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An adaptive polynomial based forward

prediction algorithm for multi-actuator

real-time dynamic substructuring

By M. I. Wallace, D. J. Wagg and S. A. Neild

Department of Mechanical Engineering, University of Bristol,
Queens Building, University Walk, Bristol BS8 1TR, UK

Real-time dynamic substructuring is a novel experimental technique used to
test the dynamic behaviour of complex structures. The technique involves creating
a hybrid model of the entire structure by combining an experimental test piece
— the substructure — with a set of numerical models. In this paper we describe a
multi-actuator substructured system of a coupled three mass-spring-damper system
and use this to demonstrate the nature of delay errors which can first lead to a loss
of accuracy and then to instability of the substructuring algorithm.

Synchronisation theory and delay compensation are used to show how the de-
lay errors, present in the transfer systems, can be minimised by online forward
prediction. This new algorithm uses a more generic approach than the single step
algorithms applied to substructuring thus far, giving considerable advantages in
terms of flexibility and accuracy. The basic algorithm is then extended by closing
the control loop resulting in an error driven adaptive feedback controller which can
operate with no prior knowledge of the plant dynamics. The adaptive algorithm
is then used to perform a real substructuring test using experimentally measured
forces to deliver a stable substructuring algorithm.

Keywords: Substructuring; numerical-experimental testing; delay

compensation; synchronisation theory; real-time

1. Introduction

In this paper we consider the hybrid experimental-numerical testing technique
known as real-time dynamic substructuring. The technique involves creating a hy-
brid model of the whole structure — the emulated system — by combining an
experimental test piece — the substructure — with one or more numerical models.
The substructuring technique was originally intended to be applied to situations
where accurate numerical models of experimental parts were unreliable. As only
part of the structure is experimentally tested it allows engineers to view the be-
haviour of critical elements under dynamic loading at full scale. So far the technique
has been developed successfully using expanded time scales, known as pseudody-
namic (PsD) testing (Mahin & Shing 1985; Nakashima et al. 1992; Donea et al.
1996; Pinto et al. 2004). As PsD testing is carried out quasi-statically, any time-
dependent behaviour of the test specimen is lost. However, this type of testing is
usually applied to rate-independent structures and as a result has achieved a large
amount of success in the field of earthquake engineering because the strain-rate
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sensitivity of the materials can often be neglected. Implementing the substructur-
ing process in real-time means that the damping and inertial components of the
substructure dynamics are retained (Blakeborough et al. 2001; Darby et al. 2001b;
Wagg & Stoten 2001; Sivaselvan et al. 2004). The numerical model computation
time is restricted due to the real-time constraints and that the actuation devices
used must have a high enough dynamic rating to achieve the desired accelerations.
As this currently cannot always be achieved for large structures, real-time test-
ing has been used for smaller scale component testing applications, for example
Horiuchi et al. (1999). A comparative overview of real-time and pseudodynamic
substructuring is given by Williams & Blakeborough (2001).

To carry out a substructuring test the component of interest is isolated and
fixed into an experimental test system. To link the substructure to the numerical
models, a set of transfer systems (which act on the substructure) are controlled
to follow the appropriate output from the numerical model, which is typically a
displacement. At the same time the forces between the transfer systems and the
substructure are fed back into the numerical models to give a form of bi-directional
coupling. Transfer systems are typically single actuators (electric or hydraulic) in-
cluding their proprietary (built in) controller, but can also be in the form of a more
complex test facility such as a shaking table. Single actuator substructuring has
been developed beyond the ‘proof of concept’ stage where experiments on simple
substructures have been carried out. Multi-actuator substructuring presents a sig-
nificant engineering challenge in terms of real-time implementation (Nakashima &
Masaoka 1999; Wallace et al. 2004; Neild et al. 2005).

For a substructured system to be stable a delay compensation scheme is typi-
cally used to negate the effect of the actuator dynamics resulting from the propriety
control of the transfer system. Typically, this has been achieved by including addi-
tional control algorithms (an outer-loop controller). Single step forward prediction
approaches to substructuring have already been presented by Horiuchi et al. (1999)
and Darby et al. (2001a), and shown to improve accuracy. The algorithm presented
here uses a more generic approach than these single step algorithms giving consid-
erable advantages in terms of flexibility and accuracy. It should be noted that there
are other approaches which have been proposed to compensate for the transfer sys-
tem error. For example, lag compensation by inverting an experimental transfer
function estimation of the combined inner-loop controller and actuator dynamics,
Gawthrop et al. (2005), or via the use of model reference adaptive controllers as an
outer-loop control strategy, Neild et al. (2002).

