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Abstract—This paper studies real-time estimation of stability
margin of a power system under disturbances by continuous
measurement data. The paper presents a ball-on-concave-surface
(BOCS) mechanics system as a power system’s adaptive equivalent
representing its real-time status and the stability region about a
monitored variable. The parameters of the equivalent are adaptive
to the operating condition and can online be identified from the
phase-plane trajectories of the monitored variable. Accordingly,
the stability margin and risk of instability can be estimated. Case
studies on a two-generator system and a 179-bus system show that
the BOCS system can be applied either locally or for wide-area
stability monitoring in real-time calculation of stability margin.
This paper proposes a new idea for using real-time measurements
to develop and identify a power system’s adaptive equivalent as a
basis for online prediction of instability.

Index Terms—Ball-on-concave-surface system, logarithmic
spiral, phase-plane trajectory, phasor measurement unit, stability
margin, synchrophasor, transient stability, wide-area monitoring.

I. INTRODUCTION

E ARLY indication of impending instability in a power
system under disturbance conditions is vitally important

for prevention of major power outages. While a series of distur-
bances are increasingly stressing the system, degradation of its
stability margin may finally lead to loss of stability. Computer
simulations that are performed beforehand on assumed contin-
gencies may not help correctly foresee potential instability in
real time if the happening disturbances do not exactly match
simulated contingencies or the operating condition has been
different from what is concerned in simulations. Increasingly
installed synchrophasors, e.g., phasor measurement units
(PMUs), can continuously provide high-sampling-rate and
synchronized phasor measurements over wide areas, which
are ideal in monitoring dynamic behaviors of a power system
in real time. Some researches have focused on tying real-time
phasor measurements with pre-existing knowledge (e.g., on
what variables are good indicators of instability and what their
thresholds are) obtained from computer simulation results or
historical events to enable real-time stability assessment or
prediction under disturbance conditions [1]–[5]. Other efforts
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utilize real-time phasor measurements taken at strategically
selected locations to directly monitor inter-area oscillation
modes or computed energy functions for potential small-signal
instability or transient instability [6]–[8].

When a power system is continuously impacted by a series
of disturbances, its increasing weakness is reflected by growing
swings among generators, which can be detected in real time
from measurements at multiple locations. This paper proposes
a new method for real-time calculation of stability margin only
using continuous high-sampling-rate measurements. The pro-
posed method employs a mechanics system as a power system
equivalent, which is a ball rolling on a concave surface, re-
spectively, representing the real-time system status and stability
region in terms of a monitored variable, e.g., frequency, bus
voltage magnitude, rotor angle difference, or stability index de-
fined for a wide area. Continuous measurements on the vari-
able at a high sampling rate enable authentically presenting its
phase-plane trajectories under disturbances, by which the pa-
rameters of that equivalent are estimated. Then, stability margin
and instability risk indices are calculated from the location of
the ball relative to the surface. The method can be applied to ei-
ther a local variable by an independent measurement device or a
wide-area stability index (e.g., the average angle difference be-
tween two interconnected areas) calculated using phasor mea-
surements. This paper will focus on validating the idea of the
proposed method and study its potentials in local and wide-area
applications.

The rest of the paper is organized as follows. Section II
first proposes the adaptive power system equivalent—BOCS
system. Then, real-time estimation of its parameters and
stability margin by measurement data will be introduced. Sec-
tion III performs case studies on a two-generator system and a
179-bus test system. Finally, Section IV gives conclusions and
points out future work.

II. PROPOSED METHOD

A. Ball-on-Concave-Surface System

Disturbances on a power system will cause generators to
swing, which can clearly be reflected from the measurements
at extensive locations. Select a system variable to monitor.
Following a disturbance, damped swings in the variable’s value
indicate the stabilization process of the system and can be
visualized by its phase-plane trajectory. A study in [9] shows
that unstable or marginally stable phase-plane trajectories
(indicating negative or insufficient stability margin) are qual-
itatively identifiable by pattern recognition technologies. This
paper studies the quantitative relationship between the stability
margin and parameters of a phase-plane trajectory.
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Fig. 1. Two-generator power system.

Fig. 2. Stable phase trajectories.

