hydrometeorological observation network in the Heihe

River Basin.

The primary contributions of the proposed model are sum-

marized as follows.

(a) One-step-ahead preprocessing for identifiable outliers

Preprocessing is the first level of the proposed model for

original data series analysis. In this step, the original data with

obvious outliers, such as sudden extremes, are be processed.

We aim to address various real-world sensor data outlier chal-

lenges using MF, thereby eliminating these patterns before

the outlier analysis and modeling steps.

(b) Developing the EMD-CART-AR approach for

second-level prediction.

EMD is used to decompose the preprocessed data into new

and stationary intrinsic mode functions (IMFs) with different

features, and the CART and ARmodels are employed consid-

ering the characteristic scales of decomposed subsequences,

which can promote the accuracy of the prediction model.

(c) Using an EWMA control chart to detect outliers in

predicted data.

EWMA is introduced as the last model level based on

the aforementioned first two levels for identifying the minor

outliers in the predicted data. Taking advantage of the control

parameters, the entire iterative process of the model can be

effectively regulated.

(d) Applying comprehensive statistical indicators to evalu-

ate the performance of the proposed model.

The proposed approach is applied to real-world data sets,

and the results are evaluated with statistical indicators. The

test includes four sets of data from the hydrometeorological

observation network dataset. The results are also compared

to those of other models, including SVR, KNN, CART,

CEEMD-CART-AR, and EEMD-CART-AR, to assess the

preprocessing and prediction performance of the proposed

model.

The paper is organized as follows. In section 2,

the framework, main implementation steps and employed
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FIGURE 1. Schematics of the three-level hybrid model.

methodology are given. In the section 3, the data description

and analysis are presented. In section 4, the evaluation criteria

used in this paper and the experimental results and discussion

are introduced. Finally, a brief conclusion is made.

II. IMPLEMENTATION METHOD AND SCHEMATICS

A. SCHEMATICS OF THE THREE-LEVEL HYBRID MODEL

In this section, the adaptive outlier detection modeling

approach is established for outlier detection in real-world

data set, and the schematics of the three-level hybrid model

are shown in Fig.1. The three levels are placed at different

positions and have specific functions. The preprocessing level

is the first level, and it preprocesses the original data that

may be influenced by obvious outliers, such as large or

small sudden variational patterns. The EMD-CART-AR level,

as the second level located between the preprocessing and

outlier detection levels, is a predictive model that provides

input data for outlier detection. The final level, the EWMA

detector, identifies possible minor outliers in the predictive

output and is used to adjust the iterative procedure of the

model.

The main steps of the model are as follows.

Step one: Conduct a preliminary data test on Y (t) =

[y1, y2, · · · , yn]
T , and then preprocess the result with MF.

The preprocessed data are recorded as Y ′(t).

Step two: Decompose the preprocessed data Y ′(t) into

X (t) and r(t) with EMD and record it the result as Y ′(t) =

X (t) + r(t), where X (t) = [x1, x2, · · · , xn]
T represents the

high-frequency terms, r(t) = [r1, r2, · · · , rn]
T is the trend

term, and n is the sample size.

Step three: Predict X (t) and r(t) with the CART and

AR models, respectively. Predict the high-frequency terms

with the CART model, and record the result x̂(t) =

[x1, x2, · · · , xn]
T . The trend term, r(t), is predicted with

the AR model, and the result is recorded as r̂(t) =

[r1, r2, · · · , rn]
T , where n is the sample size. The final pre-

dicted value is denoted as ŷ(t) = x̂(t) + r̂(t).

Step four: Compare the real and predicted values, and

calculate the residual sequence, namely ε = y(t) − ŷ(t).

Step five: Detect the outliers with the EWMAcontrol chart,

which is also used to control the entire iterative process of the

model.

Last step: Process the outlier data with the proposed model

and obtain clean data through the iteration and reconstruction

of the proposed model.

B. METHODS

1) MEDIAN FILTER (MF)

The MF is an algorithm based on statistical theory to sup-

press noise in nonlinear signal processing [30]. The basic

principle of this algorithm is to replace the value of a

point in a sequence with the median value of each point

in the neighborhood to eliminate the isolated noisy points.

Suppose data series X (m) is a signal written as X (m) =

[x1, x2, . . . , xm],where m is the size of the series.The time

window length of the MF is defined as n. The process for

the jth point is to take n samples centered on the jth point as

the input values, reorder them by size, and generate a new

data sequence(X
j− n−1

2
, · · ·Xj, · · · ,X

j+ n−1
2
).The median value

Xj is selected as the output of the filter. n is typically an odd

number, and if n is an even number,the output value will be

the mean of the two sample values at the middle position.

2) EMPIRICAL MODE DECOMPOSITION (EMD)

EMD was proposed by Huang et al. and is a new sig-

nal processing method for decomposing a signal into IMFs

[31], [32]. The algorithm refers to the smooth processing of

a signal and subsequent decomposition of a non-stationary

signal into a stationary series with functions of different

characteristic scales, each called an IMF [33]. The IMF

must satisfy two conditions. First, in the whole data series,

the number of extreme points must be the same as the number

of zero-crossing instances, or the difference between these

two values must be not greater than 1. Second, the data

series must be locally symmetric about the time axis, namely,

the local mean is zero at any time point.

The main processing steps in the model are as follows.

Step one: Find all the maximum and minimum points

inX (t)(the original signal), and fit two envelope curves with

the cubic spline interpolation function method.

Step two: Find the meanm(t) of the upper envelope and the

lower envelope.

Step three: Subtract the m(t) mean by the original series to

obtain the new series c(t),namely c(t) = X (t) − m(t).
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Step four: Determine whether c(t) meets the IMF condi-

tions: if the conditions are met, separate c(t) and obtain the

remainder r(t), namely, r(t) = X (t) − c(t); if the conditions

are not met, take c(t) as the new signal, and repeat Step one

to Step three until the conditions are met.

