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Abstract

In this work an adaptive strategy for the phase space method [5] for traveltime tomography
is developed. The method first uses those geodesics/rays that produce smaller mismatch with
the measurements and continues on in the spirit of layer stripping without defining the layers
explicitly. The adaptive approach improves stability, efficiency and accuracy. We then extend
our method to reflection traveltime tomography by incorporating broken geodesics/rays, for
which a jump condition has to be imposed at the broken point for the geodesic flow. In particular
we show that our method can distinguish non-broken and broken geodesics in the measurement
and utilize them accordingly in reflection traveltime tomography. We demonstrate that our
method can recover the convex hull (with respect to the underlying metric) of unknown obstacles
as well as the metric outside the convex hull.

1 Introduction

Traveltime tomography deals with the problem of determining the internal properties of a medium
by measuring the traveltimes of waves going through the medium. It arises in global seismology in
determining the inner structure of Earth by measuring at different seismic stations the traveltimes
of seismic waves produced by earthquakes. It also arises in exploration geophysics, in particular,
hydrocarbon exploration. For instance in marine reflection seismology the data is collected on a
ship with a streamer that sends out sound waves and receives the response on hydrophones or
receiver groups.

Traveltime tomography also arises in medical imaging, in particular, in ultrasound computed
tomography (UTT). In UTT the acoustic speed in biological tissues can be calculated from the
arrival times of ultrasonic waves. Another area of application of traveltime tomography is ocean
acoustics. For sound waves travelling horizontally in the ocean, speed is largely function of tem-
perature. Thus the traveltime of a wave of sound between two points is a sensitive indicator of the
temperature along its path.
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Recent progress in boundary rigidity and lens rigidity problems in Riemannian geometry [43,
44, 46, 48, 45, 50, 51, 52, 30, 31, 15, 21] has motivated us to transfer these theoretical advances into
numerical algorithms for recovering a Riemannian manifold; see [5, 6, 22, 23] for such algorithmic
developments. In [5, 6] we have developed phase space methods for recovering such Riemannian
manifolds in terms of index of refraction in acoustic and isotropic elastic media from transmission
traveltimes. In this paper, we incorporate an adaptive strategy into the phase space method and
apply the resulting adaptive method to recovering index of refraction from reflection traveltimes in
an acoustic medium.

The problem of determining the Riemannian metric from first arrivals is known in differential
geometry as the boundary rigidity problem. The travel time information is encoded in the boundary
distance function, which measures the distance, with respect to the Riemannian metric, between
boundary points. The problem of determining the index of refraction from multiple arrival times
is called in differential geometry as the lens rigidity problem. The information is encoded in the
scattering relation which gives the exit point and direction of a geodesic if we know the incoming
point and direction plus also the travel time.

The boundary rigidity problem consists in determining a compact Riemannian manifold with
boundary up to an action of a diffeomorphism which is the identity at the boundary by knowing the
geodesic distance function between boundary points (see [47, 49] and references therein). One needs
an a-priori hypothesis to do so since it is easy to find counterexamples if the index of refraction
is too large in certain regions. An a-priori condition that has been proposed is simplicity of the
metric [28]. A manifold is simple if the boundary is strictly convex with respect to the Riemannian
metric and there are no conjugate points along any geodesic. We remark that for simple manifolds
knowing the scattering relation is the same as knowing the boundary distance function. It is only
for non-simple manifolds that the scattering relation gives more information including multiple
arrival times. See [51, 52] for recent works for understanding conjugate points (caustics) and lens
rigidity problems.

In [21], Kurylev, Lassas and Uhlmann have established an uniqueness result for recovering a
compact Riemannian manifold from broken scattering relations. The essential idea in [21] is the
following: first, they impose some conditions on the broken scattering relation to verify whether a
given family of geodesics intersect at one point; second, they show that the broken scattering relation
determines the boundary distance representation of the Riemannian manifold, and the uniqueness
follows from a certain isomorphism. However, the method of proof for the uniqueness result is not
constructive. Another difficulty in practice is how to distinguish broken and non-broken scattering
relations in the measurements. Here we propose a numerical reconstruction algorithm which is
able to utilize both broken and non-broken scattering relations accordingly. First, we formulate
the following simplified problem: how to reconstruct index of refraction from reflection traveltimes
based on given locations of reflectors, such as an embedded mirror inside the medium? Tacitly, we
consider an incident ray path and its corresponding reflected ray path as a broken geodesic [21]
with a reflection condition at the broken point. Next we consider the more challenging problem of
generic reflection traveltime tomography in which an unknown reflector is buried in an unknown
medium.