Consider a power system with two generators as shown in
Fig. 1 and add a temporary short-circuit fault at bus 1. Fig. 2
gives the phase-plane trajectory of frequency difference be-
tween generators 1 and 2 following the fault and the phase-plane
trajectory of frequency of generator 1. Both trajectories have
spiral-like patterns with decreasing swings indicating stabiliza-
tion of the system after the fault.

As shown in Fig. 3, consider an analogy between a monitored
variable’s phase-plane trajectory under disturbances and the
trajectory of a ball rolling on a 3-D concave surface in a gravi-
tational field . It seems that trajectories in Fig. 2(a) and (b) are,
respectively, seen from viewpoint A and viewpoint B in Fig. 3.
Thus, we define such a ball-on-concave-surface (BOCS) system
as a power system equivalent about the monitored variable. At
any time, the surface is concave within a certain boundary, in
which the stability region of that variable is represented. The
ball has a stable equilibrium point at the surface’s bottom rep-
resenting the variable’s steady-state value. The BOCS system,
in fact, represents a projection of the original high-dimensional
power system onto a 3-D Euclidean space depending on the
monitored variable. The parameters of the BOCS system are
adaptive to the operating condition and can be online identified
using the monitored variable’s phase-plane trajectory obtained
from its high-sampling-rate measurements. Theoretically, only
if the monitored variable itself is able to detect Lyapunov
instability of the original power system, the resulted BOCS
system is effective in providing credible trending information
on stability margin and correctly detecting zero margin when
the system loses stability. Some variables might not create an
effective high-dimension-to-3-D projection to help detect in-
stability. For instance, if the system has multiple areas going to
lose synchronism due to disturbances, a single system variable
within one area (e.g., one generator angle) may not detect that
instability.

Although the monitored variable is important to the perfor-
mance of the proposed method, it is not hard to select by means
of the knowledge on the concerned stability problem and en-
gineering judgment. Generally speaking, potentially unstable
system variables are good candidates for monitoring and the

Fig. 3. Ball-on-concave-surface system as a power system equivalent.

basis of identifying a BOCS system. To monitor a wide-area
stability problem, e.g., potential angular instability between two
interconnected areas, two types of candidates for the monitored
variable are

• the angle/frequency difference between the two areas;
• the variables at their interface.
Based on a certain variable, the estimated concave surface

may change its shape under different operating conditions in
terms of network topology and power flows. Ignore its changes
under one operating condition and describe it by a time-variant
(in fact, piecewise time-invariant) 3-D surface function:

(1)

where is the period for one operating condition. Once
the operating condition changes due to a disturbance or control
action, is switched to . About each time-invariant func-
tion , assume:

• the boundary of keeping concavity is a closed curve con-
sisting of continuous ridge points, named boundary points,
where a principal curvature reaches its extremum;

• within the boundary, is differentiable and has one min-
imum (i.e., the bottom point).

Stressing the operating condition (e.g., weaken the network
topology) may shrink the boundary of the concave surface to
give the ball a higher risk of going outside, i.e., the system losing
stability. For a temporary fault without changing the operating
condition, pre- and post-fault surfaces are identical, but the ball
is activated with an amount of energy (depending on the fault
duration) to move on the surface. Disturbances with temporary
and permanent faults will, respectively, be considered by two
case studies in Section III.

B. Estimation of the Surface Function

This paper will focus on approximating by a spe-
cial type of , which is a surface of revolution created by ro-
tating a 2-D smooth curve, i.e., the generatrix, around the ver-
tical axis. As shown in Fig. 3, regard the bottom point of the
surface as origin (0, 0) and represent the generatrix by differen-
tiable function , which has a stationary point at
the origin. and , respectively, describe the vertical and hori-
zontal locations (i.e., the height and trajectory radius) of the ball
relative to the bottom point. The boundary point on the genera-
trix is denoted by , which is also a stationary point of

, where reaches its local maximum .
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At a location , the ball is subject to the following two
mechanics equations in the directions, respectively, normal to
the surface and parallel with the generatrix:

(2)

where denotes the ball’s mass, is the angle between axis
and the tangent, is its angular velocity around axis, and

are, respectively, the magnitudes of its acceleration and speed
components that are tangent to the generatrix and towards the
bottom, and is the force given by the surface in the normal
direction. There is also friction opposite to the ball’s moving di-
rection. denotes the friction component tangent to the gen-
eratrix and is ignored in this paper.

