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Abstract. In this paper, we introduce a new PIC method based on an adaptive multi-resolution

scheme for solving the one dimensional Vlasov–Poisson equation. Our approach is based on a

description of the solution by particles of unit weight and on a reconstruction of the density at

each time step of the numerical scheme by an adaptive wavelet technique: the density is firstly

estimated in a proper wavelet basis as a distribution function from the current empirical data

and then “de-noised” by a thresholding procedure. The so-called Landau damping problem is

considered for validating our method. The numerical results agree with those obtained by the

classical PIC scheme, suggesting that this multi-resolution procedure could be extended with

success to plasma dynamics in higher dimensions.

1 Introduction

The kinetic motion of a physic plasma of charged particles in which the collisions

between particles are neglected is usually modeled by the Vlasov equation [4],

∂f

∂t
+ v · ∇xf − (E · ∇v)f = 0, (x, v) ∈ R

d × R
d , (1.1)
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f (x, v, t) being the distribution function and E the electrostatic field. The self-

consistent field produced by the charge of the particles is

Eself(x, t) = −∇xφself(x, t), (1.2)

where

−�xφself = ρ(x, t), ρ(x, t) =
∫

f (x, v, t) dv. (1.3)

The system is closed with an initial data f (x, v, 0) = f0(x, v) and some decay

conditions for the Poisson equation.

If E = Eself, this model is clearly dispersive due to the repulsive forces and then, in

order to confine the particles in a bounded domain, as usual, we consider an additional

given external potential φext(x) and rewrite E as:

E(x, t) = Eself + Eext := −(∇xφself + ∇xφext). (1.4)

In this project we are interested in the numerical resolution of the repulsive VP system

(1.1)–(1.2)–(1.4) endowed with an appropriate initial data by means of the Particle-
In-Cell (PIC) method. In the classical PIC method (see [6], [12]) the initial data is

approximated by a set of particles, and the method aims to follow the trajectories (the

characteristic curves) of these particles. In order to reflect the distribution function

f0, the initial set of particles can either be uniformly distributed and weighted with

the value of f0 at the corresponding point, or distributed randomly according to the

distribution function f0 and identically weighted. In this paper we follow the second

approach.

The main difficulty in the PIC method lies in the construction of the characteristic

curves


















dX(t)

dt
= V (t),

dV (t)

dt
= E(X(t), t),

because of the nonlinearity due to the self-consistent potential. This requires to rebuild

the charge density ρ at each time step in order to solve the Poisson equation and to

obtain the electric field. Generally, this method gives good results with a relatively

small number of particles but produces some numerical noise which prevent from

describing precisely the tail of the distribution function. To overcome this drawback,

it has been proposed to solve the problem by Eulerian methods [1] or semi Lagrangian

methods [2]. Here, we propose to combine the PIC method with density estimation

techniques based on wavelet thresholding [8] in order to reduce the noise level: the

density ρ(x, t) is estimated at time t > 0 by an expansion of the type

∑

k

ĉJ1,k ϕJ1,k(x) +
J0

∑

j=J1

(

2j −1
∑

k=0

Tη(d̂j,k) ψj,k(x)
)

. (1.5)
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Here ϕJ1,k and ψj,k are the scaling functions and the wavelets, respectively. The

scaling and detail coefficients ĉJ1,k and d̂j,k are estimated from the particle distribution

at time t , and Tη is a thresholding operator at level η. Both the threshold level η and

the finest resolution level J0 are chosen depending on the number of particles.

The paper is organized as follows: in Section 2 we describe how the density is

estimated by wavelets, in particular we present several thresholding strategies. Then,

in Section 3 we present the new numerical scheme, making a comparison with the

classical PIC method. In Section 4, we give a numerical illustration with the simulation

of the so-called Landau damping.