Numerically, since traveltime tomography has a long history of development, let us put our work
under appropriate perspectives. In terms of source-receiver setup, traveltime tomography can be
classified into transmission traveltime tomography, reflection traveltime tomography, or reflection
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plus transmission traveltime tomography [60, 11, 59, 10, 3, 1, 18, 29, 41, 42, 22]; see more references
in the above citations. In terms of whether multipathing is allowed or not, traveltime tomography
may be classified into first-arrival based traveltime tomography [3, 4, 59, 1] or multi-arrival based
traveltime tomography [53, 13, 2, 5, 6, 23]. In terms of how the forward modeling is carried out in
the implementation process, traveltime tomography may be classified into Lagrangian ray-tracing
ODE based traveltime tomography [60, 59, 10, 3, 4, 1, 18, 29] or Eulerian PDE-based traveltime
tomography [41, 42, 22, 23]. In terms of media under consideration, traveltime tomography may
be classified into isotropic or anisotropic traveltime tomography.

In general, ray-tracing based first-arrival traveltime tomography is not robust because the ray
path followed by ray tracing might not yield the least traveltime between a given source-receiver
pair when there are multiple possible rays to connect the source-receiver pair in the presence of
triplication and caustics. To develop a robust first-arrival based traveltime tomography, one has to
first develop robust forward modeling methods to generate reliable first-arrival traveltimes between
a given source-receiver pair. Based on the contemporary viscosity-solution theory for Hamilton-
Jacobi equations [24, 8, 9, 7], a lot of efforts were devoted to developing fast and efficient eikonal
solvers to compute first-arrivals for both isotropic media [58, 32, 57, 38, 40, 33, 34, 61, 20, 36,
14, 26] and for anisotropic media [12, 35, 56, 20, 37, 19]. Among these finite-difference eikonal
solvers, the first-order fast marching and the first-order fast sweeping methods have proved to be
unconditionally stable. Furthermore, related to the work in [41, 42], fast-sweeping-based eikonal
solvers have been successfully used in isotropic transmission traveltime tomography in [22], and the
resulting method is robust; this work has been further developed in [55, 54] for three-dimensional
practical data.

As the first-arrival based traveltime tomography has limited resolution when the to-be-imaged
structure is very complicated, it is desirable to develop a systematic formulation to utilize all the
arrivals between a source-receiver pair. One question immediately comes up: how to parametrize
all the arrivals between a source and receiver pair so that the information can be encoded into a
rigorous mathematical formulation? To do that, one has to use a phase-space formulation so that
multiple arrivals resulting from multipathing can be parametrized naturally by initial ray directions.
In other words, one has to make use of scattering relation to develop a rigorous mathematical
framework. Such efforts have been made in [53, 13, 2, 5, 23, 6]. In [13], Delprat-Jannaud and
Lailly have developed a phase-space approach to parametrize multi-arrival traveltimes by using
the receiver location and the ray parameter at the receiver, and their implementation is based
on Lagrangian ray-tracing ODE methods for forward modeling. In [23], Leung and Qian have
developed a Liouville-equation-based PDE approach for carrying out traveltime tomography which
is able to utilize all arrivals. In [2] Billette and Lambare have developed a phase-space approach
which makes full of the scattering relation; however, the proposed model in [2] is not well justified
yet as it includes not only the velocity (the metric) but also other parameters.

In [5, 6], Chung, Qian, Uhlmann and Zhao have developed a systematic phase-space approach
for traveltime tomography for acoustic and elastic media by using the Stefanov-Uhlmann identity
(10) formulated in [44]. The advantages of the approach in [5, 6] are multifold. As a first advantage
multipathing can be taken into account systematically, as evidenced in [13, 23] and in numerical
examples shown later. As demonstrated in [16, 25], multipathing is essential for high resolution
seismic imaging. As a second advantage, our phase space formulation has the potential to recover
generic (anisotropic) Riemannian metrics. These advantages distinguish our new method from
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other traditional methods in inverse kinematic problems [3, 39, 41, 42, 4, 59, 22] in that those
traditional methods only recover isotropic metrics by using first-arrivals. Moreover, our numerical
algorithm is based on a hybrid approach. A Lagrangian formulation (ray tracing) is used in phase
space for the linearized Stefanov-Uhlmann identity (11). This allows us to deal with multipathing
naturally. On the other hand, an Eulerian formulation is used for the index of refraction of the
medium. As a consequence our computational domain is in physical space rather than in phase
space, which reduces the degree of freedom and hence the computation cost.

