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Abstract

In this paper, we propose an overlay network sup-
porting world-wide geographic messaging. Our ap-
proach is based on hierarchical symbolic coordinates
like /usa/fl/miami/. Although hierarchical net-
work topologies lend themselves to the implementation
of such overlay networks, they may lead to bottlenecks
at the root of the hierarchy, long message paths, and in-
efficient bandwidth utilization. To avoid these problems,
we propose an overlay network that adapts its struc-
ture to the users’ communication patterns by dynami-
cally adding “shortcut” links to the hierarchy leading
to a routing mesh. We present an algorithm that care-
fully selects shortcuts based on their utility to assure
short message paths on the one hand and to reduce the
induced overhead on the other hand. Through simula-
tions we show that this approach decreases the average
path length significantly and reduces network load to
about 50% compared to hierarchical routing.

1. Introduction

Geographic messaging (geocast) allows for send-
ing messages to hosts located at certain geographic tar-
get areas. This communication paradigm is useful for a
wide range of applications, for instance, dissemination
of information with geographically limited relevance
like traffic and tourist information, location-based ad-
vertisements, or warning messages.

Our work is based on hierarchical symbolic coordi-
nates like /usa/fl/miami/, which denotes the city
of Miami in the State Florida in the USA. Such sym-
bolic coordinates have proven to be an intuitive, prag-
matic, and at the same time efficient alternative to geo-
metric addressing. Moreover, they are based on simple
hierarchical location models rather than complex geo-
metric models [1, 2].

For a large-scale geocast service used by a large

number of hosts spread all over the world, efficient geo-
cast message distribution becomes an important issue.
Different types of overlay networks have been proposed
in the literature for this purpose, e.g., [2–4]. Because
of the hierarchical nature of symbolic coordinates, one
could simply use a routing tree based on a geographic
partitioning of the service area, for instance, a routing
tree of country routers, state routers, city routers, etc.
However, such hierarchical topologies may lead to bot-
tlenecks at routers near the root of the tree and long
message paths resulting in a waste of bandwidth.

Therefore, the approaches in [2–4] start with a rout-
ing tree and add “shortcut” links between routers allow-
ing for direct connections to certain target areas. This
turns the routing tree into a mesh increasing bandwidth-
efficiency and scalability. However, the previously pro-
posed approaches are static in the sense that they do not
adapt the routing mesh to the users’ current communica-
tion needs dynamically. Shortcuts are added according
to simple heuristics. Either shortcuts are installed “top
down”, i.e., shortcuts to top-level locations like coun-
tries are preferred to shortcuts to smaller locations like
cities [2], or shortcuts to nearby locations are preferred
to distant shortcuts [3,4]. Although these are reasonable
heuristics for certain communication patterns—in par-
ticular, patterns where most messages are sent to areas
close to the sender—they may be inefficient for situa-
tions not fitting the anticipated pattern.

The main contribution of this paper is an adap-
tive shortcut selection algorithm. In contrast to static
schemes, shortcuts are selected based on the current
popularity of geographic target areas, i.e., shortcuts
are added and removed dynamically depending on the
users’ current communication needs. The result is an
adaptive overlay network in form of a routing mesh that
dynamically adapts links to any communication pattern.
Our evaluation results show that even for small numbers
of shortcuts this strategy significantly decreases path
lengths, thereby reducing the overall network load to
about 50% compared to tree-based routing. At the same

1
Published in Proceedings of the 22nd IEEE International Conference on Advanced Information

Networking and Applications (AINA 2008); pages 875-882, Gino-wan, Okinawa, Japan, March 2008.

© IEEE 2008

http://dx.doi.org/10.1109/AINA.2008.67



time, it only induces small communication, space, and
computational overhead for shortcut management.

Although we focus on geocast, the basic principle
of our approach is also beneficial to other fields. For
instance, overlay networks of servers managing large
numbers of mobile objects [5] can be optimized by
adding shortcuts to servers of frequently queried areas.
Moreover, peer-to-peer overlay networks can be im-
proved by adding links to frequently addressed nodes.