Step five: Take the obtained r(t) as the new original series

and repeat Step one to Step four. Finally, obtain finite IMF

components and a trend component.

After the process above is implemented, the signal with

random non-stationarity is decomposed into several station-

ary IMF components and a trend component, as shown in

Eq. (1).

x(t) =

n
∑

i=1

ci(t) + rn(t) (1)

In Eq. (1), ci(t) refers to the ith IMF component, repre-

senting the signal components with different characteristic

scales in the original signalx(t), and r refers to the trend

component, reflecting the trend of the original signal x(t).

Therefore, the signal x(t) can be decomposed into n stationary

components (IMFs) with different characteristic scales and a

trend term.

3) CLASSIFICATION AND REGRESSION TREE (CART)

As a typical classification algorithm, the CART method is a

supervised non-parametric classification method that creates

a binary tree based on a simple model and easily implemented

extraction rules to obtain predictions [34]. The CART algo-

rithm has been widely applied in classification and prediction

tasks [35]. The properties of the root node of the data are

first found according to the Gini index, and a tree is created

from the top to the bottom in a recursive manner until every

sample established after division is pure. The leaf nodes

of the decision tree represent the categories of information

associated with the sample, and each path along a branch

from the root node to the leaf node represents a rule. A com-

plete binary tree refers to a rule set. Essentially, the decision

tree classifies data with a series of rules. The main decision

trees are binary branched trees and multibranch trees, and

the former is used in this research because of its search

flexibility.

The following concepts were used to construct the CART.

For all the sample data, a tree with many levels and leaf

nodes is created to fully reflect the relations among the data

(at this moment, the data relations reflected by the tree are

often influenced by overtraining). Through trimming the tree,

a series of subtrees is created, from which the trees of appro-

priate size are selected to classify the data.

The main process of the model is as follows.

Step one: Input the training dataset D.

Step two: Output the CART f (x).

In the input space of the training dataset, divide every

region into two subregions recursively and determine the

output value of each subregion to create the corresponding

binary decision tree.

1) Choose the optimal segmentation variable j and seg-

mentation point s, and solve Eq.(2) as follows.

min
js

[min
c1

Loss(yi, c1) + min
c2

Loss(yi, c2)] (2)

Traverse j and scan s for the fixed segmentation vari-

able j; then, obtain the minimum pair (j, s) through

Eq.(2).

2) Divide the region with the chosen (j, s), and determine

the corresponding output value, as shown in Eq.(3),

ĉm =
1

Nm

∑

xi∈Rm(j,s)

yi, xi ∈ Rm, = 1, 2 (3)

3) Continue to repeat Steps one and two until the stopping

condition is met.

4) Divide the input space into M regions, R1,R2, · · ·Rm,

and generate the decision tree, as shown in Eq.(4).

f (x) =

M
∑

m=1

ĉmI (x ∈ Rm) (4)

4) EXPONENTIAL WEIGHTED MOVING AVERAGE (EWMA)

CONTROL CHART

The EWMA control chart as a prediction-based detector is

introduced in this work, and it presents a robustness for

detecting minor outliers compared with the traditional con-

trol chart, e.g., Shewhart control chart and Cumulative Sum

Control Chart (CUSUM) control chart. The EWMA chart

proposed by Roberts in 1959 assigns the maximum weight

to the nearest observed value [36]. Due to the flexibility

and reliability of the EWMA control chart for monitoring

the small shifts in parameters, this control chart has been

applied widely [37]. The Shewhart control chart yields omis-

sion of minor outliers among slight fluctuations aspects.

The CUSUM control chart has better performance than the

Shewhart control chart in terms of detecting slight fluctu-

ations. However, for CUSUM, the two adjacent statistics

have a strong correlation, in fact, there is only one sample

difference. When the mean and variance of the sample can-

not be accurately estimated, the analysis effect is weakened.

However, the EWMA control chart is flexible and has a

strong detection ability for small fluctuations and gradual

drifts. Compared with traditional outlier detection methods,

the EWMA control chart provides excellent performance

in identifying small fluctuations and slow shift processes;

therefore, it is highly suitable for outlier detection based on

prediction [38].In particular, the outlier detection was driven

by the desire to present a robustness as much as possible and

to allow accurate detection in time-series sensor data [39].

Therefore, we proposed an adaptive outlier detection tightly

coupled to the prediction-based estimator to detect minor

outliers and close the detection iterations.The EWMA control

chart employed in theMF-EMD-CART-ARmodel is to detect

possible minor outliers in prediction process, while is used to

regulate model iterations.
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The EWMA control chart can be expressed as shown in

Eq.(5),

Zi = λXi + (1 − λ)Zi−1 (5)

where the λ is a constant constrained by 0 < λ ≤ 1 and

X1,X2, · · · ,Xn compose a sample of observed values. The

target value of the process is usually taken as the initial value

Z0 = µ. Alternatively, the mean of the initial data can serve

as the initial value, namely, Z0 = X̄ .

If the observed value Xi is an independent random variable

with the same variance σ 2, then the variance of Zi is as shown

in Eq.(6).

σ 2
Zi

= σ 2 λ

2 − λ
[1 − (1 − λ)2i] (6)

Therefore, the EWMA control chart is constructed with a

monitoring index based on the Zi statistics, and the upper and

lower control limits are shown in Eq. (7).

(UCL,LCL) = µ ± Lσ

√

λ

2 − λ
[1 − (1 − λ)2i] (7)

where L refers to the regulatory factor selected to ensure

that the expected ARL0 can be achieved. As i increases,

the control limits will converge to µ±Lσ

√

λ
2−λ

. The process

parameters of the EWMA control chart are L and λ. Hence,

detailed research has been conducted on the ARL properties

of the EWMA control chart with different design parameters.