Because the Stefanov-Uhlmann identity is posed in phase space, we have to find a way to pick
the data that are in phase space, and such data are not measurable directly. To do that we recall
that in kinematic inverse problems, the data used frequently is traveltime data, which means that
traveltimes can be parametrized by source locations and ray parameters; in turn ray parameters
can be derived from the eikonal equation and the traveltime data as illustrated in [27, 17, 53, 23].
Therefore without any hesitation we use the identity as our foundation to carry out the inversion
process.

The Stefanov-Uhlmann identity is also related to the so-called Liouville equation, but the current
formulation is different from the one used in [23]. In that work [23] Leung and Qian formulated the
inverse problem for isotropic metrics in an Eulerian framework and used an adjoint state method
to minimize a mismatching functional. The current new formulation is based on a novel identity
to cross-correlate the information from two metrics so that the two metrics can pass information
to each other at every stage.

In this work we improve the phase space method developed in [5] by incorporating an adaptive
strategy into the formulation. Although the Stefanov-Uhlmann identity (10), which links two
metrics and their corresponding scattering relations together, is valid in quite general setting, the
identity is truly nonlinear in terms of the two metrics. It is essential that the two metrics are close
to each other in both mathematical analysis and numerical computation (through linearization).
For the phase space method proposed in [5], all geodesics are used simultaneously based on the
linearized Stefanov-Uhlmann identity (11) at each step. First, this creates a large linear system that
involves the unknowns in the computational domain. Second, when an initial guess of the metric is
poor, use of predicted geodesics that are far from the true ones may lead to too many iterations or
even make the iterative procedure diverge. The key idea of the adaptive approach is to first utilize
those geodesics that match the measurements well under the current metric. For example, geodesics
that are short enough can always match the data well. We then use the hybrid phase space method
restricted to these geodesics to improve/recover the metrics in the neighborhood of these geodesics
in the physical space. As a result of the improved approximation of the metric in a certain part
of the domain, more geodesics will match with the measurements better and will be used at the
next step. If we continue with the process, more geodesics will be used so that one can recover
the metrics in a larger region of the domain. The adaptive approach improves stability by using
only those more accurate geodesics at each step. It also improves efficiency by gradually involving
more and more unknowns in a stable fashion. A physical analog could be in the spirit of layer
stripping. Initially short geodesics which are usually close to the boundary are used to provide a
good estimate of the metric in a boundary layer. Then longer geodesics are used and the boundary
layer of good estimate expands further into the interior. Of course the crucial point is that we
do not have to specify the layers physically which is impossible without knowing the underlying
metric. Instead we use data matching to automatically pick geodesics sequentially and our hybrid
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phase space method can recover the underlying metric in the neighborhood of the picked geodesics
in physical space. Also geodesics that match data well may not be short ones. We then apply
this adaptive phase space method to reflection tomography where broken geodesics/rays have to be
taken into account. In particular, a jump condition of the geodesic flow in the phase space has to
be enforced at the broken point and the Stefanov-Uhlmann identity has to be modified accordingly.
More importantly our adaptive strategy can effectively distinguish and utilize measurements from
non-broken and broken geodesics accordingly.

The paper is organized as follows: we introduce the formulation for reflection traveltime to-
mography and broken geodesics in Section 2. Then we present the numerical algorithm and the
adaptive approach in Section 3. Numerical examples are presented in Section 4.