In Section 2 of this paper we describe a multi-actuator substructuring model
of a coupled three mass-spring-damper system (Wallace et al. 2004). We describe
how techniques from synchronisation theory can be used to give an online accu-
racy measure based on the delays between the signals passing through the transfer
systems (Ashwin 1998). Additionally, we describe how a measure of the accuracy
of the substructuring algorithm can be obtained without having to simulate the
complete system.

In Section 3 we present a forward prediction algorithm to compensate for the
delay present in the transfer system dynamics, based on performing an online poly-
nomial estimation of the numerical model displacement. We then extend this al-
gorithm by closing the control loop to achieve an error driven adaptive feedback
controller capable of achieving high levels of synchronisation over transient and
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frequency dependent plant behaviour. This approach uses the transfer system syn-
chronisation error to achieve complete delay compensation, which builds on the
fundamental concepts presented by Darby et al. (2002). We present a formulation
of the adaptive parameters and show that this algorithm can operate from a de-
sired initial condition and with no prior knowledge of the plant dynamics. We then
present the results from a substructuring test where the experimentally measured
forces from the substructure are used and discuss the implications of local and
global accuracy for this testing technique.

2. Real-time dynamic substructuring with multiple transfer

systems

The entire structure — the emulated system — is represented by a hybrid numerical-
experimental model where the dynamics of the numerical model are combined with
the dynamics of the experimental component — the substructure. The general
principle of substructuring remains the same regardless of the number of transfer
systems present in the system, however the problem from a control point of view
becomes more complicated for more than a single transfer system due to the intro-
duction of cross-coupling between the control signals. In this paper, we will consider
the example of a three mass oscillator system with two diametrically opposing exci-
tation walls as shown in Figure 1. This will allow us to demonstrate the problems of
achieving accurate control for multi-actuator substructuring using a conceptually
simple example. This example has been discussed in detail by Wallace et al. (2004),
but for completeness will be briefly described here also. The masses are coupled by
four identical linear springs, ki, and damped by coupled viscous dampers, ci, where
i = 1, 2, 31, 32. The system is excited via two moving supports, rj , where j = 1, 2.
The general equation of motion for such a system can be written as,

Mξ̈ + Dξ̇ + Kξ = Sr(t), (2.1)

where, M, D and K are the mass, damping and stiffness matrices respectively and
Sr(t) is the support excitation. ξ is a vector which represents the states of the
system, such that

ξ = [z∗1 , z∗2 , z∗3 ]T , (2.2)

where, (.)∗ is used to indicated that these dynamics are based on the ‘perfect’ dy-
namics of the emulated system. In order to create a substructured model of the
system shown in Figure 1, the middle mass, m3, and accompanying springs, k31

and k32, are taken to be the substructure. This leaves both excitation walls and
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Figure 1. Schematic representation of the three mass system
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Figure 2. Schematic representation of a substructured three mass system with two
transfer systems

adjacent masses to be used to create two independent numerical models who’s in-
fluence is imposed on the substructure by two separate transfer systems (actuators)
via two independent control signals, u1 and u2. The influence of the substructure
is represented by two autonomous forces, F1 and F2, which are measured experi-
mentally and then imposed back on the numerical models. This new substructured
model is shown schematically in Figure 2.

From Figure 2, the dynamics of the two numerical models can be written as,

m1z̈1 + c1(ż1 − ṙ1) + k1(z1 − r1) = F1,

m2z̈1 + c2(ṙ2 − ż2) + k2(r2 − z2) = F2.
(2.3)

Due to the linear nature of the example considered here, we know explicitly the
forces at each time interval allowing us to measure the accuracy of an individual
test, where

F1 = c31(ż3 − ż1) + k31(z3 − z1),

F2 = c32(ż2 − ż3) + k32(z2 − z3).
(2.4)

However, substructuring is specifically aimed at modelling systems where this is
not the case (Wagg & Stoten 2001), and in such a case these forces could only

4



Proc. R. Soc. A (2005) 461, 3807–3826

be measured using load cells between the transfer systems and the experimental
substructure. This point highlights the difficulty in assessing the accuracy of sub-
structuring tests for complex systems, as the end results of the test can never be
compared with results from the emulated system. This point will be discussed in
greater depth later in this section and in Section 2(f).