Generally, when 0.05 ≤ λ ≤ 0.25 [37], the EWMA control

chart provides excellent detection performance. According

to practical experience, the value of λ is generally relatively

small to make the control chart flexible and effective.

III. EXPERIMENT AND ANALYSIS

A. DATASETS

In this section, the sensor data from the hydrometeo-

rological observation network in the Heihe River Basin,

an endorheic basin located in the arid and semiarid regions of

Northwest China [40]–[42], are used to verify the accuracy

and robustness of the proposed model. The hydrometeo-

rological observation network currently transmits approx-

imately 200,000 recorded values per day collected from

sensor devices, such as temperature and humidity sensors,

wind speed and direction sensors and soil moisture sensors.

Moreover, changing seasonal factors result in non-stationary

and nonlinear characteristics in the sensor data. Therefore,

we employ four sets of data from different sites and with

different collection times and sample sizes. These datasets are

independently used to evaluate the proposed approach.

To evaluate the generality of the proposed prediction

model, for each experimental case, we evaluated two kinds

of sample sizes; 7-day temperature and humidity sensor data

samples (1008 data points) from the Daman superstation and

10-day data (1440 data points) from the Arou superstation

were obtained for different time periods. Then 80 % of the

data are randomly selected for training the EMD-CART-AR

model. The remainder of the data is used as test sets to evalu-

ate the performance of the proposed model. The locations of

the Daman and Arou superstations can be seen in Fig.2.

FIGURE 2. Locations of the Daman and Arou superstations.

1) DAMAN SUPERSTATION DATASET

Daman superstation (Altitude is 1556 m; 100.3722E ,

38.8555N ) is located in the Dagan Irrigation District of Wux-

ing Village, Xiaoman Town, Zhangye City, Gansu Province,

China, and consists of a meteorological element gradient

observation system, an eddy-covariance system, 2 large-

aperture scintillometers, a lysimeter, a cosmic-ray soil mois-

ture observation system and nine soil moisture wireless

sensor network nodes. The temperature and humidity data

fromDaman superstation dataset were selected fromMay 5 to

11, 2018, and from December 31, 2016, to January 6, 2017.

The recurrence plot (RP) is an important method to ana-

lyze the periodicity, chaos and nonstationarity of time-series

data. Specifically, RP depicts black and white points on the

time plane of the square, where the black points represent

the occurrence of recursion in the corresponding state of

the horizontal and vertical axis on the coordinate, while the

white point indicates that no recursion occurs [43].Therefore,

the RP can be used to analyze the nonstationary and nonlinear

characteristics of a time-series data. For a stationary time

series, the corresponding RP is uniformly distributed, and the

RP of a nonstationary time series is nonuniformly distributed.

The RP of temperature and humidity sensor data of Daman

superstation dataset is given in Fig.3, According the figure,

Fig. 3-a and Fig. 3-b exhibit a significant difference. It can
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FIGURE 3. Recurrence plots of sensor data from Daman superstation: a. temperature data and b. humidity data.

FIGURE 4. Recurrence plots of sensor data from Arou superstation: a. temperature data and b. humidity data.

be found in Fig. 3-a that RP has large white or blue points,

which indicate that the time-series data has a large mutation

during this period, and the data are in a relatively stable state

of a period of time before and after the sudden change, that

is, a stable state. In Fig. 3-b, the nonuniform characteristics

of the data are relatively weak with respect to Fig. 3-a.

2) AROU SUPERSTATION DATASET

Arou superstation (Altitude is 3033 m; 100.4572E ,

38.0384N ) is located in Arou Village, Qilian County,

Qinghai Province, China (Che et al., 2019), and consists

of a meteorological element gradient observation system,

an eddy-covariance system, 2 large-aperture scintillometers,

a weighing-type rain gauge, a vegetation phenology observa-

tion system, a cosmic-ray soil moisture observation system

and 16 soil moisture wireless sensor network nodes. Due

to the high altitude of the location, low average annual

temperature and poor observation conditions at Arou, outliers

are common in the sensor data collected from Arou super-

station. To further verify the robustness and applicability of

the model, an experiment was conducted on the temperature

and humidity data collected from Arou, and the samples

were selected from November 1 to 10, 2017, and from

September 6 to 16, 2017.

Similarly, Fig.4 shows the RPs of temperature and humid-

ity at the Arou superstation. According to the figure, the

nonstationarity of the temperature data is obvious, and the

humidity data are weakly nonstationary. The nonuniform

distributions of the temperature and humidity data RPs further

reflect the nonstationary characteristics of the sensor data.

In general, from the RPs analysis, it suggested that the exper-

imental data has obvious nonstationary characteristics.

The MF is used first to preprocess the obviously visible

outliers in the raw data, and the EMD-CART-AR model is
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then employed for prediction. Finally, the EWMA method is

used to detect the outliers. The detailed data outlier detection

results are presented in the next section.

B. EXPERIMENTAL RESULTS

1) PARAMETER SETTING

In each experiment, all the data are first preprocessed with the

MF. The filter window length of the MF for preprocessing

needs to be adjusted according to the characteristics of the

data. Here, we chose filter windows with different lengths to

assess the performance of data preprocessing [44].Moreover,

the scheme of partition of time-series data over a sequence

of temporal windows via a time window is shown in Fig 5.

It can be seen that 1 to k-1 from the first subset can be chosen

to train the model, 2 to k from the same subset are selected for

prediction by using the trained model. After several adaptive

iteration processes of the model, the model can mitigate inter-

ference and noise effects and became sufficiently stable. The

parameters of EMD are obtained by employing the stopping

criteria [45]. Grid searches are adopted to optimize the CART

parameters and provide maximum prediction accuracy [46].