2 Mathematical formulation for reflection traveltime tomography

Let Ω be a bounded domain in R
n and let (gij) be a Riemannian metric defined on it. Following

[5, 6], we define the Hamiltonian Hg by

Hg(x, ξ) =
1

2





n
∑

i,j=1

gij(x)ξiξj − 1



 (1)

for each x ∈ Ω and ξ ∈ R
n. In the above definition (gij) = (gij)

−1 is the inverse of the matrix (gij).
Let X(0) = (x(0), ξ(0)) be a given initial condition from the following inflow set

S− = {(x, ξ) | x ∈ ∂Ω, H(x, ξ) = 1,

n
∑

i,j=1

gij(x)ξiνj(x) < 0}

where ν(x) is the unit outward normal vector of ∂Ω at the point x and νj(x) denotes the j-th
component of this vector. We define Xg(s, X

(0)) = (x(s), ξ(s)) by the solution of the following
system

dx

ds
=

∂Hg

∂ξ
,

dξ

ds
= −

∂Hg

∂x
(2)

with the initial condition
(x(0), ξ(0)) = X(0).

We suppress the dependence of (x(s), ξ(s)) on X(0). The solution Xg defines a geodesic/ray in the
phase space, parametrically via x(s), in the physical space Ω with co-tangent vector ξ(s) at any
point x(s). The parameter s denotes travel time.

In this paper, we consider the case when there are obstacles inside the domain Ω. In this case,
the ray will be reflected at the boundary of the obstacles. Mathematically, we need to impose jump
condition for the above system (2). For simplicity, we will derive the jump condition for the case
when there is only one obstacle lying strictly inside Ω and the ray intersects the obstacle at most
once. Let Γ be the interface where the ray will be reflected. Notice that there is a unique time
s∗ > 0 such that the point x(s∗) hits the interface at an incoming angle defined by ξin := ξ(s∗).
The ray will be reflected at an outgoing angle defined by ξout = R(ξin; x(s∗)) which is specified by
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the normal vector of Γ at the point x(s∗) according to the law of reflection in geometrical optics.
We remark that the function R depends on the contact point x(s∗).

Thus, the vector Xg(s, X
(0)) is defined by the following

dx

ds
=

∂Hg

∂ξ
,

dξ

ds
= −

∂Hg

∂x
, 0 < s < s∗,

(x(0), ξ(0)) = X(0)

(3)

and

dx

ds
=

∂Hg

∂ξ
,

dξ

ds
= −

∂Hg

∂x
, s > s∗,

(x(s∗), ξ(s∗)) = (x(s∗), ξout).

(4)

In the derivation below, we will need the Jacobian matrix

Jg(s, X
(0)) :=

∂Xg

∂X(0)
(s, X(0)) =

(

∂x
∂x(0)

∂x
∂ξ(0)

∂ξ

∂x(0)
∂ξ

∂ξ(0)

)

(5)

which is the derivative of Xg with respect to the initial condition X(0). Let

M =

(

Hξ,x Hξ,ξ

−Hx,x −Hx,ξ

)

. (6)

Then we have
dJ

ds
= MJ, J(0) = I, for 0 < s < s∗, (7)

and
dJ

ds
= MJ, J(s∗) = B, for s > s∗, (8)

where

B =

(

J(s∗)11, J(s∗)12
Rξ(ξin;x(s∗))J(s∗)21 + Rx(ξin;x(s∗))J(s∗)11, Rξ(ξin;x(s∗))J(s∗)22 + Rx(ξin;x(s∗))J(s∗)12

)

.

(9)
Next we will derive the broken Stefanov-Uhlmann identity. Similar to [44, 5], we define

F (s) = Xg2(t − s, Xg1(s, X
(0)))

where t = tg1 . Then we have

∫ t

0
F ′(s) ds = Xg1(t, X

(0)) − Xg2(t, X
(0)).

The time integral on the left hand side is

∫ t

0
F ′(s) ds =

∫ t

0

∂Xg2

∂X(0)
(t − s, Xg1(s, X

(0))) × (Vg1 − Vg2)(Xg1(s, X
(0))) ds.
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Hence we have the Stefanov-Uhlmann identity

Xg1(t, X
(0)) − Xg2(t, X

(0)) =

∫ t

0
Jg2(t − s, Xg1(s, X

(0))) × (Vg1 − Vg2)(Xg1(s, X
(0))) ds. (10)

Linearizing the right hand side at g2, we have

Xg1(t, X
(0)) − Xg2(t, X

(0)) ≈

∫ t

0
Jg2(t − s, Xg2(s, X

(0))) × ∂g2Vg2(g1 − g2)(Xg2(s, X
(0))) ds. (11)

In the case of an isotropic medium

gij =
1

c2
δij , ∂gVg(λ) = (2cλξ, −(λ∇c + c∇λ)|ξ|2).