2 Density estimation by wavelet thresholding

Wavelet decompositions have been widely studied since the last two decades both

from the theoretical and practical point of view. In a nutshell, these decompositions

are based on a hierarchy of nested approximation spaces (Vj )j≥0 which should be

thought as finite element spaces of mesh size h ∼ 2−j , endowed with a nodal basis

of the form ϕj,k := 2j/2ϕ(2j · −k). The functions ϕj,k are often referred to as primal

scaling functions. A projector onto Vj is of the form

Pjf :=
∑

k

cj,kϕj,k with cj,k := 〈f, ϕ̃j,k〉, (2.1)

where ϕ̃j,k are dual scaling functions. The primal and dual wavelets ψj,k and ψ̃j,k

characterize the update between two successive level of approximation in the sense

that

Pj+1f − Pjf :=
∑

k

dj,kψj,k with dj,k := 〈f, ψ̃j,k〉, (2.2)

We refer to [7] for a classical introduction on wavelets, [5] for more information on

their application to numerical simulation of PDE’s.

In the particular context of PIC methods, we are interested in the reconstruc-

tion of the density ρ(x, t) from the locations (xi)i=1,...,N of the particles at time t .

As explained in the introduction, this reconstruction has the form (1.5) where ĉJ1,k

and d̂j,k are estimators of the exact coefficients cJ1,k :=
∫

ρ(x, t)ϕ̃J1,k(x) dx and

dJ1,k :=
∫

ρ(x, t)ψ̃j,k(x) dx from the empirical distribution according to

ĉJ1,k := 1

N

N
∑

i=1

ϕJ1,k(xi), (2.3)
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and

d̂j,k := 1

N

N
∑

i=1

ψj,k(xi). (2.4)

The interest of the thresholding procedure, in contrast to a simple projection or regu-

larization at a fixed scale j which would compute
∑

k ĉj,kϕj,k is twofold: (i) the

regularization level j is allowed to vary locally in the sense that the procedure might

retain coefficients dj,k at scale j only for some k which typically corresponds to the

regions where the density has sharp transitions and requires more resolution, and

(ii) the local regularization level automatically adapts to the unknown amount of

smoothness of the density through the thresholding procedure which only depends on

the number N of samples.

Following Donoho et al. [8], the maximal scale level J0 and the threshold η depend

on the number of samples according to

2J0 ∼ N1/2 (2.5)

and

η ∼
√

log(N)/N. (2.6)

Another choice proposed in [8] is a threshold parameter which also depends on the

scale level j according to η = ηj = K
√

j/N . Two techniques are generally used to

threshold the details: “hard” thresholding defined by Tη(y) = yχ {|y|≥η} and “soft”

thresholding defined by Tη(y) = Sign(y) max{0, |y| − η}. We shall precise thresh-

olding strategies that we choose for our applications in Section 4.

The density reconstruction method varies with the choice of the wavelet basis.

This choice is dictated by two constraints:

1. Numerical simplicity: according to (2.3) and (2.4), the coefficients are estimated

through the evaluation of dual scaling functions ϕ̃J1,k and dual wavelets ψ̃j,k at

the points xi . It is therefore useful that these functions have a simple analyti-

cal form. In particular, high order compactly supported orthonormal wavelets

cannot be used since they do not have an explicit analytical expression.

2. High order accuracy and smoothness: the primal wavelet system should have

high order accuracy and smoothness in order to ensure the quality of the ap-

proximation of ρ(x, t) by the expansion (1.5).

The choice of the Haar system is good with respect to the first constraint, since in

this case the scaling function ϕ̃ = ϕ is simply the box function χ [0,1], so that the

estimation of a scaling coefficient cj,k = 〈ρ, ϕ̃j,k〉 simply amounts in counting the

points falling in the interval Ij,k = [2−jk, 2−j (k + 1)[:

ĉj,k := 2j/2 1

N
#{i; xi ∈ Ij,k}. (2.7)



An adaptive Particle-In-Cell method using multi-resolution analysis 33

In particular, we can compute the ĉJ0,k at the finest scale level and use the Haar

transform algorithm to compute the d̂j,k according to the classical relations:

ĉj,k = ĉj+1,2k + ĉj+1,2k+1√
2

and d̂j,k = ĉj+1,2k − ĉj+1,2k+1√
2

. (2.8)

However, this choice is not good with respect to the second constraint since piecewise

constant functions are low order accurate. In order to fix this defect, while preserving

the numerical simplicity of the method, we propose to use a higher order (third order)

reconstruction still based on the box function χ [0,1] as ϕ̃, as proposed by Ami Harten

in [11]. This means that the coefficients ĉj,k are still defined by (2.7), but the relation

between the approximation and detail coefficients ĉj,k and d̂j,k is modified according

to

d̂j,k = 1√
2
ĉj+1,2k − ĉj,k − 1

8
(ĉj,k−1 − ĉj,k+1). (2.9)

This is an instance of the so-called lifting scheme introduced in [14]. Using this

relation, we estimate all the coefficients cj,k and dj,k for J = J1, . . . , J0 − 1 and we

apply the thresholding operator Tη to the estimated coefficients d̂j,k .