The parameters of the AR model are defined according to the

autocorrelation coefficient and partial correlation coefficient

of the sample data. The (λ,L) values of EWMA are consid-

ered based on a confidence level of 99.97% [37].For all the

methods, detailed parameter settings are described in Table 1.

FIGURE 5. The time-window scheme of training dataset and testing
dataset selection.

TABLE 1. Experimental parameter of all methods.

2) MF PREPROCESSING RESULTS

This section presents the proposed preprocessing procedure

focusing on the first level of an outlier detection model,

with the aim of preliminarily screening a series data that

contains outliers, such as large sudden changes. To address

various real-world data outlier challenges, these outlier data

should be eliminated before outlier analysis and modeling.

In this context, the MF is used to preprocess the visual

outlier data in YDamT (t), YDamH (t), YArouT (t) and YArouH (t),

where these data series are selected from the temperature and

humidity datasets from Daman superstation and Arou super-

station. To highlight the advantages of the MF in processing

non-stationary data, several outliers are randomly added to

the historical temperature and humidity data. In practical

applications, unprocessed historical data can also be assessed

by outlier detection models.

The results of the data preprocessed by the MF are shown

in Fig.6 and Fig.7, in which the red curve refers to the

preprocessed data,the blue curve refers to the raw data and the

hollow circles are outliers. The obvious discernible outliers

that are too high or too low are processed, and the red curve

almost coincides with the blue curve. The results confirm that

the scheme used in this paper yields high accuracy. This find-

ing suggests that the MF is suitable for the outlier processing

of sensor data with the capability for fusing, denoising and

smoothing to a certain extent. Notably, the MF is a nonlinear

smoothing technique with a selection adjustment scheme

based on a filter window, and the value of each data point is

set as the median of all data points in a certain neighborhood

window for that data point. As a result, the outlier value in a

data series is replaced by the median value of the neighbor-

hood window.

The preprocessed data are recorded as Y ′
DamT (t),

Y ′
DamH (t), Y

′
ArouT (t) and Y

′
ArouT (t).

3) EMD DECOMPOSITION RESULTS

In this section, the temperature and humidity sensor data can

be regarded as a time series signal, and the EMD method is

introduced to decompose the preprocessed data series, i.e.

Y ′
DamT (t), Y

′
DamH (t), Y

′
ArouT (t) and Y

′
ArouT (t). Fig.8 shows

that Y ′
DamT (t) decomposed by EMD comprises 6 IMF com-

ponents XDamT (t) = IMFi(i = 1, 2, · · · , 6) and a trend

term rDamT (t). To obtain relatively stationary original data

and a locally stationary trend, the IMFi can be reconstructed

by X (t)DamT =
6
∑

i=1

IMFi.XDamT (t) displays an undula-

tion trend similar to that of Y ′
DamT (t). Similarly, the high-

frequency term X (t)DamH =
7
∑

i=1

IMFi and the trend term

rDamH (t) are obtained by reconstructing the decomposed

humidity data with the EMDmethod. Y ′
ArouT (t) and Y

′
ArouH (t)

are also decomposed by the EMD model. Y ′
ArouT (t) is

decomposed into 10 components, including 9 IMFs, namely,

IMFi(i = 1, 2, · · · , 9), and one trend term rArouT (t). Simi-

larly, Y ′
ArouH (t) is decomposed into 10 components, including

9 IMFs, namely, IMFi(i = 1, 2, · · · , 9), and 1 trend term

rArouH (t), which are given in Fig.9 To obtain relatively stable

original data and the partial stationary trend, the IMFs in IMFi
are reconstructed. XArouT (t) =

∑7
i=1 IMFi and XArouH (t) =
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FIGURE 6. Results for the temperature and humidity data from Daman superstation preprocessed by the MF.

FIGURE 7. Results for the temperature and humidity data from Arou superstation preprocessed by the MF.

∑7
i=1 IMFi are recorded as the high-frequency terms, and

rArouT (t) and rArouH (t) are recorded as the trend terms.

The basic concept of employing EMD for predictions

involves decomposing sequence data into IMF components

and trend terms. The separated trend terms at different scales

can reduce the complexity of the time series, and the divided

IMF components are able to maintain the unique physical

meaning and stationarity of the data [47]. Thus, EMD is able

to improve the prediction accuracy in specific time horizons

based on this approach.

Processing small-sample time series data with the CART

model is effective. Therefore, the CART model is used

to predict the high-frequency terms XDamT (t), XDamH (t),

XArouT (t) and XArouH (t). As the most common analysis

model for time series, the AR model, which is character-

ized by simplicity and high accuracy, is ideally qualified

for predictions involving locally stationary data, such

as rDamT (t), rDamH (t), rArouT (t) and rArouH (t). The

detailed data processing results are presented in the next

section.

4) EMD-CART-AR PREDICTION RESULTS

In the CART prediction model, the curve smoothness and

error degree are taken into consideration for the predic-

tion of the nonlinear data series [48].Therefore, the high-

frequency termsXDamT (t),XDamH (t),XArouT (t) andXArouH (t)

are predicted by the CART model. The AR model can be

used for time series prediction and analysis to the trends
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FIGURE 8. Results for temperature data from Daman superstation decomposed by EMD.

of dynamic data. The model quantitatively analyses linear

data correlations and predicts future values [49]. Therefore,

the trend terms rDamT (t), rDamH (t), rArouT (t) and rArouH (t)

are predicted by the AR model. Performance comparisons

of EMD-CART-AR based on the temperature and humidity

data from the Daman and Arou superstations are presented

in Fig.10 and Fig.11, in which the red curve represents

the predicted values of EMD-CART-AR and the blue curve

represents the preprocessed data from the MF. The com-

parison shows that the predicted and real values are almost

coincident. The minor disagreement between the real and

predicted values is reasonable. To address the performance

of the proposed model, the Pearson correlation coefficients

calculated between the predicted and real values of temper-

ature and humidity at Daman superstation are 0.9995 and

0.9996, respectively; similarly, the results for the temperature

and humidity at Arou superstation are 0.9995 and 0.9996,

respectively.