Moreover, we have the following group property

Jg2(t − s, Xg2(s, X
(0))) = Jg2(t, X

(0))Jg2(s, X
(0))−1.

3 Adaptive phase space method

3.1 The phase space method

We first introduce the general setup of the phase space method for traveltime tomography proposed
in [5]. The numerical method is an iterative algorithm based on the linearized Stefanov-Uhlmann
identity (11) using a hybrid approach. The metric g is defined on an underlying Eulerian grid in
the physical domain. The integral equation (11) is discretized along a ray for each X(0) in phase
space. The Jacobian matrix along the ray is computed according to (7) (and (8), (9) for broken
rays). On the ray, values of g are computed by interpolation from the neighboring grid point values.
Hence each integral equation along a particular ray yields a linear equation for grid values of g in
the neighborhood of the ray in the physical domain (see Figure 3.1). Here is the iterative algorithm
for finding g.

Let X
(0)
i , i = 1, 2, · · · , m, be the initial locations and directions of those m measurements

(scattering relations) Xg(ti, X
(0)
i ) where ti is the exit time corresponding to the i-th geodesic starting

at X
(0)
i . Starting with an initial guess of the metric g0, we construct a squence gn as follows.
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Define the mismatch vector

dn
i = Xg(ti, X

(0)
i ) − Xgn(ti, X

(0)
i )

and a linear operator based on (11) along i-th geodesic

Kn
i g =

∫ ti

0
Jgn(ti − s, Xgn(s, X

(0)
i )) × ∂gnVgn(g)(Xgn(s, X

(0)
i )) ds. (12)

Notice that both dn
i and Kn

i depend on X
(0)
i . Then, for each n ≥ 0, we find g̃ that minimizes

F (g) =
1

2

m
∑

i=1

‖Kn
i g − dn

i ‖
2 +

β

2
‖∇g‖2

L2(Ω), (13)

where the last term is a regularization term since the inverse problem is ill-posedness and the
resulting linear system may not have a unique solution. The choice of β may depend on the noise
level and scale of the problem. We then define

gn+1 = gn + g̃.

3.2 An adaptive strategy

In the original phase space method all rays from the measurements are used at the same time for
the reconstruction; see equations (12) and (13). It results in a large linear system. Moreover, use
of geodesics that are far from the true ones may make the linearization based iterative algorithm
converge slowly with more iterations or even make the algorithm diverge. So we propose the
following adaptive strategy. At each step we pick up those geodesics in the current guessed metric
that produce small mismatch with the measurements, i.e., the scattering relations. Then we apply
the phase space method only to these geodesics which will provide a good approximation of the
true metric in the neighborhood of those picked geodesics. Then the improvement of the guessed
metric will result in more geodesics that have small mismatch with measurements; in turn, this
allows us to recover the metric in a larger region in the next step.

Here is the adaptive algorithm we used in our numerical implementation. For each n, we will
use Dn to represent a subset of {1, 2, · · · , m}. The set Dn contains all indices i such that the
mismatch data dn

i are small enough. More precisely, for a given tolerance ε > 0, we define

Dn =

{

i |
‖dn

i ‖

‖Xg(ti, X
(0)
i ) − X

(0)
i ‖

< ε

}

,

where the mismatch is normalized by the difference between the starting location and ending
location for each geodesic in the phase space, which can be obtained directly from the measurements.
Then, for each n ≥ 0, we find g̃ that minimizes

F (g) =
1

2

∑

i∈Dn

‖Kn
i g − dn

i ‖
2 +

β

2
‖∇g‖2.
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We then define
gn+1 = gn + g̃.

In practice, we will choose ε to be proportional to the sum of normalized mismatch σn defined by

σn =

m
∑

i=1

‖dn
i ‖

‖Xg(ti, X
(0)
i ) − X

(0)
i ‖

.

This adaptive strategy has some flavor of layer stripping method in the sense that shorter
geodesics that are closer to the boundary usually give smaller mismatch and are used at an earlier
stage to recover/improve the metric near boundary. However, the crucial difference is that our
method does not need to define layers explicitly in physical space and is done automatically based
on data. This adaptive approach improves robustness, efficiency and accuracy in comparison to
using all geodesics simultaneously.