It should be remarked that the primal scaling functions ϕJ1,k and wavelets ψj,k do

not have an explicit analytical expression, in contrast to the dual scaling functions and

wavelets. However, we can reconstruct the estimator (1.5) at arbitrarily fine resolution

by applying the reconstruction formulae

ĉj+1,2k =
√

2
[

ĉj,k − 1

8
(ĉj,k−1 − ĉj,k+1) + Tη(d̂j,k)

]

, (2.10)

and

ĉj+1,2k+1 =
√

2ĉj,k − ĉj+1,2k. (2.11)

It is also possible to construct wavelet-like multiscale decompositions where both the

dual and primal functions have a simple analytical expression, based on the quasi-

interpolation operator

Pjf :=
∑

k

cj,kϕj,k, cj,k = 〈f, ϕj,k〉, (2.12)

where ϕ = (1 − |x|)+ is the classical hat function. We therefore estimate the coeffi-

cients by

ĉj,k := 1

N

N
∑

i=1

ϕj,k(Xi), (2.13)
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at the finest scale j = J0 and derive them recursively at coarser levels by the formula

ĉj,k = 1√
2
ĉj+1,2k + 1

2
√

2
(ĉj+1,2k+1 + ĉj+1,2k−1).

In this case, the detail components at level j reads

(Pj+1 − Pj )f =
∑

k

[d̂0
j,kϕj+1,2k + d̂+

j,kϕj+1,2k+1 + d̂−
j,kϕj+1,2k−1], (2.14)

with

d̂0
j,k :=

√
2 − 1√

2
ĉj+1,2k − 1

2
√

2
ĉj+1,2k+1 − 1

2
√

2
ĉj+1,2k−1,

d̂+
j,k := 2

√
2 − 1

4
√

2
ĉj+1,2k+1 − 1

2
√

2
ĉj+1,2k − 1

4
√

2
ĉj+1,2k−1,

d̂−
j,k := 2

√
2 − 1

4
√

2
ĉj+1,2k−1 − 1

2
√

2
ĉj+1,2k − 1

4
√

2
ĉj+1,2k.

The triplet (d0
j,k, d

+
j,k, d

−
j,k) plays the role of the wavelet coefficient and it is jointly

thresholded in order to preserve the density mass.

In the sequel of the paper, we shall denote W0 for the first algorithm based on

the lifting scheme we have described and W1 for the second algorithm based on the

quasi-interpolation operator. In the numerical scheme, we apply these algorithms and

reconstruct the denoised density at the finest level J0 on which we apply the Poisson

solver to derive the electric field.

3 Numerical schemes

We present here the new scheme we introduce in the paper (PICONU1) as a modifica-

tion of the classical PIC method which will be used to compare the numerical results.

Of course, the considered Vlasov–Poisson equation is one dimensional in space and

in velocity, so we can write a formal expression using the fundamental solution of the

Poisson equation. Indeed, we have

−△	self = ρ ⇐⇒ φself = −1

2
|x| ⇐⇒ Eself = 1

2

x

|x| ∗ ρ.

On the other hand, if we denote Xi(t) the position of the ith particle at time t for

i = 1 . . . N , the density is

ρ(x, t) = 1

N

(

N
∑

i=1

δXi (t)

)

,

1which stands in French for PIC Ondelettes NUmérique
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where δξ stands for the Dirac measure at point ξ. Hence, the self-consistent field Eself

can be computed by the following formula ( written in general dimension d)

Eself(x, t) = 1

2N

(

N
∑

i=1

x − Xi

|x − Xi |d
)

.

However, we underline that, in the practical point of view, we can not proceed in such

a way in higher dimensions (d > 1) due to the singularity of the Green kernel, and

that the adaptive method proposed in this paper is aimed at being extended, e.g., to

the 2-D Vlasov–Poisson problem.