Under disturbances, the multiple-generator system’s dy-
namics behavior is influenced by multiple “forces”. However,
there is always one “force” being dominant over the others at
least for a short time window (e.g., a few seconds). Gravity
with the proposed BOCS system corresponds to the currently
dominant “force” and is assumed to keep constant over the time
window. As indicated by the case study in Section III-A, with
different values assumed for , the concave surfaces inferred
from the same phase-plane trajectory are only different in
their vertical scales and indicate the same horizontal boundary,
i.e., . Hence, taking different values in a time window
does not affect detecting instability or predicting the trend
towards instability. For each current time window, the proposed
method aims at estimating how close the ball has been to the
concave surface’s boundary (under the effect of the dominant
“force”), such that stability margin and instability risk indices
in percentage can be computed online. Therefore, it is not nec-
essary to accurately estimate . We can either simply assume

to be a constant or estimate its value for each time window
using (4) below. Considering that may have a point

where the ball has its maximum speed,
i.e., , assume at and derive (3) from (2):

(3)

Inspired by (3), may take calculated for each time window:

(4)

where is the average and , as an estimate of , is where
reaches its maximum in the time window. An advantage of

taking is that if the operating condition is unchanged, esti-
mates of from different time windows will be close in shape
since they have the same and close values of around
from the comparison between (3) and (4).

With available, the formula for estimating is derived as
follows. Since and satisfy

(5)

take time derivatives of both sides of (5):

(6)

Eliminate in (5) and (6) to obtain (7):

(7)

Following a disturbance, the monitored variable’s high-sam-
pling-rate measurements over a time window are obtained and
denoted by time series . A phase-plane trajectory about the
variable can be plotted. How to estimate time series and

using that phase-plane trajectory will be discussed later in
Sections II-C and D. For any time in the time window, with

and available, is determined by (2) and (7) and
can be directly solved from them. The recursive equation shown
in (8) at the bottom of the page provides an alternative approach,
which is easier to implement. For concision, “ ” with and
is omitted in (8). is the time derivative of , and esti-
mated using the values of around . when

. Initial value may take . Recursively
calculate (8) until is small enough, e.g., %
to obtain an estimate of .

Over the time window, the estimated values of are syn-
chronized with the estimated values of by means of time
stamp “ ”. A function can be inferred by eliminating “ ”
of and . If multiple values of (perhaps at multiple
locations on the surface) corresponds to the same value of ,
average them to obtain the estimate of .

Let be the maximum over the time window. Because

(9)

function for can be estimated by the following
integral:

(10)

In the following subsections, the approaches to estimating
and over a time window are given, and the proposed BOCS-
based method for computing stability margin and instability risk
indices are presented as well as its flow chart.

C. Estimation of Radius

Two approaches are proposed to estimate from a phase-
plane trajectory over a time window of .

1) Logarithmic Spiral Fitting (LSF) Approach: At time
, use to denote the monitored variable’s measurements

for time window , and and are, respectively,
estimates of the angular frequency and damping coefficient of
its dominant oscillation mode. There is

(11)

(8)
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where is the steady-state value of and is the signal
with the other oscillation modes. Take time derivatives of both
sides of (11):

(12)

where and . There are two
ways to estimate . One is to apply prony analysis to of the
current time window to estimate and , and then calculate .

can also be approximated by in (4). Another approximate
but simpler way is to calculate the variances of and
over the time window and then adopt (13) to estimate :

(13)

Then calculate

(14)

From (12)

(15)

In fact, are a pair of approximate dominant poles for
the current time window, and is their distance to the origin.
When the system’s stability margin decreases, the dominant
poles will approach axis. As a result, will decrease. Thus,
(11) and (15) are close to the following equations:

(16)

which represent a clockwise logarithmic spiral with the center
on axis. Hence, is an estimate of and can be ob-
tained by fitting the spiral to the trajectory described by (11) and
(15). Reference [10] provides an algorithm for solving a loga-
rithmic spiral that optimally fits a given spiral-like curve. Tests
on the algorithm show that its result is insensitive to the drifting
of , so approximate formula (13) can be used here.