The aim of the control algorithm is to achieve synchronisation between the
desired interface displacement of the numerical models, z, and the actual position
of the transfer systems, x. However, under just the linear control of the propriety
controller, a transfer system will always be subject to some form of delay, τ ,which
can either be characterized as a pure delay or as a frequency dependent delay (lag)
depending on the type of actuator. This error will lead to a reduction in the degree
of synchronisation of the transfer system and thus a corresponding reduction in
the accuracy of the numerical model compared to that of the emulated system
(Mosqueda 2003). In fact the nature of this delay error in the substructuring model
can be represented by two coupled components which we can write as,

e = e1(z
∗, z, t) + e2(z, x, t), (2.5)

where, e1 is a function which describes the accuracy of the numerical models com-
pared to the appropriate variable in the complete emulated system,

e1 = [(z∗1 − z1) (z∗2 − z2)]
T , (2.6)

and e2 represents the degree of synchronisation between each transfer system and
its numerical model (the local measure of accuracy for the control algorithm),

e2 = [(z1 − x1) (z2 − x2)]
T . (2.7)

Therefore, by combining e1 and e2 we can get a global measure of the accuracy of the
substructuring test which relates the emulated system coordinates z∗ to the actual
displacement of the transfer systems x. However, when substructuring complex
systems it is not possible to compute z∗, and the only measure of accuracy is the
degree of synchronisation e2. We note also that the numerical model coordinates
z are, in effect, a function of the transfer system x, as the force vector F will be
subjected to the same delay τ as the transfer system, such that

z = f(r(t), F (t − τ)), (2.8)

This highlights the nature of the coupling between e1 and e2. In the ideal case,
achieving perfect synchronisation by removing the delay τ from the transfer systems
will result in e2 → 0. This in turn will mean that the correct force vector F (t) will
be added into the numerical models at the correct time, such that e1 → 0 and
the substructured system will replicate the dynamics of the emulated system. This
argument allows us to propose the following:

Proposition 2.1. If the synchronisation error, e2 = 0, for all time t ≥ 0 during a
substructuring test then x = z and e1 = 0 such that the substructured model exactly
replicates the dynamics of the emulated system.

However, in practise the synchronisation error, e2, can never be exactly equal to
zero in a real substructuring test so the practical interpretation of Proposition 2.1 is
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that as e2 → 0 the substructured model more closely replicates the dynamics of the
emulated system. The significance of Proposition 2.1 is that it gives an indication
of the accuracy of a substructured system using the only measurable quantity of
error e2, the local control error.

From an accuracy standpoint alone it is clear that the primary control objective
should be to minimize e2, however the size of the delay τ also has a significant
effect on the stability of the substructuring algorithm as a whole. Any error in e2

will result in a corresponding error in e1 and thus propagate to the next time step
leading to potential instability of the substructuring algorithm. This is discussed
further in Section 2(b).

(a) Experimental setup

To implement substructuring we are using a combination of standard Simulink
blocks and custom S-Functions (C modules compiled into *.dll files using a MEX
compiler) to formulate a model and a dSpace DS1104 R&D Controller Board to
implement it in real-time. The companion software ControlDesk is used for online
analysis and control, providing soft real-time access to the hard real-time applica-
tion. More detail on the experimental setup is given by Wallace et al. (2004).

Figure 3 (a) shows the substructured model setup along with the transfer sys-
tems which imposes the interface displacements on the physical substructure. An
expanded view is shown in Figure 3(b). Each mass is a constant 2.2kg and connected
via three parallel shafts constraining their motion to one degree of freedom. Through
system identification the springs were found to have a stiffness of k = 9000N/m
and damping value of c = 30Ns/m. The stiffness of the strings allows significant
coupling between the two transfer system, this is discussed further in Section 3(f).

(a)

(b)

Transfer System 1 Transfer System 2

Substructure

F1 F2

Figure 3. (a) Experimental rig setup of substructured model. (b) Enlarged view of
substructure.
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(b) Effect of feedback delay on the substructuring algorithm

There is an important difference between the difficulties faced in a standard
control problem to that faced when performing substructuring. For substructuring,
the reference signal (i.e. the control demand) for each transfer system is not known
at the start of each time step as in a normal control problem, but must be created in
its respective numerical model during each time period. A small delay in the transfer
system response (such that e2 6= 0, from Equation 2.7) introduces a corresponding
error in the feedback force vector, which can be thought of as adding negative
damping to the system (Horiuchi et al. 1999). This discrepancy has the effect of
reducing the accuracy of the numerical models (compared to the emulated system)
until the magnitude of the synchronisation delay increases to such a degree that a
sign change for the damping of the overall system occurs. At this point instability
of the substructuring algorithm is observed and is be characterized by the onset of
oscillations with exponential growth (Wallace et al. 2004).