The remainder of this paper is structured as fol-
lows. In Sec. 2, we present related work. In Sec. 3,
the underlying addressing scheme and system model are
introduced, followed by the basic routing algorithm and
network architecture in Sec. 4. Our adaptive shortcut
selection algorithm for optimizing the overlay network
is presented in Sec. 5. Finally, the approach is evaluated
in Sec. 6, before the paper is concluded in Sec. 7.

2. Related Work

Our goal is a geocast routing infrastructure in form
of an overlay network that can be used for world-wide
geographic messaging (in contrast to approaches for
mobile ad hoc networks [6], which operate in lim-
ited geographic domains). Different geocast infrastruc-
tures have been proposed in the literature. Native geo-
cast routing algorithms are implemented on the net-
work layer. In [7], different geographic extensions to
distance-vector and link-state routing protocols as well
as a multicast-based geocast routing algorithm are pro-
posed. These approaches lead to “optimal” distribution
trees with respect to the topology of the IP network,
however, the IP network has to be modified, which is
not an easy task as the slow adoption of IPv6 shows.

Overlay geocast routing avoids this problem by im-
plementing geocast on the application layer using an
overlay network of geocast routers on top of the IP net-
work. For geometric addressing, [7] and [8] proposed
hierarchical and flat geocast overlay networks, respec-
tively. Although geometric addressing is powerful since
almost any target area can be addressed, a detailed, pos-
sibly three-dimensional model is required and routers
have to use complex geometric operations to forward
messages. Therefore, we focus on symbolic addressing
as a pragmatic and intuitive alternative without the need
for complex geometric models and operations.

For symbolic geocast, different hierarchical over-
lay networks and heuristics for adding shortcuts have
been proposed as already described in Sec. 1 [2–4]. The
basic idea of adding shortcuts has also been applied to
peer-to-peer overlay networks. In [9], so-called “ex-
pressways”, which correspond to shortcuts, are added to
a content-addressable overlay network (CAN) based on
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Figure 1. System model

a n-dimensional space. A node sets up expressways to
certain predefined zones of this space. Similar to [3, 4],
a node adds more links to nearby zones than to distant
zones. In contrast to these “static” heuristics for short-
cut selection, we want to adapt shortcuts dynamically
to the current popularity of targets. Our adaptive short-
cut selection strategy may either be used stand-alone,
or it may supplement the above heuristics to make them
robust to unanticipated communication patterns.

3. Addressing Scheme and System Model

Our approach is based on a hierarchical symbolic
location model [1]. The location hierarchy consists of a
set of locations L and is structured according to the spa-
tial inclusion relation between locations. For two loca-
tions l1 and l2 it holds l1 < l2, if l2 spatially contains l1.
l1 is called a descendant of l2; l2 is an ancestor of l1. Di-
rect descendants or ancestors are called child and parent
locations, respectively. Each location has a unique sym-
bolic address like /us/ny/new-york-city/ de-
noting New York City. Locations are used to define ser-
vice areas and message target areas.

The three components of our architecture are hosts,
message servers, and routers (cf. Fig. 1): Hosts repre-
sent the mobile or stationary recipients of geocast mes-
sages. Messages have to be delivered to all hosts within
the addressed target area. Geocast Message Servers
(GMS) are responsible for message distribution to all
hosts within certain access networks. A GMS has a geo-
graphic service area whose size is equal to the area cov-
ered by its assigned access network. Geocast Routers
are responsible for forwarding geocast messages from
the sender to the GMSs whose service areas overlap
with the target area of the message. Geocast routers
are arranged in an overlay network and exchange mes-
sages using the UDP service offered by the underlying
IP-based Internet infrastructure.