Moreover, the adaptive strategy can distinguish and use broken geodesics and non-broken
geodesics in the measurements, which is important for reflection travel time tomography. On
one hand, if the obstacle or the reflection interface is inside the domain, using broken geodesics
only may be unstable since there may be no short broken geodesics that is a small perturbation of
the true one. On the other hand, using non-broken geodesics only can at most recover the metric
outside the convex (with respect to the metric) hull of the obstacle. Nevertheless, our adaptive
strategy can distinguish broken and non-broken geodesics when both are present in the measure-
ments. Because if we predict a broken or non-broken geodesic erroneously, it will produce a large
error (O(1)) in the scattering relation due to the jump condition (9) at the broken point. Hence
incorrectly predicted geodesics will not be used in the reconstruction. In practice, the adaptive
strategy will likely pick up those non-broken and short geodesics that provide small mismatch and
recover the metric in a region close to the boundary first. Then more and more geodesics, including
broken ones, will be picked up so that larger and larger region, including the concave region, will be
covered. These observations are verified by numerical results in the next section. Actually we show
that we can use geodesics that are broken for multiple times numerically. In the most challenging
situation where neither the obstacle nor the underlying metric is known, our adaptive method can
pick up most non-broken geodesics during the reconstruction. As a result (see Example 4.5 below)
we recover: (1) the convex hull of the unknown obstacle given by the envelope of used non-broken
geodesics, and (2) the metric outside the convex hull. An interesting problem for future study is
how to improve the reconstruction using broken geodesics based on the result from non-broken
ones. The main challenge is how to represent the geometry of the envelope of the used non-broken
geodesics to predict the broken points and jump conditions for broken geodesics.

4 Numerical experiments

In this section, we use numerical experiments to show effectiveness and robustness of our adaptive
approach in various setups.

4.1 Example 1. An example with no broken geodesic

The purpose of this example is to compare the reconstruction obtained by using all geodesics
simultaneously (the original phase space method proposed in [5]) with that obtained by the adaptive
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strategy proposed in this work.
The exact solution is c(x, y) = 1+0.3 sin(2πx) sin(2πy). The initial guess is c0(x, y) = 0.8. The

grid size is 20 × 20 and we use 200 directions at each grid point on only one side of the boundary:
{y = 0}. The regularization parameter is taken as β = 0.1.

In the adaptive approach, we take ε = 0.25σn. The algorithm converges to a solution with a
relative error 1.3 × 10−2 at the 55-th iteration. We plot numerical and exact solutions in the left
plot and the center plot of Figure 1, respectively. We see that we obtain a good recovery of the
unknown function c(x, y).

Without the adaptive strategy the algorithm converges at the 67-th iteration with a relative
error 4.4 × 10−2. The numerical solution in this case is shown in the right plot of Figure 1.

Figure 1: Left: Numerical solution (using adaptive) at the 55-th iteration. Middle: Exact solution.
Right: Numerical solution (without adaptive) at the 67-th iteration.

4.2 Example 2. A known circular obstacle enclosed by a square domain

We consider a known circular obstacle with boundary Γ being a circle with center (0.5, 0.5) and
radius 0.3. In this example the geodesic either does not hit the inclusion (non-broken) or hits the
inclusion (broken) once.

The exact solution is c(x, y) = 1 +
1

5
sin(2πx) sin(πy). The initial guess is c0(x, y) = 0.8. The

grid size is 20×20 and we use 100 incoming directions at each grid point on the boundary. We also
add 5% noise to the data. The regularization parameter is taken as β = 10−4. For the parameter
of the adaptive strategy, we take ε = 0.5σn. The algorithm converges to a solution with a relative
error 9.4 × 10−4 at the 20-th iteration. We plot the numerical and exact solutions in Figure 2,
respectively.

4.3 Example 3. A circular domain

We consider the case when the domain Ω is a circle which is centered at (0.5, 0.5) with radius 0.4.
The exact solution is c(x, y) = 1 + 0.3 cos(r) where r =

√

(x − 0.5)2 + (y − 0.5)2. The initial
guess is c0(x, y) = 0.6. The grid size is 40 × 40. We choose 30 source points which are uniformly
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Figure 2: Left: Numerical solution at the 20-th iteration. The relative error is 0.094%. Right:
Exact solution.

distributed on the boundary of Ω and at each source point we use 101 incoming directions. The
regularization parameter β = 10−3. For the parameter of the adaptive process, we take ε = 0.05σn.