(c) Measuring synchronisation accuracy using subspace plots

Synchronisation subspace plots are used to show the effectiveness of the con-
trol algorithm by plotting the desired verses actual responses, (Ashwin 1998). A
subspace plot shows the amplitude accuracy and the magnitude of delay coupled
together at any one time interval. Perfect synchronisation is represented by a diag-
onal straight line with maxima and minima of the reference signal. Any reduction
in synchronisation can be seen as a deviation from this idealized line. For periodic
wall excitation conditions these plots build up into a repeating periodic pattern,
which can appear complex. However, the individual components of amplitude and
delay produce their own specific and identifiable patterns if evaluated separately.

The result of varying the amplitude accuracy is to change the angular orienta-
tion of the subspace plot compared to the idealized line. Figure 4 shows the result
of increasing amplitude accuracy from a 0% to 25%, 50% and then 75% of perfect
synchronisation. Continuing this trend, the angular orientation further increases to
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Figure 4. Effect of increasing amplitude accuracy with zero delay.
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a limit of a 90◦ (vertical) line which is the outcome of an infinite plant response.
The consequence of introducing a constant delay between the reference signal and
the plant response is to transform the idealized straight line into an ellipse (anti-
clockwise implies negative damping, clockwise implies positive damping) as shown
by Figure 5(b). The greater the delay, the larger the width of the minor axis of the
ellipse, with the change being proportional to the delay magnitude. If the delay is
not constant through one period, then the ellipse no longer has a uniform shape.

In a typical subspace plot however, the effect of amplitude and delay are coupled
together with both being able to vary independently through a single period. How-
ever, despite this, their visual interpretation remains simple instant online guide to
the accuracy of an individual test, thus allowing linear controllers to be tuned online
and adaption characteristics to be viewed. This technique will allow us to measure
the effectiveness of the forward prediction algorithms presented in Section 3.

3. Forward prediction

(a) Application to forward prediction

The value of being able to forward predict online can be seen from Figure 6.
Controlling to an arbitrary reference signal z we see that there is an inevitable
delay τ in the dynamic response of the plant x (expected in any dynamical system
under linear control). By predicting forward the same amount as the delay τ to
create a new reference signal z′, at any point in time tn, and then using this new
reference as the transfer system demand, we will be able to eliminate the response
delay thus obtaining nominally zero synchronisation error, such that e2 → 0 from
Equation 2.7.

Figure 7 shows an example sinusoid reference signal of 10Hz (shown by the solid
grey line) which is to be predicted forward. A section of data must be taken to act
as control points for the fitted polynomial curve, here a buffer of 20 data points
n = 20 starting at time t = 1 has been stored. For example, if we wish to predict
forward 18 time steps (P = 18 and ∆t is the sample time step size and equal to 1ms
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in this case) Figure 7 shows the differing accuracies obtained by the various order
N of polynomial fitted curves. From this example, we see that both the 8th and
10th order curves have the highest degree of accuracy, whereas the 4th order curve
loses coherence much more quickly. However, the higher the order of prediction the
more computationally intensive the calculation and the more inherently unstable
the predicted signal z′ will become. Therefore, the desired amount of time for which
the numerical model should be predicted forward is equal to τ = △tP to achieve
optimal delay compensation.
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(b) Least squares polynomial fitting

One mathematical procedure for finding the best fitting curve to a given set of
points is by minimising the sum of the squares of the offsets of the points from
the curve (Kreyszig 1999). The linear least squares fitting technique is the simplest
and most commonly applied form of linear regression and provides a solution to the
problem of finding the best fitting straight line through a set of points. However, due
to the dynamics of the numerical models in our system we move from a best-fit line
to a best-fit polynomial, where sums of vertical distances are used. A polynomial
in x of order N with coefficients ai (where i = 0, . . . , N) is given by,

y = a0 + a1x + . . . + aNxN . (3.1)