The experimental results indicate that the EMD-CART-AR

hybrid model proposed in this paper reduces the prediction

error effectively and demonstrates excellent prediction ability

in terms of processing the non-stationary time series problem.

5) EWMA OUTLIER DETECTION AND PROCESSING RESULTS

As noted earlier, the EWMA control chart is not affected

by the mean value of a dataset and is widely used in the

processing of time series data; additionally, the random error

conforms to a normal distribution with a mean value of

and variance of δ2 [50]. The robust EWMA control chart

employed in this section involves detecting outliers and iden-

tifying minor errors in the residual series. The proposed

detection model architecture and EMWA approach consid-

ered in this paper aim not only to control the reasonable

error range but also to effectively regulate the entire iterative

process of the model and achieve continuous detection and

processing.
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FIGURE 9. Results for humidity data from Arou superstation decomposed by EMD.

At the outlier detection and processing stage, the UCL

and LCL control limits of the EWMA control chart of the

four groups of experimental test data are calculated at the

confidence level of 99.73% (3δ), and the (λ, L) values of

EWMA are presented in Table 1.

The detection results for the Daman and Arou superstation

data set are presented in Fig.12 and 13. Fig.12-a shows that

the upper and lower limits of the EWMA control chart are

approximately 0.6125 and −0.6125, respectively. According

to the figure, the residual error obtained from the predicted

and real values is within the upper and lower limits. As a

result, the error range between the predicted and real values

are 0.5. Similarly, in Fig.12-b, the upper and lower limits of

the EWMA control chart are 1.6 and −1.4, respectively, and

the error range of the humidity data is 2.5.

The results for Arou superstation data are shown in Fig.13.

The upper and lower limits of temperature are approximately

1 and −1, respectively, in Fig.13-a, and the error almost

zero. As shown in Fig. 13-b, the upper and lower limits of

the humidity data are approximately 5 and −5, respectively,

and several outliers are clearly marked, but these values are

not shown in Fig.9-b. For instance, from 0 to 125, 3 obvi-

ous abnormal points between the predicted and real values

are present, especially the 121th point, with an error that

reaches 9. This point was not marked in Fig.12-b but was

detected by the EWMA model.

These results suggest that the introduced approach, as an

outlier detector, is effective in detecting outliers in time series

and predicted values. In the meantime, the proposed model

also targets processing outliers. Specifically, the obvious

outlier can be preprocessed through the first-level of the

proposed three-level adaptive detection system. Additionally,

we can analyze conditions of actual values preliminarily

based on the confidence level, and for the detected outliers

that deviate from the UCL and LCL control limits of the

EWMA control chart, we replace them using the prediction
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FIGURE 10. Results for the temperature and humidity data from Daman superstation predicted by EMD-CART-AR.

FIGURE 11. Results for the temperature and humidity data from Arou superstation predicted by EMD-CART-AR.

value, while addressing them for further analysis. Moreover,

outliers may still be triggered from systematic noise and

sensor faults. As a result, the role of the preprocessor and

detector, e.g., the first level, for preprocessing some obvious

outliers and minor outliers that are detected by the EWMA

control chart, can also be deemed an alarm for some special

applications.

IV. DISCUSSION

This section mainly discusses and analyzes the performance

of the MF-EMD-CART-AR-EWMA model proposed in this

paper, which involves three levels, as shown in Fig.1. The

MF, which is a single model, is used to preprocess outlier

data in the first level. The second level includes a hybrid

model, the EMD-CART-ARmodel, which is used to establish

a prediction model. The last level identifies outliers based on

detection with the EWMA control chart. The first two levels

mainly improve the accuracy and robustness of the proposed

model, and the third provides effective outlier detection and

iterative control for regulating the allowable error range by

adjusting the parameters of the EWMA control chart. There-

fore, the performance of the three levels of the prototype

model proposed in this paper are analyzed and evaluated.

To clearly illustrate the performance, stability and robust-

ness of the MF-EMD-CART-AR-EWMAmodel, the temper-

ature and humidity data collected at the Daman and Arou

superstations were chosen. A comparison of theMF and other

signal processing methods, e.g., WT, the Butterworth filter,
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FIGURE 12. Results obtained by the EWMA control chart for Daman weather station data.

FIGURE 13. Result obtained by the EWMA control chart for Arou superstation data.

and others, was performed to demonstrate the advantages and

performance of the MF in processing sensor data outliers.

In addition, to evaluate the prediction ability of the EMD-

CART-AR model, other comparisons are made involved the

model and the SVR, KNN, CART, CEEMD-CART-AR and

EEMD-CART-AR models.Finally, we assessed the perfor-

mance of the EWMA control chart with the CUSUM control

chart and the Shewhart control chart in terms of outlier detec-

tion. Figs. 14-20 illustrate the performance of the preprocess-

ing model, prediction model and outlier detection model, and

the results are presented in Tables 2-9.

A. EVALUATION METHODOLOGY

To evaluate the preprocessing and prediction ability of the

model, three different statistical indicators, namely, the root

mean square error (RMSE), mean absolute error (MAE) and

mean absolute percentage error (MAPE), were used [51]. The

preprocessing and prediction accuracies reflect the consis-

tency between the processed results and actual values, and

these accuracies are usually reflected by error indicators.

Therefore, the larger the error is, the lower the accuracy. The

error is defined as ε = y(t) − ŷ(t), where y(t) is the actual

value and ŷ(t) is the preprocessed or predicted value. When

ε > 0, ŷ(t) is a poorly predicted value; conversely, when

ε < 0, the prediction accuracy is high. The metrics are shown

in Eq. (8), Eq. (9), and Eq. (10).

