
Research Article

An Adaptive Particle Swarm Optimization Algorithm Based on
Directed Weighted Complex Network

Ming Li, Wenqiang Du, and Fuzhong Nian

School of Computer and Communication, LanZhou University of Technology, Lanzhou 730050, China

Correspondence should be addressed to Wenqiang Du; 877621050@qq.com

Received 12 November 2013; Revised 22 January 2014; Accepted 21 February 2014; Published 2 April 2014

Academic Editor: Ge Guo

Copyright © 2014 Ming Li et al. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e disadvantages of particle swarm optimization (PSO) algorithm are that it is easy to fall into local optimum in high-dimensional
space and has a low convergence rate in the iterative process. To deal with these problems, an adaptive particle swarm optimization
algorithm based on directed weighted complex network (DWCNPSO) is proposed. Particles can be scattered uniformly over the
search space by using the topology of small-world network to initialize the particles position. At the same time, an evolutionary
mechanism of the directed dynamic network is employed to make the particles evolve into the scale-free network when the in-
degree obeys power-law distribution. In the proposed method, not only the diversity of the algorithm was improved, but also
particles’ falling into local optimum was avoided. �e simulation results indicate that the proposed algorithm can e�ectively avoid
the premature convergence problem. Compared with other algorithms, the convergence rate is faster.

1. Introduction

�e particle swarm optimization algorithm is a population-
based stochastic optimization algorithm proposed by
Kennedy and Eberhart in 1995 [1]. To get the optimal
solution, through simulating birds foraging behavior, mutual
collaboration between individuals and sharing the internal
information in particles are investigated. Due to its fast
computing speed and the parallel processing, particle swarm
optimization algorithm has been successfully applied in
many areas such as neural network training, function
extremum estimation, and face detection and recognition
[2–4].

�e disadvantages of particle swarm optimization (PSO)
algorithm are that it is easy to fall into local optimum in
high-dimensional space and has a low convergence rate in
the iterative process. A great number of investigations have
been done to improve PSO algorithm in the last decades.
In [5], the particle optimization based on the di�erent
topology structure was proposed. Although it can avoid
algorithm falling into local optimum to some extent, however,
di�erent problems need to be based on the di�erent topology
structure. And it is di�cult to predict the best topology in

advance. So the adaptability of the algorithm is not ideal. In
[6], the particle swarm algorithmwas optimized according to
the features of scale-free network.�eoptimization capability
of this algorithm was improved in the high-dimensional
space. However, scale-free networks are not necessary for
optimal topology. In [7], the multidirectional learning adap-
tive particle swarm algorithm was proposed. �e optimal
solution of the entire group to complete the speed is updated
by following their own optimal solution and other particles’
optimal solution with the same dimension. �is leads to an
improvement in PSO algorithm which was further improved
in solving high-dimensional optimization problem.However,
the particle network topology optimization is not considered
in the algorithm. �e neighborhood network topology of
PSO has a great in�uence on searching the �nal optimal
solution.

Traditional neighborhood structure of PSO is a global
coupled network. In the structure, there is a connection
between any two pairs of nodes [8]. In an iterative process,
each particle will be compared with all other particles
(positions) and moves closer to the optimal particle. In all
network topology with the same number of nodes, the global
coupling network has the smallest average path length (� = 1)
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and the largest cluster coe�cient (� = 1) [9]. However, the
traditional PSO is easy to fall into local optimum in the high-
dimensional space. �e ability of optimization is not enough
and the diversity of learning between the particles is in�exible
in the global coupling network.

In this paper, each particle is only compared with
neighbors (position) by using small-world network model to
initialize the neighborhood structure of PSO. �erefore, the
particle’s convergence speed is fast and all particles are able
to the most optimal value, and all particles are able to keep
looking for optimal performance (i.e., the diversity of par-
ticle solution). �e neighborhood structure of small-world
network model within the acceptable error limits should
have a better optimization e�ect on deep optimal point in
functions. When PSO algorithm eventually is convergence,
the node’s degrees of particles obey power-law distribution
[10]. So we can select a kind of scale-free networks as a
�nal neighborhood structure of particles. Based on the above
content, an evolutionary mechanism of the directed dynamic
network is proposed.