In this paper, we focus on the efficient forwarding
of messages via the geocast overlay network from the
sender to GMSs, i.e., to the local networks containing
the hosts. Efficient local message distribution protocols
for GMSs are beyond the scope of this paper.
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4. Overlay Network and Forwarding

In this section, we present the detailed architecture
of the overlay network, the mechanisms to set it up, and
the algorithm for forwarding messages.

The basic idea of our geocast approach is to have
a set of overlay routers with geographic services areas.
Each symbolic location is associated with one overlay
router. We call this router the designated router of the
area. For instance, there exists an earth router, coun-
try routers, state routers, city routers, etc. The symbolic
location associated with a router, say r, is called its ser-
vice area, s(r), which is defined when a router is con-
figured. Since it is not reasonable to assign a different
physical router to each single location, a physical router
can implement multiple virtual routers. For instance, a
building router also implements virtual floor routers for
this building as long as no designated floor routers have
been configured. The term “router” denotes a virtual
router unless otherwise noted.

Basically, these geocast routers form a routing tree
according to the spatial inclusion relation between ser-
vice areas. That is, the designated router of some loca-
tion, l, has a link to the designated router of the parent
location of l and vice versa. For instance, state routers
are child routers of country routers, city routers are
child routers of state routers, etc. To add a new router
to the tree, a bootstrapping process is performed. After
this process, the newly integrated router knows the UDP
addresses and service areas of parent and child routers
and vice versa. In [3] we describe this process in detail.

Over time, the routing tree is extended by short-
cuts that are used to send messages directly to cer-
tain target areas, by-passing routers of the routing tree.
Adding shortcuts leads to a routing mesh. This mesh
may change continuously as shortcuts may be added
and removed dynamically. Within this mesh the rout-
ing tree is sort of a backbone guaranteeing that a path
to every target area exists. Links of the routing tree are
used whenever no path via a shortcut exists.

When a router decides to set up a shortcut to a tar-
get area, say τ , it sends a TargetRouterSolicited(τ) re-
quest. This request is passed through the routing tree
according to the forwarding algorithm sketched below.
In order to reduce communication overhead, the request
is piggy-backed onto the next message forwarded to this
area. When the designated router of τ receives the re-
quest, it returns a reply including its UDP address to the
requester. Upon receipt of this reply, the source router
adds a new entry to its forwarding table to establish the
shortcut. Since shortcuts are unidirectional, only the
source router records this shortcut’s information.

Messages are forwarded in two phases (for a de-

tailed description see [3]). In phase 1, the message is
forwarded to the designated router of the target area.
For instance, a message to New York City is forwarded
to the New York City router. The forwarding algorithm
chooses the locally known router whose service area ad-
dress is the longest prefix of the target area address as
next hop. This can be either a router reachable via the
routing tree or a shortcut.

In phase 2, which is started by the designated router
of the target area, the message is distributed among all
designated routers with service areas within the target
area by simply forwarding the message down the sub-
hierarchy rooted at the designated router of the target
area. For instance, the New York City router forwards
the message to all borough routers like the Manhat-
tan router, these routers forward the message to dis-
trict routers, etc. In phase 2, the routers also forward
the message to the GMSs whose access networks cover
parts of the addressed area.

5. Adaptive Shortcut Selection

The main objective of shortcuts is to reduce the
network load by shortening the average communica-
tion path length. However, shortcuts do not come for
free. They cause extra communication overhead for
TargetRouterSolicited reply messages. Moreover, they
increase the length of forwarding tables, which adds ex-
tra space and computational overhead. Consequently,
the number of shortcuts is to be limited and only those
with the highest expected utility are to be established.

One important factor for a shortcut’s utility is the
popularity of its target area. If shortcuts are used fre-
quently, the extra set-up costs amortize rapidly. Of
course, the popularity of targets may differ from router
to router and may change over time. Therefore, routers
are required to individually monitor the popularity of
targets and dynamically decide which shortcuts to es-
tablish and to replace. Another factor is the number of
hops that can be saved by using the shortcut. Obviously,
the utility of a shortcut increases with the number of
saved hops and its popularity.