The dominant oscillation mode may change with time
windows of because of the nonlinear nature of the multi-gen-
erator system. However, if there is always and
the LSF approach is applied continuously, it can estimate ,
adapting to the changes in mode dominance. For instance, if a
trajectory switches its dominant mode from 0.2 Hz over a time
window to 0.5 Hz over the next time window, the LSP approach
with s can capture that change by linking two spiral
segments, respectively, optimized for two time windows.

2) Arc Radius Estimation (ARE) Approach: Different from
the LSF approach, this approach directly estimates the arc ra-
dius of a trajectory. A circular arc can be fitted to a phase-
plane trajectory segment connecting points and

, whose circular center is assumed to be .
and radius for that segment can be solved as follows.

Here, could be either simply equal to or as
described by (14):

(17)

(18)

(19)

Fig. 4. Calculation of �.

If it is not necessary to estimate , but the resulted
estimates of time series will have large swings around an-
gular frequency , especially when the values of and
are in obviously different scales (i.e., is not close to 1). Those
swings do not mean actual sizes of swings in and can be
filtered out by a band-stop filter cover frequency . Even if

, the estimated curve of has spikes due to
the errors in the circular arc fitting, which can be smoothed by
a low-pass filter. Compared with the LSF approach, the ARE
approach is simpler but needs filters to smooth its results.

D. Estimation of Angular Velocity

To estimate for the phase-plane trajectory over a
time window, first scale by to calculate , and
then divide the resulted trajectory described by and
into short arcs for intervals of . As shown in Fig. 4,
at point can be calculated using the preceding
and succeeding arcs, respectively, connected with points

and . The two
arcs have approximately the same circular center as indicated
by “ ” and the same center angle . From Fig. 4, and
can be calculated at intervals of

(20)

(21)

E. Calculation of Stability Margin

The segment estimated using measurement
data over a time window does not contain boundary point

unless the system loses stability. A smooth (differ-
entiable) function can be fitted to that segment to extrapolate

. This paper uses polynomial extrapolation as an
example to study the feasibility of estimating before
it is reached. Other extrapolation techniques might be studied in
future work. Consider an -degree polynomial passing through
the origin:

(22)

Solve to make the polynomial optimally fit in
a least-square sense, and then estimate by finding the
closest local maximum of , i.e., minimizing with
and . In general, a higher-degree polynomial can fit
better the for a more complex system but tends to estimate
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closer to the bottom point due to the over-fitting issue.
As a result, the stability margin will be estimated more pes-
simistically. Simulations indicate that a degree between 5 and
8 is recommended depending on the complexity of the studied
system. In the case studies below, the two-generator and 179-bus
systems, respectively, adopt degrees 5 and 8.

In fact, the closer the ball has been to the boundary, the more
accurate the estimated will be. If the system over the cur-
rent time window has sufficient stability margin (i.e., the ball is
around the surface’s bottom and far away from the boundary),

might not be extrapolated well. Especially if the seg-
ment from measurements does not have an obvious inflection
point, might be estimated too big. Here, an “obvious inflec-
tion point” means a point where but is credibly posi-
tive (exceeding the size of its error estimate). However, it should
be noted that the method proposed in this paper is focused on
situational awareness for system status already approaching the
edge of stability (i.e., the ball has been close to the boundary).
Therefore, it does not hurt to set an upper limit for the es-
timates of according to the acceptable maximum deviation
of the monitored variable, e.g., 0.3 p.u. for a bus voltage mag-
nitude.

The vertical and horizon distances from the ball’s location
to estimated indicate the stability margins of

the system, respectively, in terms of and . A better-defined
stability margin index should give considerations to the ball’s
mechanical energy composed of kinetic energy and poten-
tial energy

(23)

(24)

If friction is ignored (resulting in slightly more conservative sta-
bility margins), the ball will not reach if its mechan-
ical energy is less than the maximum potential energy:

(25)

Accordingly, define an instability risk index (IRI), indicating the
risk of the system losing stability, shown in (26) at the bottom
of the page. Define a percentage stability margin index (SMI):

% (27)

Finally, Fig. 5 gives the flow chart of the method proposed
in this section. The method can be applied to monitor tran-
sient stability for local variables or a wide area by means of
high-sampling-rate measurements. For the former, synchro-
nized phasor measurements are not required. For the latter,
synchronized phasor measurements should be available to
compute a wide-area variable/index, e.g., average frequency
over a region or angle/frequency difference between generators
from two interconnected regions. The estimated IRI and SMI
can be online displayed together with their values in a past time

Fig. 5. Flow chart of the proposed method.

window to help system operators at the control center online
monitor the trend of system stability. Also, and (or and

) can be displayed together to indicate how the stability
margin changes under disturbances.