By introducing the characteristics of scale-free network
model and small-world network model, based on directed
weighted complex network, an adaptive particle swarm opti-
mization algorithm (DWCNPSO) is proposed. �e simu-
lation results show that the proposed algorithm, especially
in high-dimensional space, has a good performance. �e
premature convergence problem can be avoided, and the
convergence rate in the late iterative process is faster than
other algorithms.

2. The Original Particle Swarm Optimization

In the original PSO, the system is initialized as a set of
random solutions; each particle is considered to be a potential
solution (�tness) which moves in the search space follow-
ing the optimal particle [11]. Each particle is made up of
two �-dimensional vectors, where � is the dimensionality
of the search space. �ese are the position vector �� =(��1, ��2, . . . , ���) and the velocity vector V� = (V�1, V�2, . . . , V��),� = 1, 2, . . . , �.� represents the number of the particles in the
search space. We can evaluate the quality of the particles by
calculating the value of �tness.�e best position encountered
by itself is denoted as �� = (��1, ��2, . . . , ���) and the best
position encountered by the whole particles is denoted as�� = (��1, ��2, . . . , ���). �e velocity and position of the
particles at the next iteration are updated according to the
following equations:

��+1 = �� + V�, (1)

V�+1 = V� + 	1
1 ⊗ (�� − ��) + 	2
2 ⊗ (�� − ��) , (2)

where 
1 ∼ �(0, 1) and 
2 ∼ �(0, 1) are used to improve
the random nature of the PSO. And usually the maximum
velocity is set to be half of the length of the search space. 	1 ∈[0, 2] and 	2 ∈ [0, 2] are called acceleration coe�cients. �e
default values of 	1 = 	2 = 2 are used commonly.�ey control
how far a particle will move in a single iteration. Recent
researches have proven that it might be better to choose a
larger cognitive parameter, 	1, but 	1 + 	2 = 4.

�e original process for implementing PSO is as follows.

(1) Initialize the particles with random positions and
velocities on �-dimensions in the search space.

(2) For each particle, evaluate the �tness in � variables.
(3) Compare the �tness of particle with its ��. If the

current value is better than the ��, then set �� equal
to the current value.

(4) Compare the �tness of particle with its ��. If the
current value is better than the ��, then set �� equal
to the current value.

(5) Update the velocity and position of the particle
according to (1) and (2).

(6) If a criterion is met (usually a su�ciently good �tness
or a maximumnumber of iterations), the algorithm is
ended or return to step 2.

3. Adaptive Directed Weighted
Complex Network Particle Swarm
Optimization Algorithm

In this section, we would like to build the complex network
model of particle swarm to further optimize and ameliorate
learning styles between the particles.

3.1.�e DirectedWeighted Complex NetworkModel of Particle
Swarm. Network model of particle swarm is described as
follows.

De�nition 1. A complex network � = {�, �,�}, � for the set
of vertices, � for the set of the edges, and� for the collection
of the edge weights. � is the adjacency matrix of complex
networks �, � = (���)�×�, and ��� shows the connection
relationship of the node � and the node �: if there are edges
between two nodes, the ��� is equal to 1; otherwise, ��� = 0.� = (���)�×� for the weight matrix of network edges; ��� is
the weight on the edge ���.

Weighted out-degree of node � is as follows:
�1�� = ∑

(V� ,V�)∈�
���. (3)

Weighted in-degree of node � is as follows:
�2�� = ∑

(V� ,V�)∈�
���. (4)

Adjacency matrix of the � is as follows:

� �� =
{{{{{
1, � (��, ��) ≤ ", � (# (��) , # (��)) > 01, � (��, ��) > ", � (# (��) , # (��)) > 00, otherwise

connect at the probability �, 0 < � < 1,
(5)

where �(��, ��), � = 1, 2, . . . , �, � = 1, 2, . . . , �, � ̸= �,
represents the Euclidean distance between the two particles,
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" is the Euclidean distance threshold between two particles,#(��) is the particle’s �tness, and �(#(��), #(��)) is the
�tness’s subtraction of the particle � and the particle �.