Using a standard least squares polynomial derivation (Kreyszig 1999), given n num-
ber of data points (x0, y0), . . . , (xn−1, yn−1) with polynomial coefficients a0, . . . , aN

the equation of the curve is given by,
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...
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. (3.2)

Therefore, in matrix notation, the equation for a polynomial fit is given by

y = Xa, (3.3)

which can be solved by premultiplying by the matrix transpose, such that XT y =
XT Xa. The matrix can then be inverted directly to give the solution,

a = (XT X)−1XT y. (3.4)

(c) Single time step forward prediction

Delay compensation by polynomial extrapolation is not a new concept, single
time step prediction techniques have already been proposed in relation to substruc-
turing (Horiuchi et al. 1999; Darby et al. 2001a), and shown to improve accuracy.
These algorithms are based on using predefined coefficients, āi, for an N th order
polynomial fit of n number of control points following the equation,

z′ =

N
∑

i=0

āi zi, (3.5)

where z0 is the present calculated numerical model displacement and zi are the
previously calculated displacements at ∆t× i units of time ago. Figure 8 shows the
forward predicted point z′ being obtained by extrapolating the polynomial function
over the present displacement z0 and N previous calculated values, thus making
the number of control points used, n = (N + 1).

For this 2nd order polynomial fit we attain the following constants ā0 = 3,
ā1 = −3 and ā2 = 1 (Horiuchi et al. 1999). Note that we can only predict one
whole time step forward and the correct number of control points n must used for
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Figure 8. Single time step prediction of n = 3 control points for a N = 2 order
polynomial fit.

the polynomial function (to ensure that the X matrix of Equation 3.3 is square)
otherwise the polynomial fit will not hold. To predict further ahead than one time
step we can simply apply Equation 3.5 more than once (Darby et al. 2001a). For
example to predict two time steps forward we see that if

z′(∆t) = 3z0 − 3z1 + z2, (3.6)

then,
z′(2∆t) = 3z′(∆t) − 3z0 + z1,

= 6z0 − 8z1 + 3z2.
(3.7)

Note that we are still restricted to predicting in whole time steps unless an addi-
tional interpolation is carried out between the two points (Darby et al. 2001a).

However, if we use Equation 3.4 to solve the (XT X)−1XT matrix components
numerically first, we can deduce a more generalised forward prediction algorithm
where multiples and fractions of one time step can be predicted in one iteration and
we are no longer constrained to n = (N + 1) number of control points. Increasing
n can help to smooth noise out of the numerical model and thus from the control
signal. We define the size of the X matrix by choosing values for the number of
control points n and the order of the polynomial fit N . For the case above, n = 3
and N = 2, thus rewriting the general Equation 3.3 for this specific case gives us,
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z2



 =





1 t0 t20
1 t1 t21
1 t2 t22
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 , (3.8)

where, ti is the current simulation time for each value of zi. Therefore, for a sample
time step size ∆t as shown in Figure 8,





z0

z1

z2



 =





1 0 0

1 −∆t ∆t2

1 −2∆t 4∆t2









a0

a1

a2



 . (3.9)
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The predicted point z′ is given by an adaptation of Equation 3.3,

z′ = XP a, (3.10)

where, XP is the forward prediction vector and given by,

XP = [1 P∆t . . . PN∆tN ], (3.11)

and P is the number of time steps to be predicted forward (which does not have to be
a integer multiple of ∆t). As X is a square matrix in this case, (XT X)−1XT = X−1,
therefore,

z′ = XP X−1z. (3.12)

Evaluating XP X−1 gives an expression which is independent of the sample time
step size ∆t. Substituting into Equation 3.12 for the case when P = 1 we see that

z′(∆t) = 3z0 − 3z1 + z2, (3.13)

thus matching the coefficients of the one step method in Equation 3.6. Substituting
P = 2 we see that

z′(2∆t) = 6z0 − 8z1 + 3z2, (3.14)

matching the coefficients found in Equation 3.7 but in a single operation. There-
fore, the coefficients āi from Equation 3.5 are actually the pre-multiplication of the
forward prediction vector XP for the special case of P = 1, such that

ā = XP [(XT X)−1XT ]. (3.15)

In this way, the coefficients ā are predefined and thus fix the level of forward predic-
tion obtained, whereas the coefficients of the polynomial function a are calculated
each time step and therefore allow variable degrees of forward prediction to be
achieved by altering the value of P online.