5.1. Target Utility

Next, we introduce the utility of a target to express
the estimated benefit should a shortcut be established
to a target, say τ . For this, we use the utility function,
utilt(τ), proposed by Lee et al. for web caching in [10].
In our context, utilt(τ) defines the utility of target τ at
time t. Each router, r, calculates utilities independently,
i.e., τ’s utility may differ between different routers. We
say a target is referenced at time t if r forwards a mes-
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sage to τ at time t. t is defined by r’s logical clock
ticking whenever r forwards a message. Assume that
r forwards a message to target τ ′ at time t ′. Then the
utility of another target τ at t ′ is defined based on the
previous reference time t of τ as follows:

utilt′(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if τ has never been
referenced

weight(τ) if τ = τ ′ and τ is
referenced for the
first time

utilt(τ)×F(t ′ − t) if τ = τ ′ and τ is
+weight(τ) referenced for the

2nd , 3rd , . . . time
utilt(τ)×F(t ′ − t) if τ �= τ ′

(1)
Function F(x) = ( 1

2 )λ x with parameter λ defines
the influence of reference recency and frequency. For
λ = 0, only the frequency of references is considered by
counting the number of past references. For large values
of λ , emphasis is put onto recency. With this definition,
each reference in the past contributes to the current util-
ity of τ , although only the utility at the last reference
time has to be stored. This reduces space overhead con-
siderably since the reference history of a target can be
stored with constant space complexity.

Function weight(τ) assigns an individual weight to
each target τ . We define the weight of τ as the num-
ber of saved overlay hops if a shortcut is established
to τ . The problem is that weight(τ) has to be defined
before a shortcut to τ is installed. However, without
detailed topological knowledge about the overlay net-
work, a router can only estimate path lengths. Still we
can give a good estimation of the saved hops based on
a router’s symbolic service area address and the tar-
get address. Consider the router with the service area
/usa/fl/miami/ and the target area /usa/ny/
new-york-city/. From the structure of these ad-
dresses, we can derive that the message has to traverse
3 (virtual) routers to reach the target via the routing tree
without using any shortcuts, namely the Florida State
Router, the US country router, and the New York State
router. Thus, a direct shortcut to New York City would
save 3 hops. This is only an estimation since a phys-
ical router may implement several virtual routers and
shortcuts between other routers may exist reducing the
number of hops actually saved by the potential shortcut.

5.2. Shortcut Selection Algorithm

Based on target utilities, router r can decide for
which targets shortcuts are to be established. For that
we distinguish between hot, warm, and cold targets.
There is only a limited number of hot targets, for which

r sets up shortcuts. Warm targets have been referenced
in the past, but they are not considered hot yet. For
warm targets, which may become hot later, r records a
utility but does not establish a shortcut. For cold tar-
gets, r maintains no information either because they
have been referenced never before or a long time ago
and hence have been evicted from the targets buffer.

Hot and warm targets are maintained in the so-
called targets buffer, B, which is divided into two areas,
the hot and warm targets area. Bhot denotes the hot tar-
gets area, which is of limited size |Bhot| ≤ maxsizeBhot .
Typically, maxsizeBhot is small (< 50) to strictly limit the
communication and computational overhead induced
by shortcuts. Bwarm denotes the warm targets area,
which is sort of a “warm-up” area allowing targets to
heat up and possibly become hot. In particular, this is
important if parameter λ is set such that the reference
frequency strongly impacts the utility of targets since
then a shortcut needs several references to increase its
utility value significantly. Each entry e in the targets
buffer contains the following fields: the symbolic ad-
dress of the target, the utility value of this target, and
the target’s shortcut, i.e., the UDP address of the tar-
get’s designated router, provided the target is hot.