Network edge weight matrix� is as follows:

��� = {� (# (��) , # (��)) ��� ̸= 00 others. (6)

Normalized network edge weights are as follows:

��� = ���
∑(���) � = 1, 2, . . . , �, � = 1, 2, . . . �, (7)

where ∑(���) is the sum of the edge weights; a�er it is
normalized, 0 ≤ ��� ≤ 1.
3.2. Adaptive Particle Swarm Optimization Algorithm Based
on DirectedWeighted Complex Network (DWCN PSO). Con-
sidering a dynamic evolution process of the network topology
of particles in which small-world networks evolve into scale-
free networks, a complex network model mentioned above
is introduced into the neighborhood structure of the particle
swarm optimization. In the process of iteration, the network
topology of particles will change under the condition of
the in-degrees of nodes obeying power-law distribution.
When particles converge to the optimum, the in-degrees of
nodes in the particles network obey power-law distribution
characteristics.

�e learning styles between particles follow three princi-
ples.

(1) With the Method of the Optimal Neighborhood in the
Particle Optimization Process. Each particle is not only to
learn from its own optimal (pbest) position but also to learn
the neighbors’ optimal (lbest) position. When the distance
between particle � and particle � is very close, such as less than
a certain threshold ", the two particles are neighbors to each
other. Otherwise at a certain probability � (0 < � ≪ 1), they
are neighbors at this time (to be seen as a virtual neighbor).

(2) Connect Randomly to Other Particles (Virtual Neighbors).
Particles can e�ectively jump out of local optimal value when
trapped in local optimal value.

At this moment particles at a certain probability � (0 <� ≪ 1) (to be seen as virtual neighbors) are neighbors when
the position between particle � and particle � is greater than
a certain threshold ". �e particle can e�ectively jump out of
local position when not �nd the optimal neighbor within the
distance threshold ", by randomization operations that link
the edge, particles still can quickly jump out of local optimal
value.

(3) Dynamic Learning Factor 	2 Is Introduced into the Process
of Learning the Optimal Neighbor. �e �ying inertia of the
particles is heterogeneous on time, and also it is heteroge-
neous on the space. �is can enhance the diversi�cation of
learning between particles and avoid particles falling into
local optimum in high-dimensional optimization space.

�e way of mutual learning between particles is only to
learn from the optimal neighbor position including virtual

neighbors. When a particle � has a lot of neighbors, select
the optimal neighborhood as a neighbor to edge. �e greater
subtraction of �tness of two particles is, the more urgent
to study the optimal neighbor particle’s position is. So a
dynamic learning factor 	2 and a changing inertial weight� are introduced into (1), and improved equation (1) is as
follows:

V� ←- � × V� + 	1
1 (�� − ��) + 	2
2 (�
 − ��)
� = 1, 2, . . . , �, (8)

where � = (�1 − �2) × (/ − iter)// + �2; iter is the current
iteration number; / is the maximum number of iterations;�1 and �2 are the initial value of weight and the �nal value
of weight, respectively; 	2 = (1 + ���)	1; ��� is the normalized
edge weights; �
 is the optimal location of its neighbors.

�e weighted in-degree (�2��) of particles represents
the level that the neighbor particles learn from the particle
(position), and the weighted out-degree (�1��) of particles
represents the level that the particle studies other neighbor
particles (positions).�eweighted in-degree (�2��) of nodes
in the weighted directed weighted complex network equals �
(� ≥ 0); the weighted out-degree (�1��) equals 1 or 0 (to
learn the optimal neighbor particle’s position or no optimal
neighbor particle’s position to learn), when the particle
swarm algorithm is convergence; the in-degree of the nodes
in the network obeys power-law distribution; the maximum
weighted in-degree of particles is greater than a certain
threshold6 as well as the weighted out-degree of the particle
which is 0 (community found). At this time, the particle �nds
the optimal value. In this change of the topology, each particle
only learns its optimal neighbor and the in-degree of particles
in the network obeys power-law distribution, which has a
feature of great heterogeneity (in-degree distribution) in the
network. When the optimal position of particles of the next
iteration does not exist in the neighbor position of particles,
the random � ensures that the particle can adaptively �nd the
optimal value.