3.1 The PIC method

The PIC method consists in following the track to particles with position Xi and

velocity Vi along the characteristic curves

dXi(t)

dt
= Vi(t),

dVi(t)

dt
= E(Xi(t), t),

Xi(0) = xi, Vi(0) = vi .

Let f0 be the initial distribution, the distribution at time t = T is computed as

follows:

• Initialization: build (xi, vi), N pair of random variables drawn of the initial

distribution f0.

• Time marching scheme: the (nonlinear) characteristic equation is split and in-

tegrated as follows: set δt = T
Nmax

where Nmax is the number of time steps,

then, for n = 0, . . . , Nmax

V n+1/2 = V n + δt

2
En(Xn) (3.1a)

Xn+1 = Xn + δt V n+1/2 (3.1b)

Build ρn+1 (3.1c)

Solve − �hφ
n+1 = ρn+1 (3.1d)
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En+1(Xn+1) = ∇hφ
n+1(Xn+1) (3.1e)

V n+1 = V n+1/2 + δt

2
En+1(Xn+1) (3.1f)

• Build f Nmax by interpolation.

In step 3.1c, we must compute the charge density ρ on the discrete grid points. Two

classical methods are Nearest Grid Point (NGP) and Cloud In Cell (CIC): they consist

on P 0 and P 1 interpolations respectively. According to Birdsall and Langdon in [3,

p. 19–23], CIC reduces the noise relative to the NGP. Higher order techniques could

be used too, some of them consist on quadratic and cubic spline interpolations. In our

numerical results, we will compare our schemes to a PIC method with CIC and NGP

density reconstruction.

3.2 The adaptive scheme (PICONU)

The PICONU scheme differs from the classical PIC method in the step (3.1c). The

density is computed by Donoho’s technique described in Section 2. For this method,

we have to select the finest and the coarsest resolution level (J0 and J1), the threshold

and the mesh size for the Poisson equation (3.1d). In the classical density estimation,

the noise appears when the mesh size is locally too small. We expect to find the “good

threshold” which refines the density mesh only in the region where there are a lot of

particles.

4 Numerical results

The numerical results presented hereafter were obtained with SCILAB, the (free)

numerical software of the INRIA [13]. As a validation of our scheme, we consider the

simulation of the so-called Landau damping. This is indeed a significant numerical

test, due to its difficulty in simulating, and it has been considered by several authors

for validating a code, see, e.g., [3], [9] and references therein. This test consists in

the observation of the decay rate of the electrostatic energy obtained when the initial

distribution is the perturbed Maxwellian distribution defined by

f0(x, v) = 1√
2π

exp (−v2/2vth
2)(1 + α cos(kx)) for all (x, v) ∈

[

− L

2
, L

2

]

× R,

where vth is the thermal mean velocity, L = 2π
k

and k, α are positive constants with

α ≪ 1. Let us recall that if E denotes the electric field, the electrostatic energy is

defined by
∫ L/2
−L/2 E2 dx.We consider that the tail of the distribution does not contribute

to the problem for |v| > vmax for some vmax large enough. We will choose vth = 1

and vmax = 6.
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More precisely, one must observe numerically that

• The decay rate of electrostatic energy defines a line of director coefficient

γL =
√

π

8
k−3 exp

(

− 1

2k2
− 3

2

)

,

• Oscillations frequency of the electrostatic energy must be

ω2 = 1 + 3k2.

The Landau damping is very sensitive to the initial distribution and we follow [3] using

for that purpose the so-called “quiet start” initialization for α small enough. For all

the tests, we do vary only α taking as fixed value k = 0.5.

4.1 Comparison between NGP and W0

As a reference for validating our new scheme, we shall compare the results obtained

with the classical PIC method where the charge density is computed using the NGP

technique described in [3, pp. 21, 22] to the wavelets build from Haar system. In

the finest resolution level J0 is equal to the coarsest one J1, these two methods are

equivalent. In Figures 1, 2 and 3 we plotted the charge density, the electrostatic field

and the discrete electrostatic energy of the plasma. The graph of the electrostatic

energy is in a log-scale and the line corresponds to the theoretical decay of director

coefficient γL.