The numerical results of the first six iterations are shown in Figure 3. The ray coverage for the
first six iterations are shown in Figure 4. The number of rays used are 478, 620, 900, 1117, 1406 and
1625, respectively. We can see that the adaptive strategy picks up mostly short geodesics first. As
the iteration goes on, more and more geodesics are picked up that cover larger and larger regions
to update the metric.

In Figure 5, we have shown both the numerical solution at the 13-th iteration and the exact
solution. The two match with each other very well with relative error 0.01%.

4.4 Example 4. A concave obstacle

In this example, we consider the numerical reconstruction of an unknown medium which contains
a known concave obstacle. In this case, some geodesics can have more than one reflections at the
obstacle interface, which poses a challenge in the numerical reconstruction.

The exact solution is c(x, y) = 1 + 0.1 sin(0.5πx) sin(0.5πy). The initial guess is c0(x, y) = 0.8.
The grid is 30×30 and we use 30 directions at each grid point on the boundary. The regularization
parameter is taken as β = 1. For the parameter in the adaptive approach, we take ε = min(0.5σn, 1).

The inclusion is formed by a concave kite shape object with the parametric representation

x(t) = cos(t) + 0.65 cos(2t) − 0.65, y(t) = 1.5 cos(t), 0 ≤ t ≤ 2π.

In this case, there are geodesics that have 4 reflections at the interface in our simulation.
Our adaptive numerical algorithm gives a numerical approximation at the 117 iteration with

a relative error of 2.8%. Without the adaptive strategy, the phase space method does not even
converge for this example. The numerical results are shown in Figure 6. In Figure 7, we show rays
that are not used (left) and broken rays that are used (right) in the calculation. We see that most
non-broken rays are used in the final reconstruction and most of the unused rays have reflections
in the concave region. As discussed before, the difficulty at concave region is due to the fact that
neither non-broken geodesics nor short broken geodesics can reach the concave region. On the
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Figure 3: Numerical solutions from the second to the seventh iterations.

other hand broken geodesics have to be used to reach concave region. In the adaptive strategy,
after non-broken rays are used to provide a good estimate of the metric outside the convex hull
of the concave region, some broken rays are then used to provide estimate of the metric inside
the concave region. Although many broken rays are not used, we still manage to get a pretty
good reconstruction in the concave region. By avoiding using those erroneous rays in our adaptive
approach, we gain stability. Of course the tradeoff between accuracy and stability is always a tricky
issue. In general, concave region in reflection tomography poses a great challenge due to multiple
reflection or scattering; the more concave the region is the more difficult it is to reconstruct.

4.5 Example 5. Unknown obstacles

In this section, we present a few examples in the most difficult setting in reflection traveltime
tomography where both the location of reflection and the underlying medium are unknown. We
demonstrate that our adaptive method is able to recover the convex (with respect to the underlying
metric) hull of the unknown concave obstacles and the metric outside the convex hull. The key idea
is that our adaptive method can distinguish non-broken rays from broken ones in the measurements
and use non-broken ones for the reconstruction first. Since we do not know whether there is
reflection or not and we do not know the location of the reflection if there is, we can not use those
broken geodesics. Hence we assume that there is no reflection first. So those rays that are broken
will not be used in the reconstruction because the erroneous assumption misses the jump condition

12



Figure 4: Rays used from the second to the seventh iterations.

at the broken point which will produce a large mismatch with the measurement. Once most non-
broken rays are used we can (1) plot those rays to find the convex hull of the obstacle (if there is
one), and (2) reconstruct the metric outside the convex hull.

In the first two examples (Figures 8-9), we show recovery of obstacles with an unknown constant
velocity field c(x) = 1. Then we will present an example (see Figure 10) with non-constant velocity
field with a convex unknown obstacle. In the final example (see Figures 11-12), we will consider the
recovery of both the non-convex unknown obstacle and the unknown non-constant velocity field.

In the first test, we use an unknown obstacle of the concave kite shape as in Section 4.4. In
Figure 8, we show a figure where we draw only those rays that are used in the calculation. We see
that the rays give the convex hull of the unknown concave obstacle.