MAE =

∑n
t=1

∣

∣y(t) − ŷ(t)
∣

∣

n
(8)

RMSE =

√

∑n
t=1 (y(t) − ŷ(t))2

n
(9)
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FIGURE 14. Comparison of the outliers in the raw data and outliers preprocessed by the MF, the Butterworth filter, the FIR filter, the moving average filter,
wavelet transform, and the Wiener filter for temperature and humidity datasets from Daman superstation.

FIGURE 15. Comparison of the outliers in the raw data and outliers preprocessed by the MF, the Butterworth filter, the FIR filter, the moving average filter,
wavelet transform, and the Wiener filter for temperature and humidity datasets from Arou superstation.

MAPE =

∑n
t=1

∣

∣

∣

y(t)−ŷ(t)
ŷ(t)

∣

∣

∣

n
∗ 100 (10)

B. RESULTS AND DISCUSSION OF THE

PREPROCESSING MODEL

Performance comparisons based on the MF and other filter

methods for the raw temperature and humidity data from the

Daman andArou superstations are given in Fig.14 and Fig.15.

The results of the MF are compared to those of the Butter-

worth filter, the FIR filter, the moving average filter, WT, and

the Wiener filter. Based on the preprocessing scheme used

in this paper, the preprocessed data are close to the real data

because the MF is a nonlinear smoothing technique that sets

the value of a given data point as the median of all data values

in the corresponding neighborhoodwindow. As a result, some

obvious outlier points are processed. The results suggest

that the MF outperforms the other methods for both specific

points and the whole dataset in terms of processing the series

outliers. The statistical evaluation criteria for several filter

methods, such as the MAE, RMSE, and MAPE, are shown

in Table 2 and 3. Similarly, the MF performs better than other

filters in processing the data outliers. The MAE, RMSE and

MAPE of the data processed by theMF are smaller than those

for the Butterworth filter, FIR filter, moving average filter and

Wiener filter for both the temperature and humidity datasets

from the Daman and Arou superstations.
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FIGURE 16. Comparison of raw data and values predicted with the MF-SVR, MF-CART, MF-CEEMD-CART-AR, MF-EEMD-CART-AR, and MF-EMD-CART-AR
modes for temperature and humidity data from Daman superstation.

FIGURE 17. Comparison of the raw data and values predicted by the MF-SVR, MF-KNN, MF-CART, MF-CEEMD-CART-AR, MF-EEMD-CART-AR, and
MF-EMD-CART-AR models for temperature and humidity data from Arou superstation.

For the Daman superstation test set, theMF yields themax-

imum observed improvement over the FIR filtering results

based on the temperature data, with MAE, RMSE and RMSE

values of approximately 96.7%, 99.5% and 96.9%, respec-

tively. Additionally, the observed improvements in the MAE,

RMSE and RMSE were approximately 97%, 99.7% and

97.4%, respectively, for the humidity data.

For the Arou superstation test set, compared with Butter-

worth filter, the MF yielded a 93.3% improvement in MAE,

a 99.6% improvement in RMSE and a 95.8% improvement in

MAPE for the temperature data. Similarly, improvements of

approximately 93.4% in MAE, 99.6% in RMSE and 93.3%

in MAPE were obtained for the humidity data.

Outliers influence the estimation of the parameters of pre-

diction model; therefore, to effectively detect data outliers,

data preprocessing is emphasized in this paper to improve the

accuracy of the prediction model. According to Table 2 and 3,

the MF has clear advantages in processing obvious outliers

compared to the other methods assessed and displays stronger

generalization ability and robustness.

C. RESULTS AND DISCUSSION OF THE

PREDICTION MODEL

For the Daman superstation test sets, several models,

e.g., MF-SVR, MF-CART, MF-EEMD-CART-AR, and

MF-CEEMD-CART-AR, were assessed to evaluate the
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FIGURE 18. Comparison of the MAE, RMSE and MAPE for the MF-SVR, MF-CART, MF-CEEMD-CART-AR, MF-EEMD-CART-AR, and MF-EMD-CART-AR models
based on temperature and humidity data from Daman superstation.

FIGURE 19. Comparison of the MAE, RMSE and MAPE for the MF-SVR, MF-KNN, MF-CART, MF-CEEMD-CART-AR, MF-EEMD-CART-AR, and
MF-EMD-CART-AR models based on temperature and humidity data from Arou superstation.

TABLE 2. Preprocessing result of temperature and humidity data at Daman superstation.

performance of the proposed scheme, the MF-EMD-CART-

AR hybrid model [52]. The results predicted by the employed

models and the original data are presented in Fig.16. Notably,

compared with the single models, such as MF-SVR and

MF-CART, the hybrid models, such as MF-EMD-CART-

AR, MF-EEMD-CART-AR, and MF-CEEMD-CART-AR,

yield higher accuracy and better performance. For example,

compared with MF-SVR, MF-CEEMD-CART-AR yielded
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TABLE 3. Preprocessing result of temperature and humidity data at Arou superstation.

TABLE 4. Prediction result of temperature and humidity data at Daman superstation.

FIGURE 20. Comparison of the EWMA, CUSUM and Shewhart control
chart integrated with the MF-SVR, MF-CART, MF-CEEMD-CART-AR,
MF-EEMD-CART-AR, and MF-EMD-CART-AR models based on temperature
and humidity data from Daman and Arou superstation.

41.5%, 39.1% and 34.7% improvements in the MAE, RMSE

and MAPE, respectively, for the temperature data. Similarly,

compared with MF-SVR, MF-CEEMD-CART-AR yielded

improvements of 48.4%, 51.4% and 52.3% for the MAE,

RMSE and MAPE, respectively, based on the humidity data.