(d) Online forward prediction using variable polynomial coefficients

To achieve online forward prediction a buffer of n data points of the numerical
model displacement z are stored and updated by a buffer overlap of (n − 1) each
time step. These are then fed into a least squares polynomial fitting sub routine
which uses the set of control points [zn−1, zn−2, . . . , z0] to calculate the N th order
polynomial fit and therefore find the coefficient vector a from Equation 3.4 for that
time step. The current coefficients are then fed into a reconstruction algorithm
that calculates the predicted point z′ according to Equation 3.10 using the forward
prediction vector XP , such that

z′ = ka

N
∑

i=0

(aiP
N). (3.16)

When using linear control, an additional source of error is the amplitude accuracy.
Typically, as the excitation frequency is increased the level of amplitude accuracy of
the transfer system reduces. Thus, the forward predicted point z′ is then multiplied
by a gain ka to remove this error and increase the synchronisation accuracy.

12
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(e) Adaptive forward prediction (AFP)

The basic forward prediction algorithm can be used to effectively remove the
transfer system delay, however, both the magnitude of the forward prediction, P ,
and the amplitude gain, ka, must be specifically tuned for each different excitation
condition, thus making the algorithm, in effect, a feed-forward controller. To remove
the need for this tuning and to allow the algorithm to achieve high levels of syn-
chronisation for frequency dependent and transient plant conditions we must close
the control loop and use the feedback dynamics of the transfer system. In com-
bination with the existing linear control present in the substructuring algorithm
this model structure now represents an error driven adaptive feedback controller
(Åström & Wittenmark 1995). We cannot explicitly measure the transfer system
delay τ as we only have data for the current time step, thus we only know the
synchronisation error e2 at any single point in time. Therefore, to achieve complete
delay compensation we can indirectly force τ → 0 by explicitly using a measure
of the synchronisation error e2. An alternative technique which uses this feedback
error to achieve adaptive compensation is presented by Darby et al. (2002).

As before, the current coefficients are fed into a reconstruction algorithm that
calculates the predicted point z′ but now the magnitude of the forward prediction
τ is now governed by,

τ = ∆t(P + ρ), (3.17)

where, ∆t is the sample time step size, P is the fixed initial number of time steps
to be forward predicted and ρ is the adaptive number of time steps to be forward
predicted. Likewise, the amplitude accuracy is now governed by,

z′ = z′(ka + σ), (3.18)

where, ka is the fixed amplitude gain and σ is an adaptive amplitude variable which
together control the amount of the predicted reference signal to be used.

Setting P = 0 and ka = 1 will bring about zero initial conditions. The delay
compensation can then be completely achieved by the adaptive parameter ρ and
the amplitude error completely removed by σ. Thus, we can use this new adaptive
algorithm when we have no knowledge of the plant dynamics and when there is
transient or frequency dependent plant behaviour. However, it is not always de-
sirable to start from zero initial conditions, in fact in many cases (and mainly in
earthquake engineering) it is important to start the test with the AFP algorithm in
a state near to optimal adaptation. These optimal values can be estimated by ob-
serving the steady state adaptive values of an uncoupled system identification test
for the specific transfer system. This would then allow the initial transient phase
of the test to be avoided.

The adaption algorithm works off four triggered states, ϕ1,...,4, which have a null
value until their individual trigger conditions are met. Trigger states, ϕ1 and ϕ2,
are activated on the condition of sign change of the numerical model displacement,
when z has zero amplitude. The first state represents a rising edge, z changing
from negative to positive, and the second a falling edge, z changing from positive to
negative. The other two trigger states are similar except activated on the condition
of sign change of the numerical model velocity, ż, with ϕ3 representing a rising edge
and ϕ4 representing a falling edge. Effectively these two conditions give the time at
which the maxima ϕ3 and minima ϕ4 of the numerical model displacement occurs.

13
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The adaptive forward prediction parameter ρ is calculated when either of the
first two triggered states ϕ1,2 are met. This allows the delay of the transfer system
response to be observed independently from any amplitude error. The value of ρ is
given by,

ρn+1 = ρn ± αe
γ
2,n , (3.19)

where, α is an adaptive gain parameter for the magnitude of forward prediction
and γ sets the convergence curve and must be greater than or equal to 1. Note
that the ± relates to whether the signal is a rising or falling edge. Equation 3.19
shows that when the synchronisation error e2 is zero, ρn+1 = ρn thus ρ retains its
previous value, indicating that full delay compensation τ has been achieved.