�e procedure for implementing the DWCNPSO is given
by the following steps.

Step 1. Set the parameters: the learning factors 	1	2, connec-
tion probability � of random edge, and population size�,�1
for the initial value of inertia weight, �2 for the �nal value
of inertia weight, and / for the number of particle swarm
evolutions.

Step 2. Initialize the particle swarm positions and velocities
within a certain range of values.

Step 3. Initialize the network neighborhood of the particle
swarm; calculate the �tness #(��) of each particle and the
Euclidean distance �(��, ��) between particles; build the
complex network neighborhood structure of particle swarm
in accordancewith the complex networkmodel; and calculate
the adjacency matrix � and weighted matrix�.

Step 4. Compare the �tness of each particle with its optimal
value ��. If the current value is better than ��, then reset the
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Table 1: Simulation results obtained from three methods for four functions.

Function
PSO SFPSO DWCNPSO

Mean Best Mean Best Mean Best

#1 0.000175 2.36� − 07 4.62� − 07 1.51� − 25 0.00011 1.09� − 29
#2 0.687286 0.012409 4.98� − 05 2.84� − 14 0.178946 0.00� + 00
#3 0.001259 9.46� − 06 1.04� − 07 0.00� + 00 0.000263 0.00� + 00
#4 0.093436 0.017859 0.035261 6.08� − 07 0.000167 4.50� − 09

�� to be value equal to the current value. Similarly, compare
the �tness of each particle with its neighbor optimal value �
.
�e value �
 is equal to the current value if the current value
is better than �
.
Step 5. If the in-degree of nodes in the network neighbor-
hood obeys power-law distribution, all particles carry out
optimization in accordance with (8) and (2); when the values
of the velocity and the position are beyond the limits, set
the limited value as their values; recalculate and update the
adjacency matrix � and weight matrix�.

Step 6. If termination conditions are satis�ed, the maximum
weighted in-degree of particles in complex networks is
greater than a certain threshold 6 and the weighted out-
degree of the particles is 0 (community found). At this time,
the particle �nds the optimal value, and the algorithm is
ended; otherwise, go to step 4.

4. Simulation Results and Discussions

4.1. Simulation Results and Experimental Analysis. �e sim-
ulation experiments are implemented on the computer with
MATLAB R2010a, Windows XP, and Intel Core2 CPU
clocked at 2.10GHz, memory of 2GB.

Four important functions, two of which are unimodal
(containing only one optimum) and two of which are mul-
timodal (containing many local optima, one global optimum
ormany global optima), are considered to test the e�ciency of
the proposed methods. �e four test functions are as follows.

(1) �e Sphere function #1: min#(�) = ∑��=1 �2� , �� ∈[−100, 100]. It is an asymmetric unimodal function
and the global minimum is 0.

(2) �e Rastrigin function #2: min#(��) = ∑��=1[�2� −10 cos(2@��) + 10], �� ∈ [−5.12, 5.12]� = 1, 2, . . . , �.
It is highly multimodal. However, the location of the
minima is regularly distributed. It is a fairly di�cult
problem due to the large search space and many
local optimal values. It is a multimodal and nonlinear
function with global minimum 0.

(3) �e Griewank function #3: min#(�) = (1/4000)
∑��=1 �2� − ∏��=1 cos(��/√�) + 1, �� ∈ [−600, 600]. It is
a continuous and multimodal function. �e general
overview suggests convex function, medium-scale
view suggests existence of local extremum, and �nally
zoom on the details indicates complex structure of
numerous local extremums. �e global minimum is
0.