The MF-EMD-CART-AR model compared with MF-SVR

yielded the maximum observed improvement for the tem-

perature data, including approximately 67.1% for the MAE,

61.1% for the RMSE and 65.3% for the MAPE. Additionally,

observed improvements were approximately 82.5%, 70.4%,

and 85.3% for the MAE, RMSE and MAPE, respectively,

based on the humidity data. Notably, the hybrid models

include signal decomposition methods, which decompose

non-stationary series into relatively stationary series with

different characteristics to improve the accuracy of predic-

tions. The results of this experiment demonstrate that the

characteristics of stationary and non-stationary data have a

considerable influence on the prediction accuracy.

Similarly, a performance comparison of the EMD-CART-

AR model and the single models (e.g., MF-SVR and

MF-CART) for both specific points and the entire dataset

is given in Fig.16. According to the figure, the blue curve

shows the MF-EMD-CART-AR predictions, and the black

curve illustrates the original data. The findings presented in

this figure indicate that the two curves largely coincide. In

addition, to highlight the superiority of the EMD method,

a hybrid model was constructed by combining the CEEMD

and EEMD methods for comparison. As shown in Fig.16,

theMF-EMDmethod provides better prediction performance

than MF-EEMD and MF-CEEMD. The results confirm that

to some extent, the EMD approach introduced in this paper

performs better than EEMD and CEEMD in processing

non-stationary data. Similarly, Table 4 shows that the MF-

EMD-CART-AR model outperforms the MF-EEMD-CART-

AR and MF-CEEMD-CART-AR models in terms of the

prediction ability. For example, compared withMF-CEEMD-

CART-AR, MF-EMD-CART-AR yields a 43.7% improve-

ment in MAE, a 42.6% improvement in RMSE and a 46.9%

improvement in MAPE for the temperature data. Similar,

a comparison of MF-EMD-CART-AR and MF-CEEMD-

CART-AR highlights increases of 64.2%, 39.1%, and 69.2%

in the MAE, RMSE, and MAPE, respectively, for the humid-

ity data. According to Table 2, the results confirm that the

developedmodel performs better thanMF-EEMD-CART-AR
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TABLE 5. Prediction result of temperature and humidity data at Arou superstation.

TABLE 6. Control limits of EMWA, CUSUM and Shewhart control chart on temperature and humidity data from Daman superstation.

TABLE 7. Control limits of EMWA, CUSUM and Shewhart control chart on temperature and humidity data from Arou superstation.

and MF-CEEMD-CART-AR. This result suggests that the

EMD method displays better performance in processing the

non-stationary data than do EEMD and CEEMD because of

its consideration the dynamic behavior of sensor data, with

obvious physical meaning.

For the Arou superstation test set, as shown in Fig.18,

the applicability, generality and superiority of the MF-EMD-

CART-AR model were further verified. Three evaluation cri-

teria, the MAE, RMSE andMAPE, were used to compare the

proposed model and other models. For the Arou superstation

test set, the MF-KNN andMF-EMD-CART-ARmodels were

compared, and the proposed model yielded a 68.2% improve-

ment in MAE, an 83.9% average improvement in RMSE and

a 97.6% improvement in MAPE for the temperature data,

as well as 60.9%, 45.1% and 59.6% improvements in MAE,

RMSE and MAPE, respectively, for the humidity data. The

results using different prediction models are shown in 5. The

findings show that the MF-EMD-CART-AR model proposed

in this paper outperforms all others based on all three evalu-

ation criteria.

The error measures for the MF-SVR, MF-KNN, MF-

CART, MF-CEEMD-CART-AR, MF-EEMD-CART-AR and
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TABLE 8. Performance of integrated detection model on temperature
data from Daman superstation.

TABLE 9. Performance of integrated detection model on humidity data
from Daman superstation.

MF-EMD-CART-AR models based on data from the Daman

and Arou superstations are shown in Fig.17 and Fig.18.

Notably, the largest improvement was obtained by MF-

EMD-CART-AR. The two figures also show that the errors

associatedwith theMF-CEEMD-CART-AR andMF-EEMD-

CART-AR results are lower than the errors for the single

model results, such as MF-SVR, MF-KNN and MF-CART.

The largest differences between the MF-CEEMD-CART-AR

and MF-EMD-CART-AR MAE, RMSE and MAPE values

were 43.7%, 36.1%, and 46.9%, respectively. Fig.18 and

Fig.19 also show that the majority of the improvement in the

overall error is due to the preprocessing and signal decom-

position methods. The performance, which was evaluated

based on the three criteria, confirms that the accuracy of the

MF-EMD-CART-AR model is higher than that of the other

models.

The prediction accuracy and statistical interpretation per-

formance can be summarized as follows: a. the hybrid model

can effectively provide predictions based on sensor data;

b. the combination of the CART and AR models enhances

the performance of the hybrid model; c. the comparison of

the MF-EMD-CART-AR model and other models indicates

that the proposed model displays superior performance; d.

the comparison of the four sets of temperature and humid-

ity experiments with different sampling times and sample

numbers indicates the MF-EMD-CART-AR model has good

generalization ability; and e. as shown in Table 4 and Table 5,

the model is accurate, broadly applicable, robust and effec-

tive. In summary, the MF-EMD-CART-AR model provides

an effective method for outlier detection based on predictions

for sensor data.

D. RESULTS AND DISCUSSION OF THE OUTLIER

DETECTION MODEL

In this section, we use residual sequences of the real and pre-

dicted values of temperature and humidity taken fromDaman

superstation and Arou superstation to evaluate the ability of

the detector. At the outlier detection stage, the UCL and LCL

control limits of employed methods are computed based on

the confidence level of 99.73% (3δ). Tables 6-7 show the con-

trol limits of these methods. Fig.20 shows the performance

of EMWA, CUSUM and Shewhart control charts based on

prediction for detecting outliers using grouped violin plots in

all experimental test sets. Each bar is a sideways plot of the

distribution of each DR or FR across per group test sets.