Similarly, the adaptive amplitude parameter is calculated when either of the
second two triggered states ϕ3,4 are met. This allows the peak of the numerical
model to be compared to that of the transfer system once delay compensation has
occurred. The value of σ is given by,

σn+1 = σn ± βe
γ
2,n , (3.20)

where, β is an adaptive gain parameter for the amplitude accuracy. Note that until
full delay compensation has been achieved the parameter σ will give an under
estimation of the amplitude error. However, as the delay is by far the dominant
factor in the compensation algorithm this condition does not effect the performance
of the controller.

We see that by setting both adaptive parameters α and β to zero, the adaption
algorithm can be turned ‘off’ resulting in the basic feed-forward controller, assum-
ing both ρ0 and σ0 equal zero. Note that both Equations 3.19 and 3.20 include
history data, analogous to that of an integrator, such that any steady state error is
forced to zero. The choice of γ decides the convergence curve. The synchronisation
error should be such that e2 << 1 so the higher γ, the slower the convergence
at very low instances of synchronisation error, thus the smoother the steady state
values for the adaptive parameters but the less reactive it is to fast transient or
frequency dependent plant behaviour. Additionally, as the adaption only occurs at
the set trigger conditions, ϕ1,...,4, the AFP algorithm is subject to a persistence of
excitation criterion (Åström & Wittenmark 1995).

(f ) Substructuring using the AFP algorithm

To show the effectiveness of the AFP algorithm, we first perform a substructur-
ing test using forces generated by a model of the emulated system, rather than the
actual measured forces as this will ensure that the numerical models will exactly
match the dynamics of the emulated system, such that e1 = 0 from Equation 2.6.
This is analogous to pseudodynamic substructuring where an estimation of the force
is used (Donea et al. 1996). A typical challenge faced in real-time substructuring
is a rapidly varying transfer system delay (or lag depending on the plant charac-
teristics), therefore, Figure 9 shows the subspace plots for a sine sweep excitation
test. The level of synchronisation between each respective numerical model and its
transfer system are shown for the case when there is no forward prediction (only
the inner loop proprietary linear control is active) in Figures 9 (a1) and (b1), and
for the case where we use the AFP algorithm as an outer loop strategy in Figures 9
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Figure 9. Synchronisation subplots for equal and opposite wall sweep excitation of r1,2 = 3
to 10Hz in 5s and then back to 3Hz in 5s. Controller parameters N = 4, n = 10, α1,2 = 100,
β1,2 = 5, γ1,2 = 2; Adaptive parameters shown in Figure 10.

(a2) and (b2). It is clear that the use of the AFP algorithm results in a significant
improvement in the level of synchronisation. The constantly changing conditions
means that the delay compensation scheme never reaches steady state values but in-
stead must constantly monitor the synchronisation error in order to maintain a high
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level of compensation. Although the excitation demands are equal and opposite and
the actuators are of the same type, we can see that the transfer system dynamics
vary as shown by the differing adaption characteristics in Figure 10 (a). This is a
marked difference to the similarity of the amplitude error shown in Figure 10 (b).
This highlights the need for the control of the transfer systems to be decoupled
such that their specific mechanical characteristics can be dealt with independently.

However, to achieve a true real-time dynamic substructuring test the actual
force must be fed back into its respective numerical model rather than the one gen-
erated by a model of the emulated system. Figure 11 shows the steady state results
for both transfer systems for such a test using the AFP algorithm. Firstly, it can be
seen that the substructuring algorithm has remained stable due to the high degree
of synchronisation between the numerical models and their respective transfer sys-
tems, shown by Figure 11 (a2) for Transfer System 1 and (b2) for Transfer System
2. In both cases, virtually all the delay has been removed. The resulting numerical
models can then be compared to their respective emulated dynamics — shown in
Figures 11 (a1) and (b2). The reduction in synchronisation of the numerical models
highlights the fact that although the local control error is small a sizeable substruc-
turing error exists. The reason for the extent of the substructuring error in this case
is the magnitude of cross coupling between the transfer systems. Figure 12 shows
the manufacture’s specification for the actuator capacity envelope for the transfer
systems used in these experiments. The experimental data shown is for Transfer
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Figure 11. Comparative synchronisation subplots for a real substructuring test for wall
excitation of r1,2 = 8Hz (excitation magnitudes are not equal) using the AFP algorithm;
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Figure 12. Actuator capacity envelope for Transfer System 1. Experimental data shown
for the test of Figure 11(a) (10s test data).