(4) �e Rosenbrock function #4: min#(�) =
∑�−1�=1 [100(��+1 −�2� )2 + (�� − 1)2], here, �� ∈ [−30, 30],� = 1, 2, . . . , �. �e global optimum lies inside a
long and narrow valley. To �nd the global optimum
is di�cult and the function has been used to test
the performance of the improved optimization
algorithms. �e global minimum is 0.

�e parameters in the experiments are set as follows: the
number of particles is set to 20 and the iteration number is
100. �e acceleration factors �max = 0.9 and �min = 0.4,
connection probability � = 0.1, and learning factors 0 <	1 < (2� + 2)/(2 + ��,�) and 	2 = (1 + ��,�)	1 are used for
the DWCNPSO. And the initial value of � is 0.1 and C = 0.2
for the Cat chaotic sequence. �e average value and the best
value of the function values obtained through 100 simulation
runs for four test functions by the proposed PSO, SFPSO, and
DWCNPSO algorithms are taken as the measures.

�e experimental results are presented in Table 1.
As shown in Table 1, for the Sphere function, it is easy to

see that the results obtained by the proposed algorithm are
superior to that achieved by the other two algorithms on the
average and the best values, respectively. For the Griewank
function, Rastrigin function, and Rosenbrock function, the
best values obtained by the proposal are superior to the
best values of PSO. Although the average value of the
proposed algorithm is no better than the average value of
SFPSO algorithm, the proposed algorithm is superior to that
achieved by SFPSO algorithm on the best values. On the
whole, the proposed algorithm ismore likely to �nd the global
optimum than other algorithms.

�e curves of the evolutionary optimization of three
algorithms for four test functions are presented in Figure 1.
�e best �tness value of test functions is 0. And the accuracy
of the �tness value cannot be portrayed accurately when the
�tness is close to zero. So taking the e logarithm operation is
introduced to resolve this problem. Figure 1 shows that the
proposed algorithm is not easy to fall into local optimum
and has faster convergence rate in the late iteration. �e
convergence performance and search accuracy of PSO are
the worst in functions #2 and #3. PSO is easy to fall into local
optimum and still cannot jump out of the local optimum a�er
much iteration, especially in the performance for Rosenbrock
function and Griewank function. Although SFPSO is not
easy to fall into local optimum, its search accuracy is not
high which is equally e�cient with DWCNPSO as well.
�e convergence performance of the proposed algorithm
is equally e�cient with other algorithms for the function
of Sphere, the Rastrigin function, Griewank function, and



Mathematical Problems in Engineering 5

0 20 40 60 80 100

0

10

SFPSO

PSO

−10

−20

−30

−40

−50

−60

Iteration

lo
g(
�
tn
es
s)

<DWCNPSO

(a) �e evolutionary curve for �1

0 20 40 60 80 100

0

5

−5

−10

−15

−20

−25

−30

−35

Iteration

lo
g(
�
tn
es
s)

SFPSO

PSO

<DWCNPSO

(b) �e evolutionary curve for �2

0 20 40 60 80 100

0

5

−5

−10

−15

−20

−25

−30

−35

−40

Iteration

lo
g(
�
tn
es
s)

SFPSO

PSO

<DWCNPSO

(c) �e evolutionary curve for �3

0 20 40 60 80 100

0

10

20

−50

−10

−20

−30

−40

Iteration

lo
g(
�
tn
es
s)

SFPSO

PSO

<DWCNPSO

(d) �e evolutionary curve for �4

Figure 1: �e evolutionary curve for three methods for four functions.

Rosenbrock function; the proposed algorithm has the fastest
convergence rate, can quickly jump out of local optima a�er
several iterations, and then �nds the global optimum.

�e Average Degree of Network Impact on DWCNPSO. As
mentioned above, the network neighborhood topology of
PSO will have an in�uence on the �nal optimization. For the
same type of network with di�erent properties, a scale-free
network, for example, the average degree ⟨6⟩ of network, as
an indicator will distinguish di�erent topological properties
and depict the general structure of the network topology [12].