III. CASE STUDIES

This section performs case studies on the two-generator
system in Fig. 1 and a 179-bus system to validate the idea of
using the proposed BOCS system to estimate stability margin
and study the potentials of the method in local and wide-area
applications. Dynamics behaviors of the two power systems
under a series of disturbances are simulated to generate as-
sumed continuous measurements of monitored variables.

A. Two-Generator Power System

Four temporary three-phase faults are added to bus 1 at 10 s
interval, respectively, lasting 0.10 s, 0.15 s, 0.20 s, and 0.25 s.
No line is tripped under those disturbances, so the system does
not change its operating condition. The system loses stability
after fault 4, as shown by the frequency and angle differences
in Fig. 6, which are assumed to be measurements and fed to
the proposed method to calculate indices IRI and SMI. Whether
the final instability around s is predictable will also be
studied. Starting from s, the method is performed every 5
s (i.e., the time window for updating the BOCS system) on the
frequency and angle difference data with Hz and 180 ,
respectively.

Fig. 7 gives three 5-s trajectories about frequency difference
following faults 1–3. Although the system does not lose sta-

bility, increasing swings indicate the trend toward exceeding its
stability margin. The LSF and ARE approaches are both applied
to estimate . The dashed lines in Fig. 7 indicate the optimal
logarithmic spirals fitting three trajectories. Fig. 8 compares the
estimates of from two approaches, which basically match
each other. The from the LSF approach is smooth and is
adopted to estimate . Fig. 8 also indicates the estimated
by dashed lines.

for each time window can be estimated by (8)–(10).
may either take a constant or be calculated by (4) for each time
window. For example, for the time window following fault 3,

. To study how may impact the estimation of ,
Fig. 9 compares the estimates of for

% %

%
(26)
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Fig. 6. System dynamics under four temporary faults. (a) Frequency difference
between two generators. (b) Angle difference between two generators.

Fig. 7. Phase-plane trajectories (five seconds) following faults 1–3. (a) After
fault 1. (b) After fault 2. (c) After fault 3.

Fig. 8. Radius for the frequency difference.

and . The resulted curves have the same pattern
except for their scales in . They all have one stationary point
at the origin and another around (Hz), i.e., boundary
point . From Fig. 9, the value of does not influence
the prediction of the ball approaching or reaching the boundary
point.

For the convenience of comparing the curves estimated
for the three time windows following faults 1–3, let
in this case study. The results are shown by solid lines in Fig.
10, where each “o” indicates the highest location the ball has
reached over the time window. Because, for this case, the oper-

Fig. 9. ���� estimated for different �.

Fig. 10. ���� estimated after each fault.

Fig. 11. Instability risk index. (a) Estimated from frequency difference data.
(b) Estimated from angle difference data.

ating condition never changes, three curves match well. Fit
polynomial functions of degree 5 to those curves to extrapolate
the boundary point. The optimal fittings are shown by dashed
lines. It can be observed that the three curves all have an
inflection point around (0.95, 0.06). After faults 2 and 3, the
ball far exceeds that point, so the resulted fittings are more reli-
able, from which the estimates of are both around 2.1 (Hz).
Fig. 8 shows together with the estimates of to indicate
the real-time stability margin in terms of . In order to verify the
estimated 2.1 (Hz) for , temporary three-phase faults with
duration times from 0.2 s to 0.25 s are, respectively, added to
bus 1 at s and simulated. Simulation results show that the
maximum value that may reach without cause instability is
2.16 (Hz), which is very close to 2.1 (Hz) with error %. IRI is
calculated by (26) and shown in Fig. 11(a). Faults 1–3 raise IRI
up to 48%, 68%, and 92%, which correspond to stability mar-
gins (SMI) of 52%, 32%, and 8%. The proposed method is also
applied to the angle difference data to calculate IRI as shown in
Fig. 11(b), which matches Fig. 11(a).

The high risk following fault 3 indicates the system may not
survive after another fault at s. To attempt predicting for
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Fig. 12. Fault duration versus IRI.