Since the utility values of targets change over time,
warm targets may become hot and vice versa. Conse-
quently, we need a replacement condition that defines
when a warm target in Bwarm replaces a hot target in
Bhot. The replaced target is moved form Bhot to Bwarm.
For the new hot target, a shortcut is added; the shortcut
of the replaced target is removed. An intuitive approach
would be to keep the maxsizeBhot targets with the high-
est utility values in Bhot. The target with the minimum
utility in Bhot would be replaced when there exists a tar-
get with a higher utility in Bwarm. The problem with this
approach is that a shortcut is set up immediately when
a warm target’s utility exceeds the minimum utility in
Bhot. Since the utility of a target decreases monotoni-
cally between two references to that target, it may hap-
pen that targets that are referenced sporadically have
already been removed from Bhot before they are ref-
erenced a second time. Obviously, for such “volatile”
targets the overhead for setting up a shortcut does not
pay-off since the shortcut is replaced before it can be
used. This is especially the case if the utility func-
tion stresses recency as this leads to high utility values
that drop rapidly if no further reference follows shortly.
However, considering recency is important to be able to
react rapidly to changing target popularity.

The basic idea of our replacement strategy is to
test whether a target’s utility is “stable” enough to con-
stantly stay in Bhot for a period of minre f consecutive
references to the target before it is considered hot and
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a shortcut is set up to it. In other words, the target has
to “prove” minre f times that is has the potential to be
a stable shortcut target that is unlikely to be evicted be-
fore the costs of shortcut setup have amortized. The
distinction of volatile and stable shortcuts is the main
difference to traditional cache replacement strategies
used in web caching, database buffer management, etc.
Caching web or database pages does not cause commu-
nication overhead since the page has to be fetched from
the server or database anyway before it can be accessed.
In contrast, setting up a shortcut is optional since mes-
sages can always be sent via the routing tree. Deciding
about the stability of a target before actually setting up
the shortcut has impact on communication overhead.

We now give a precise definition of the so-called
hot target condition that defines when a previously
warm target becomes hot and hence replaces a target
from Bhot. First, we define the Least-Hot Target, τmin,t ,
at time t as the target with the minimum utility in Bhot

(for a concise description, we only consider the steady
state when Bhot is already filled):

∀τ ∈ Bhot : utilt(τmin,t)≤ utilt(τ) (2)

Hot Target Condition: Let tτ, j be the time of the
j-th reference to target τ . n denotes the the number
of times τ has been referenced so far. Then target τ
changes from the warm to the hot state at time tτ,n, if

∀t ∈ [tτ,n−minre f +1,tτ,n] : utilt(τ) > utilt(τmin,t) (3)

If the hot target condition is fulfilled for some tar-
get τ at time t, τ from Bwarm replaces τmin,t in Bhot and
vice versa. For greater minre f , the chance of selecting
only stable shortcuts increases, thus, the overhead de-
creases. On the other hand, the algorithm reacts slower
to changes of a target’s popularity. For minre f = 1, no
stability check is performed at all.

The definition of the utility function assures that
this check can be implemented efficiently. Note that
the utility of target τ decreases monotonically between
two consecutive references to τ . However, two targets
that are not referenced do not change their order de-
fined by their utility values! Therefore, we only need
to compare the utility of a warm target τ to the util-
ity of the Least-Hot Target when τ is referenced and
not on each reference to other targets between two con-
secutive references to τ . In other words, if util(τ) is
greater than util(τmin) at times tτ,n−1, tτ,n−1, and tτ,n—
i.e., at the last reference time, just before and at the cur-
rent reference—then it also must have been greater than
util(τmin) at any time between tτ,n−1 and tτ,n.

We implemented Bhot as a heap in order to be able
to find the Least-Hot Target to be evicted and compared

quickly. This heap has a complexity of O(log|Bhot|) for
update operations and therefore can be considered effi-
cient to manage the small number of hot targets even for
high message rates. Note that computational efficiency
is crucial, since our algorithm for shortcut selection is
an online algorithm deciding in real-time about relevant
shortcuts whenever a message is forwarded.