�e following experiment is analyzed based on di�erent aver-
age degree of the scale-free network neighborhood topology.
Rosenbrock and Rastrigrin functions are tested many times
(independent experiment, 500 times), and the test results are
shown in Figure 2: when the average degree of ⟨6⟩ equals
6.01, the result of optimization is best in Rosenbrock function;
when the average degree of ⟨6⟩ is 10.23, the particles are
easy to fall into the local optimum. For Rosenbrock function,
the higher is the average degree of ⟨6⟩, the worse is the
result of optimization, but, for Rastrigrin function, when the
average degree of ⟨6⟩ is 10.23, the result of optimization is
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best.�ere will be an optimal range of average degree for two
test functions. �e optimization e�ect of the particles will be
better within the optimal range of the average degree.

4.2. �e Convergence and Computational Complexity Analysis

of DWCNPSO

4.2.1. Convergence Analysis of DWCNPSO. �e original PSO
is convergent, which is proved in literature [13]. As for (1),� <1, 	 > 0 , 	 = 	1 + 	2, 2� − 	 + 2 > 0. �e convergence region
of parameters of PSO is shown in Figure 3. In this paper, the
DWCNPSO is proposed by building complex networks and
adjusting adaptively learning factor 	2 to improve the original
PSO algorithm,which does not change the searchmechanism
of original PSO. As for (8), 	 = 	1 + 	2 = 	1 + (1 + ��,�)	1 =(2 + ��,�)	1, 0 < 	 < 2� + 2, when 0 < 	1 < (2� + 2)/(2 +

��,�), the proposed method is also convergent. �is can also
be seen from the evolutionary curves for four test functions
in Section 4.1.

4.2.2. Computational Complexity Analysis of DWCNPSO.
�e maximum iteration is denoted as /. �e number of
particles is denoted as �. �e dimension of the search space
is denoted as F. In the original PSO, the computational

complexity is G(2�F + �2 + 2�F). In DWCNPSO, the

computational complexity is G(2�F + �2 + 2�F + �2). �e
increased part of computational complexity is caused by
building complex networks operation. �e disadvantages of
particle swarm optimization (PSO) algorithm are that it is
easy to fall into local optimum in high-dimensional space
and has a low convergence rate in the iterative process. �e
computational complexity of DWCNPSO is accepted when
it is applied to solve the high-dimensional and complex
problems.

4.2.3. Performance Analysis of DWCNPSO. �e directed
weighted complex network is built on the particle swarm as
well as the introduction of dynamic learning factor 	2 and
lbest in (1).�e �ying inertia of the particles is heterogeneous
on time, and also it is heterogeneous on the space. �e path
to study the optimal particle’s location is not long and the
styles of learning are diverse between particles, when particle
swarm is convergence; there are many local extreme points
that are not closed in networks and set the best of local
extreme point to be value equal to the optimal value of global.
If the termination conditions of algorithm are not satis�ed
and do some disturbances on local extreme points.�e e�ect
of disturbance is obvious and the convergence rate is fast.
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5. Conclusions

In this paper, an adaptive particle swarm optimization algo-
rithm based on directed weighted complex network (DWC-
NPSO) is proposed. By introducing a complex network
model and dynamic learning factor 	2, the �ying inertia
of the particles is heterogeneous on time and also it is
heterogeneous on the space.�ediversity of learning between
the particles is increased, and the particles can quickly �nd
the optimal solution.When the proposed algorithm falls into
local optimum, by randomization operations that link the
edge, particles still can quickly jump out of local optimal
value. Although some time complexity is increased, however,
the number of particles is usually � < 50 and the proposed
algorithm is advantageous compared with other algorithms.
�e simulation results indicate that the proposed algorithm
can e�ectively avoid the premature convergence problem and
the convergence rate is faster than SFPSO (based on the Cat
chaotic mapping) algorithm in the late iterative process.
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