In Figure 9, we show another test where there are two unknown concave obstacles. The two
obstacles are shown in the left plot of Figure 9. In the middle plot of Figure 9, we plot the rays
that are used in the reconstruction. Again we obtain the convex hull for each of the two obstacles
because they are well separated. Moreover, the relative error of the recovered velocity field is only
0.3%.

In Figure 10, we show the reconstruction with a convex unknown elliptical object defined by

the equation
(x − 0.5)2

0.04
+

(y − 0.5)2

0.09
= 1. The unknown velocity field is c(x) = 1 − 0.3e−2r2

with

r =
√

(x − 0.5)2 + (y − 0.5)2. In the left plot of Figure 10, we present the rays that are used in the
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Figure 5: Left: Numerical solution at the 13-th iteration. Right: Exact solution.

Figure 6: Left: Numerical solution at the 117-th iteration. The relative error is 2.8%. Middle:
Exact solution. Right: Absolute error.

calculation. One sees that the coverage of the rays gives an excellent reconstruction of the unknown
obstacle. In the middle and right plots of Figure 10, we present both the numerical solution and
the exact solution for the velocity field; the corresponding relative error is only 0.3%.

In Figure 11, we show the reconstruction with a very concave unknown object of a flower shape
r = 1+0.6 cos(3θ) with r =

√

(x − 2)2 + (y − 2)2. The unknown velocity field is c(x) = 1+0.2 sin(r)
with r =

√

(x − 2)2 + (y − 2)2. The unknown obstacle is shown in the left plot of Figure 11. In
this example, we also take the domain Ω as a circle. In the middle plot of Figure 11, we have
shown the rays that are used in the calculation. Again we obtain the envelope of the convex hull
of the obstacle. Absolute error of the numerical solution is also shown in the right plot of Figure
11. We see that we get a good recovery outside the convex hull of the unknown obstacle, which is
the region covered by the rays. In Figure 12, we present both the numerical solution and the exact
solution for the velocity field. The corresponding relative error is 2.67%.
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Figure 7: Left: Rays not used in the calculation. Right: Broken geodesics used in the calculation.

Figure 8: Ray coverage of the unknown obstacle.

4.6 Example 6. The Marmousi model

In this section, we test our method on a well-known bench mark problem: the Marmousi model.
The exact velocity field is defined on a 122× 122 grid and is shown in the left plot of Figure 13. In
our numerical reconstruction we use a 41 × 41 grid. We use 50 directions at each grid point along
the boundary. The regularization parameter β = 100. We will compare our numerical solution to
the exact solution projected on a 41 × 41 coarse grid, see the middle plot of Figure 13. We take
the initial guess as c0 = 1500. We use ε = min(0.1σn, 1). The algorithm converges at the 16-th
iteration with a relative error of 2.24%. In the right plot of Figure 13, we have shown the numerical
approximation. Comparing to the result we obtained using the original phase space method in [5]
for the same problem, the adaptive method is much better

Furthermore, we test the robustness of our numerical algorithm by adding some noise in the
data, with the same numerical setting as above except that we take β = 10000. In Figure 14, we
present the numerical solutions when the noise levels are 0.1% and 1%, with relative errors 4.16%
and 5.53% respectively. We see that our method behaves quite robustly.
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Figure 9: Left: The two unknown obstacles. Middle: Ray coverage of the unknown obstacle. Right:
Absolute error.

Figure 10: Left: Ray coverage of the unknown obstacle. Middle: Numerical solution at the 54-th
iteration. Relative error is 0.3%. Right: Exact solution.

5 Conclusions

In this work we presented an adaptive phase space method for traveltime tomography that can deal
with multiple arrival time using the scattering relations. Compared to the original method proposed
in [5], the adaptive strategy uses more accurate geodesics first and improves the reconstruction
gradually in a more stable and efficient way. The proposed adaptive method can also distinguish and
utilize broken and non-broken geodesics accordingly for the case of reflection traveltime tomography.
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Figure 11: Left: The unknown obstacle. Middle: Ray coverage of the unknown obstacle. Right:
Absolute error.

Figure 12: Left: Numerical solution at the 48-th iteration. Relative error is 2.67%. Right: Exact
solution.
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