Also the size of Bwarm is inherently limited by
router memory, which leads to situations, where a warm
target is to be replaced by a formerly cold target. Usu-
ally, maxsizeBwarm is much greater than maxsizeBhot and
may contain thousands of entries. Therefore, we used
a simple LRU buffer for Bwarm with a complexity of
O(1) for replacement operations. Using LRU, it is not
guaranteed that the target with the least utility is evicted
from Bwarm. However, it is very likely that a target with
a small utility is evicted, since targets that have not been
referenced for a long time also have a small utility.

The following algorithm shows the complete short-
cut selection algorithm execute by each router r:

1 On receiving message with target area τ do
tnow ← tnow +1 // increase logical time

3 // update utility of target
if no entry e ∈ B with e.target = τ exists then

5 // 1st reference of τ
create new buffer entry e with

7 e.target ← τ; e.shortcut ← unde f
e.util ← weight(τ); e.tn−1 ← tnow; e.re f cnt ← 0

9 put e into Bwarm // LRU replacement policy
else

11 // 2nd , 3rd , . . . reference of τ
e← buffer entry ∈ B with e.target = τ

13 utiltτ,n−1 = e.util
e.util ← e.util×F(tnow−e.tn−1)+weight(τ)

15 e.tn−1 ← tnow
fi

17 // update target position in buffer
if e ∈ Bhot then

19 update position of e in Bhot
else // e ∈ Bwarm

21 // check whether τ fulfills hot target condition
if e.re f cnt = 0 then

23 if e.util ≥ utiltnow(τmin) then
e.re f cnt ← 1 fi

25 else // e.re f cnt > 0
if utiltτ,n−1 > utiltnow−1(τmin) and

27 e.util > utiltnow(τmin) then
e.re f cnt ← e.re f cnt +1

29 else
e.re f cnt ← 0 // e is volatile

31 fi
fi

33 if e.re f cnt ≥ minre f then
// τ is hot now; replace τmin by τ

35 e′ ← buffer entry ∈ Bhot with e′.target = τmin

5



move e′ from Bhot to Bwarm
37 e′.re f cnt ← 0

move e from Bwarm to Bhot
39 set up shortcut to τ (set e.shortcut)

fi
41 fi

5.3. Indirect Shortcuts and Covered Shortcuts

Not only a shortcut directly aiming at the target
area router shortens the path to the target area. Any
other shortcut targeted at routers on the path between
the source and the target area router also leads to a
shorter path. We call such shortcuts indirect shortcuts.

Moreover, we can imagine situations where a larger
area can be considered to be more popular than smaller
areas below this area in the hierarchy. If for instance
the Miami router forwards one message to each city in
Texas, then the cities are not popular targets from the
Miami router’s perspective. However, the state Texas
can be considered to be popular since many messages
are sent to areas within Texas. Therefore, an indirect
shortcut to Texas is a good choice for the large number
of messages sent to “warm” city targets in Texas.

We modify our shortcut selection algorithm as fol-
lows to allow for indirect shortcuts. If a message to
target τ , arrives at the designated router r of area s(r),
then all locations on a path between τ and s(r) in the
location hierarchy are referenced starting at τ . Excep-
tions are child and parent locations of s(r), which are
not considered since links to parent and child routers
already exist through the routing tree. For instance, the
Miami router references the following targets on receiv-
ing a message to New York City: New York City, New
York State, USA. Florida is not referenced since it is the
parent location of Miami.

6. Evaluation

6.1. Simulation Set Up

For our simulation we use the network simulator
ns-2. The underlay network is a real Internet topol-
ogy of one autonomous system in the USA from [11]
consisting of of 2942 routers and their geographic posi-
tions. The overlay network consists of country, state,
city, and city district geocast routers. Each overlay
router is linked to a single underlay router such that the
designated geocast router of a geographic area is linked
to an underlay router located in this area.