From Table 6, it can be found that the UCL and LCL

control limits of MF-EMD-CART-AR-EWMA are (-0.4212,

0.3973) for temperature data and (-1.2405, 1.5086) for

humidity data. It shows that the MF-EMD-CART-AR-

EWMA method has narrowest control limits compared to

the others (e.g.,MF-EMD-SVR-EWMA,MF-EEMD-CART-

AR-EWMA, MF-CEEMD-CART-AR-EWMA, MF-SVR

and MF-CART). Notice that the three control charts almost

have the same control limits, while having different strategies

for detecting outliers. Likewise, it can be seen in Table 6 that

the MF-EMD-CART-AR-EWMA has the narrowest control

limits of (-0.6606, 0.6810) and (-3.4223, 3.3669) for temper-

ature data. An important problem in a detection model is the

accuracy of the prediction method that leads to the change of

control limits of the EMWA, CUSUM and Shewhart control

charts, compromising the final detection results achieved by

the detector operation.

For the Daman and Arou superstation test sets, MF-

SVR, MF-CART, MF-EEMD-CART-AR, and MF-CEEMD-

CART-AR are combined with the EWMA control chart to

evaluate the performance of the proposed scheme, the MF-

EMD-CART-AR-EWMA model. The results detected by the

different detection schemes are presented in Tables 8-11.

The findings presented tables are evaluated by detection

ratio (DR) and fail-detection rate (FR). Therefore, DR is

defined as the ratio of the amount of the points in which

the outlier is detected to the total amount of test points.

The FR is the ratio of the amount of the points in

which the outlier failed to be detected. The results confirm

that the detection scheme introduced in this work achieves

comparable performance withMF-SVR-EMWA,MF-CART-

EWMA, MF-EEMD-CART-AR-EWMA, and MF-CEEMD-

CART-AR-EWMA across all dataset groups. This is because

the proposed MF-EMD-CART-AR has superior performance

compared to MF-SVR, MF-CART, MF-EEMD-CART-AR,

and MF-CEEMD-CART-AR. As a result, MF-EMD-CART-

AR-EWMA achieves good accuracy, thereby reducing a fail-

ure detection in the outlier detection model.

Similarly, to see the functionalities and performance of

the proposed detection method, some contrast tests were

performed which include the CUSUM control chart and She-

whart control chart. A performance comparison of DR and

VOLUME 7, 2019 175209



M. Zhang et al.: Adaptive Outlier Detection and Processing Approach Towards Time Series Sensor Data

TABLE 10. Performance of integrated detection model on temperature
data from Arou superstation.

TABLE 11. Performance of integrated detection model on humidity data
from Arou superstation.

FR is given in Tables 8-11. Notice that none of the methods

can be said to be consistently superior in the four group

test sets. For example, compared with the Shewhart control

chart, EWMA has almost the same DR in all datasets. Mean-

while, MF-EMD-CART-AR-EWMA and MF-EMD-CART-

AR-Shewhart show superior performance in general with

comparably low DR and FR compared to MF-EMD-CART-

AR- CUSUM. MF-EMD-CART-AR- CUSUM has high DR

and FR due to its detection strategy. Therefore, the CUSUM

control chart is not particularly suited for time-series sensor

data.It is easy to find that our adaptive methods offer a great

improvement in detection rate compared toMF-EMD-CART-

AR-CUSUM. Additionally, EWMA control chart among

Shewhart control chart are process control strategy for mon-

itoring outliers, while Shewhart control chart assumes that

observations obey a Gaussian distribution, EWMA control

chart are robust against this assumption and particularly

suited for time-series data. Thus, we employed EWMA con-

trol chart as the outlier detection method to achieve an adap-

tive outlier detection approach towards time-series sensor.

V. CONCLUSION

In this paper, the proposed three-level hybrid model, which

integrates preprocessing, prediction and outlier detection

tasks, achieves excellent performance in outlier detection

for non-stationary and nonlinear data collected by environ-

ment monitoring network networked sensors. To address the

sensitivity of the prediction model with respect to outliers,

preliminary screening based on the MF method, as the first

level of the model, is conducted, and this approach sig-

nificantly outperforms five other methods in preprocessing

obvious outliers. EMD can decompose non-stationary data

into stationary data series, and the prediction model simul-

taneously considers the accuracy and robustness of the pre-

diction result. In this context, the EMD-CART-AR prediction

model is proposed as the second level of the model, and

it outperforms other models in predictions based on sensor

data. For instance, compared with a single model, e.g., MF-

SVR, the maximum observed improvements for temperature

data from Daman superstation are approximately 67.1% for

MAE, 61.1% for RMSE and 65.3% for MAPE by applying

MF-EMD-CART-AR, and compared with hybrid models,

e.g.,MF-CEEMD-CART-AR, the improvements in theMAE,

RMSE, and MAPE are 43.7%, 36.1%, and 46.9% for the

humidity data, respectively. Then, an EWMA control chart,

as the last level in the model, is formulated to detect minor

deviations in the data. This approach is especially suitable

for outlier detection in predicted values. A three-level hybrid

model is constructed to identify and treat outliers in environ-

mental monitoring data.

We evaluate the performance of the proposed approach

with four data series from a real-world sensor data set of the

hydrometeorological observation network in the Heihe River

Basin. The experimental results suggest that the preprocess-

ing and prediction methods proposed in this paper achieve a

better generalization ability and higher accuracy levels than

other models in dealing with non-stationary and nonlinear

sensor data. Moreover, the detection method displays out-

standing effectiveness in terms of minor outlier detection.

This research provides a new perspective for outlier detection

and improvements to environmental monitoring data. How-

ever, this research evaluates only temperature and humid-

ity data, including humidity data with weak non-stationary

characteristics. In future work, the proposed method will be

further expanded and optimized to detect outliers in different

sensor data.
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