System 1 (although a similar profile would be observed for Transfer System 2) for
the test shown in Figure 11(a). It is typical in real-time substructuring that the
actuators are operated right up to their maximum performance envelope. It is close
to and beyond this envelope that the cross-coupling and other nonlinear effects
become significant. However despite this, good local synchronisation is maintained
by the AFP algorithm.

Figure 13 shows the case where the AFP algorithm is not used, such that the
delay experienced due to a standard linear controller is not removed. The substruc-
turing test is started using the emulated force vector to ensure stability and then
switched over to the actual force vector after approximately 3 seconds of run time.
We observe the instability of the substructuring algorithm immediately building in
Figure 13 (a). It is important to note that it is not the controller which is becoming
unstable as can be seen from Figure 13 (b), which shows a consistent transfer system
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Figure 13. Destabilization of the substructuring algorithm for an identical test to
Figure 11 but only using the inner loop linear control with no delay compensation.
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Figure 14. Accuracy of the substructure dynamics for the test of Figure 11.

delay throughout the entirety of the test. This example shows that the removal of
the transfer system delay is essential in ensuring a stable substructuring algorithm
(Horiuchi et al. 1999).

The overall resulting global accuracy of the substructuring test using the AFP
algorithm is shown in Figures 11 (a3) and (b3), which indicates the level of synchro-
nisation between the emulated system and the resulting transfer system dynamics.
As stated in Equation 2.5, the global error is a linear addition of the two sources of
error, e1 and e2. However, we note that e1 often cannot be calculated when perform-
ing a complex substructuring test as the emulated dynamics would not be known
explicitly. Figure 14 shows the result of the global error in the dynamics of the sub-
structure x3 compared to that of the emulated system z∗3 for the example presented
in Figure 11. The combination of the local control error and the numerical model
error due to the cross coupling of the transfer systems has resulted in a non-linear
relationship of the substructure dynamics compared to that of the emulated system.
This is an important concept for measuring the accuracy of a substructuring test
as the only error that we have a direct influence on is the level of synchronisation
achieved, e2. The magnitude of the numerical model error, e1 and thus the resulting
global error is dependent on the capacity of the transfer systems used to perform the
test. Working well within the actuator’s performance envelope will result in limited
coupling between the transfer systems and therefore a correspondingly lower global
error. For a complex substructured system this means that the explicit measure of
accuracy, e2 (the local control error), needs to be assessed in combination with the
experimental transfer system profile (compared to its actual performance envelope)
to gain a more complete measure of the accuracy of a substructuring test.

4. Conclusions

In this paper we have discussed the hybrid numerical-experimental technique of
real-time dynamic substructuring. This technique offers a method of testing critical
elements of a system under dynamic loading at full scale. The example we have
used in this work is a multi-actuator substructuring model of a coupled three mass-
spring-damper system. This example has allowed us to demonstrate the nature
of delay errors which lead to loss of accuracy in substructure models. We then
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described, using synchronisation theory, how these delay errors can be measured. We
have described a measure of the accuracy of the substructuring algorithm without
having to simulate the complete system. This is a generic result which holds for all
substructured systems, although the exact relationship between e1 and e2 will be
system dependant.

In Section 3(d) we have shown how the resulting delay errors can be removed
by using an online forward prediction technique. This is based on a polynomial es-
timation to compensate for the delay present in the transfer systems. In addition to
accuracy, this technique has benefits in achieving a stable substructuring algorithm.
In Section 3(c) the algorithm presented here is compared with existing techniques
and shown to be a more generic approach than the single step algorithms applied
to substructuring thus far. This gives considerable advantages in terms of flexibility
and accuracy.

Finally in Section 3(e) we have shown how the basic forward prediction algo-
rithm can be extend to one with adaption by closing the control loop to achieve
an error driven adaptive feedback controller. This allows the forward prediction
algorithm to accurately cope with frequency dependent plant behaviour and oper-
ate with no prior knowledge of the plant characteristics. We show that the AFP
algorithm can be used to achieve a stable substructuring algorithm despite the
discrepancies in the dynamics of the numerical models compared to those of the
emulated system. This is in contrast to the immediate exponential growth observed
when the test is carried out using a standard linear controller in isolation.
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