We address target areas at the city district level.
The geocast traffic outgoing from each city district fol-
lows a Poisson distribution with an average rate of one

geocast message per second. Each curve is the result of
five simulation runs of 200 s duration.

We compare our adaptive shortcut selection algo-
rithm (Adaptive Shortcut Routing (ASR)) to the static
shortcut selection algorithm (Static Shortcut Routing
(SSR)) proposed in [3] and to hierarchical routing us-
ing a routing tree according to the spatial inclusion re-
lation between service areas without any shortcuts (Ba-
sic Routing (BR)). In SSR, each router statically sets up
shortcuts to all ancestor locations of its service area as
well as to child locations of ancestor locations. So SSR
sets up more links to areas close to a router’s service
area and few to distant areas, whereas ASR dynamically
adapts shortcuts to target area popularity.

We use traffic patterns with different target area
popularity distributions: Uniform: All targets are
equally popular. Concentrated-1: The popularity of tar-
gets follows a Zipf distribution. Each sender orders tar-
get areas randomly or by distance to the sender (see
below). Then, the popularity P(X = i) of messages
targeted to area τi with 1 ≤ i ≤ Ntargets is defined as

P(X = i) = i−s

∑
Ntargets
n=1

1
n

. For Concentrated-1, we set s = 1,

i.e., a sender sends about 80% of its messages to 25%
of all targets. Concentrated-2: The popularity of targets
is defined by a Zipf distribution with s = 2, i.e., a sender
sends 95% of its messages to 1% of all targets.

In order to evaluate the influence of the fact that
SSR sets up more links to geographically close ar-
eas, we combine the above popularity distributions
and different geographic target distributions: Distance-
dependent target popularity: The popularity of targets
decreases as distance to the sender increases. Each
sender orders targets according to their distance to the
sender. Then, the popularity of targets is calculated
according to the above Zipf distribution. Distance-
independent target popularity: Each sender orders tar-
gets randomly and defines the popularity of target areas
according to the above Zipf distributions.

6.2. Evaluation of Path Length

First, we evaluate ASR path lengths. As perfor-
mance metric we use the stretch factor, which denotes
the factor by which underlay network paths achieved by
ASR, SSR, or BR are longer than the optimal underlay
path lengths. The optimum is defined by shortest path
trees rooted at the sender and pruned such that they only
contain branches to GMSs in the target area.

6.2.1. Impact of Buffer Size. First, we vary the buffer
size of Bhot for ASR. Bwarm has a fixed size of 1000 en-
tries. Shortcuts are only established for targets in Bhot.
For space restrictions, we only present the results for
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the distance-independent distributions. Parameter λ is
set to 0.05. Different geographic distributions and λ
values only showed minimal differences.

Figure 2(a) shows the stretch factors for increas-
ing sizes of Bhot. Without shortcuts (|Bhot| = 0), the
path is about 4.7 times longer than the optimal path.
Path lengths decrease rapidly for increasing buffer sizes.
Even small buffer sizes of 20 shortcuts lead to paths that
are on average 50% to 75% shorter than without short-
cuts. If all targets are equally popular—the worst case
for our adaptive shortcut selection algorithm ASR—
path lengths are almost halved for |Bhot| = 20 entries.
In this case, Bhot is filled with the (few) top-level areas
like countries and states. For the Concentrated-2 distri-
bution, ASR selects the (few) very popular city districts
and almost reaches the optimal stretch factor of 1 for 20
shortcuts; for the Concentrated-1 distribution, the opti-
mum performance is reached for 50 shortcuts.

6.2.2. Comparison of ASR to SSR and BR. Next, we
parametrize ASR as follows and compare it to SSR and
BR: |Bhot|= 50, |Bwarm|= 1000, λ = 0.05. Figure 2(b),
2(c), and 2(d) plot the stretch factor over 200 s simu-
lation time for the distance-independent target distribu-
tions. At t = 0 all routers using ASR start with an empty
buffer, which then is populated during the simulation.
All shortcuts are set up from the beginning for SSR.