We used the following parameters: the time step δt is chosen equal to 0.1. The

threshold is the one given in (2.6) and more precisely, we choose η = 0.5 ×
√

j/N.

The finest and coarsest resolution levels are 6 and 2, this corresponds to about 800

particles per cell. Then we use NGP on a grid of 26 intervals.

The NGP method requires a high number of particles per cell. The only way to

reduce it is to increase the accuracy of the interpolation. The wavelets, based on the

same interpolation, inherit the same problem. However, we observe that wavelets

allow to reduce efficiently the noise of the method. This is obvious in Figure 3

and 4 looking at the minima of electrostatic energy: the local minima are obtained

theoretically when the electrostatic field vanishes and numerically, these minima have

the same magnitude than the discrete L2-norm of the noise. Furthermore, we observe

that the charge density and the electrostatic field are smoother than in the simple P 0

interpolation case. Whatever noisy is the charge density, the electrostatic field is nearly

smooth. It is due to the particular case of the one dimensional integration which has a

smoothing effect. In higher dimension, the smoothness will take a greater importance

and the use of wavelets should be more pertinent.
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(d) t = 7.4

Figure 1. Landau damping with α = 0.1. Charge density computed with 26000 particles,

in solid line: the PICONU method (W0), in dashed line: the classical PIC (NGP).

4.2 Comparison between CIC and W1

The simulation parameters are chosen as follows: the highest level of resolution

equals 7 and the number of particles equals 10 000. It implies that there is about 80 par-

ticles per cell. The time step δt equals 0.1. For the density estimation using wavelets,

the coarsest resolution level is equal to 3 and the threshold is this one prescribed by

Donoho, that is K ×
√

j/N. The coefficient RT gives the rate of thresholded coeffi-

cients that is the ratio of the mean value of thresholded coefficients at each time step.

Figure 5 gives the electrostatic energy computed with the classical PIC (CIC). We

observe that the classical PIC fails when α becomes small. On the contrary, the adap-

tive method gives some better results (see Figure 6). A finer analysis of the threshold

shows that all the coefficients are thresholded on the two finest grid. This is a natural

consequence of the landau test: the distribution of particles corresponds to a small

perturbation of the uniform distribution. Since we use only a first order reconstruction,

the charge density is less smooth than in the case of W0.
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Figure 2. Landau damping with α = 0.1. Electrostatic field computed with 26 000

particles, in solid line: the PICONU method (W0), in dashed line: the classical PIC

(NGP).

5 Concluding remarks and perspectives

The results presented in this paper show that the adaptive wavelet reconstruction of the

density for the Vlasov–Poisson equation is a promising approach to solve such plasma

dynamics in a Lagrangian framework even though the choice of appropriated wavelets

must still be discussed. The W0 wavelets are not completely satisfying because they

require a high number of particles. Moreover, these methods are unable to verify

the landau damping test for small perturbation magnitude α. We are interested in

the numerical simulation where there are less than 100 particles per cell. The W1

wavelets satisfy this condition but do not smooth the density. The results proved that

threshold helps to find the appropriate (adaptive) mesh and it should become crucial

in tests where particles are very dispersed. Moreover, highest order reconstruction is
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(a) Classical PIC (NGP)
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(b) PICONU method (W0)

Figure 3. Landau damping with α = 0.1, k = 0.5. Electrostatic energy.

particularly efficient to reduce the noise. A compromise has to be found between the

reconstruction and accuracy order which minimize the computational time.

We have considered here one dimensional Vlasov–Poisson but our approach will

be extended in the near future to higher dimensional problems for which the Eulerian

framework becomes more costly in terms of CPU time since large numbers of grid

points must be used in that case.
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Figure 4. Superposition of electrostatic energy with 26 000 particles. In solid line:

damping obtained with PICONU method (W0); in dashed line: classical PIC method

(NGP).
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(b) α = 0.01

Figure 5. Linear Landau damping with classical PIC (CIC). 10 000 particles, 128 cells.
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(a) α = 0.1, RT = 13%, K = 0.5
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(b) α = 0.01, RT = 96%, K = 1.5

Figure 6. Linear Landau damping, PICONU (W1), 10 000 particles.
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