The results show that the stretch factors of SSR do
not change over time since shortcuts are not adapted,
while with ASR stretch factors decrease rapidly as
Bhot is populated with shortcuts. For both distance-
independent target distributions, SSR cannot achieve a
stretch factor less than 2.3 (cf. Fig. 2(c), 2(d)). Since a
significant portion of message is sent to distant targets,
SSR can often only use shortcuts to top-level areas like
states. In contrast, ASR continuously adapts its short-
cuts and shows significantly smaller stretch factors.
For the uniform distribution, ASR achieves paths that
are about 10% shorter on average than using SSR (cf.
Fig. 2(b)). For the Concentrated-1 and Concentrated-
2 distributions ASR clearly outperforms SSR achieving
paths that are about 30% to 50% shorter on average than
using SSR (cf. Fig. 2(c) and 2(d)). Compared to BR,
ASR paths are about 55% to 75% shorter on average.

Figures 2(e) and 2(f) show the results for distance-
dependent target distributions, i.e., the communication
patterns SSR is specifically designed for. The per-
formance of SSR improves significantly compared to
distance-independent distributions. Remarkably, ASR
reaches SSR’s performance quickly by adapting short-
cuts although ASR sets up fewer shortcuts (50 per router
for ASR compared to more than 500 for SSR). BR on
average doubles the path lengths of SSR and ASR.
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6.3. Communication Overhead

Especially volatile shortcuts evicted fast from the
buffer cause overhead. With the stability check
(Sec. 5.2) we try to reduce this overhead. Here, we an-
alyze the efficiency of this check. The following sim-
ulations are ran with and without stability check. The
check is parametrized using parameter minre f . Higher
minre f values increase the probability of setting up sta-
ble shortcuts only. The other values of this simulation
are: |Bhot| = 50, |Bwarm| = 1000, λ = 0.05, Distance-
independent/Concentrated-1 target distribution.

Figure 3 shows the overall message rate of
TargetRouterSolicited requests over time. We see that
the rate without stability check (minre f = 1) is signif-
icantly higher than with stability check (minre f > 1).
Already for a stability check with a small period of two
consecutive references (minre f = 2), the overhead is
only about 30% of the overhead without stability check
when the system is in the steady state. Longer periods,
i.e., minre f > 2 reduce the overhead only marginally.
The overhead rapidly settles down at about 225 mes-
sages per second (minre f = 2) when the majority of
shortcuts do not change anymore. This amounts to 15%
of all messages (geocast + TargetRouterSolicited mes-
sages). However, the savings due to reducing the stretch
factor compensate for this overhead by far. For the
distance-independent distribution, ASR leads to about
80% of the overall network load (UDP datagrams of
geocast messages and TargetRouterSolicited messages)
compared to SSR and 45% compared to BR.

7. Summary and Future Work

We presented an adaptive overlay network for
world-wide geographic messaging. Based on a tree-
shaped network of geocast routers, shortcut links are
added to build a routing mesh with short message paths.
In contrast to existing algorithms for shortcut selection,
we dynamically adapt shortcuts according to target pop-
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Figure 2. Stretch factors: (a) ASR with varying hot buffer size (b) Uniform target distribution
(c) Distance-independent/Concentrated-1 distr. (d) Distance-independent/Concentrated-2 distr. (e)
Distance-dependent/Concentrated-1 distr. (f) Distance-dependent/Concentrated-2 distr.

ularity. We showed that this approach reduces path
lengths and network load significantly compared to hi-
erarchical routing or non-adaptive shortcuts.

Mechanisms for making the routing mesh—
shortcuts in particular—robust to link or router failures
are an important extension of the presented approach.
We have already developed such mechanisms. How-
ever, for space restrictions we have to refer the reader to
our technical report [12] for further details.
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