Fig. 13. The 179-bus system.

what duration time a fault at s may cause instability, the
relationship between the fault duration and IRI for faults 1–3
is studied by Fig. 12, where the three points are determined by
three fault durations and three maxima of IRI and are fitted by
a straight line. It is learned from that straight line that

% if the fault s. Additional simulations
prove that a fault at s lasting longer than 0.23 s will
cause instability, which matches the guessed 0.22 s well.

This case study validates the idea of the proposed method,
i.e., stability margin can directly be estimated from phase-plane
trajectories by means of the proposed adaptive power system
equivalent—BOCS system.

B. The 179-Bus Power System

To study the potentials of the proposed method on estimating
stability margins for wide-area stability problems, it is tested
on the 179-bus system as shown in Fig. 13. The system is a
simplified WECC ac transmission system. The interface at bus
83 between Zone 1-A and Zone 2-A corresponds to the Cal-
ifornia-Oregon Intertie of the WECC system, which was in-
volved in the Western cascading and separation event on July
2, 1996 [11].

Fig. 14. Rotor angles of nine big generators.

Fig. 15. Voltage magnitudes at buses 81 and 83.

Fig. 16. Rotor angle difference between generators 47 and 65.

In this case study, system collapse at that interface is created
by adding six permanent three-phase faults at intervals of 40 s.
Fig. 13 indicates the locations and order of the faults by numbers
1–6. Each fault lasts 0.1 s and is cleared by opening the fault
line. They increasingly weaken the interface but do not break its
connection. The system loses angular stability right after fault 6
as shown in Fig. 14. Fast voltage collapse can also be detected
at bus 83 and some other nearby buses. Fig. 15 shows voltage
collapse at buses 83 and 81 by their voltage magnitudes and

. Bus 81 is actually at another interface, i.e., between Zone
1-A and Zone 1-B. Fig. 16 shows the angle difference
between generators 47 and 65, which are, respectively, located
in the north Zone 1-A and south Zone 2-B.

The proposed method is respectively performed on
• individual and (no need of synchronized phasor

measurements);
• (calculated by synchronized phasor measurements

at generators 47 and 65).
Different from the previous case study, this case increasingly
stresses the operating condition (weakening the topology
around that interface) by a series of permanent faults. Thus, the
steady-state values of monitored variables might be changed.
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Fig. 17. The 40-s phase-plane trajectories about � following faults 1–5. (a)
After fault 1. (b) After fault 2. (c) After fault 3. (d) After fault 4. (e) After fault
5.

Fig. 18. Radius for � .

Fig. 17 gives five 40-s phase-plane trajectories about , re-
spectively, following faults 1–5. For the convenience of com-
parison, the first three trajectories are drawn in the same scale,
and the last two trajectories adopt another different scale since
they are much bigger in size. Fig. 14–16 indicate oscillations
in a short period following each fault. The dominant mode has
frequency around 0.25 Hz, so let s. For each 10-s time
window, scale the derivative of by ratio calculated using
(13), and estimate the logarithmic spiral optimally fitting the
phase-plane trajectory. Fig. 17 gives the fitting results by the
dashed lines, which are actually linked spiral segments of dif-
ferent parameters.

Fig. 18 shows the estimates of from the LSF and ARE
approaches. The result from the LSF approach is used to esti-
mate . The result from the ARE approach can be fed into
a low-pass filter with the cut-off Hz to get a
signal similar to that from the LSF approach.

Let and p.u. Following each of faults 3–5, the
curves estimated from phase-plane trajectories are shown

by solid lines in Fig. 19, where each “o” indicates the highest
locations the ball has reached. Since the operating condition is
increasingly stressed, three curves indicate a trend that the
concave surface becomes vertically flattened and horizontally
shrunk. Fit a polynomial function of degree 8 to each curve to
extrapolate the boundary point. After fault 3, the ball does not
reach an obvious inflection point, so the estimated .
This means that the system has still sufficient stability margin.
After faults 4 and 5, the boundary points are, respectively, esti-
mated at (0.059, 0.031) and (0.045, 0.017). Fig. 18 shows
and the estimated together. Fig. 20 gives the IRI calculated

Fig. 19. ���� estimated for � after faults 3–5.

Fig. 20. Instability risk index for � after faults 4 and 5.

Fig. 21. ���� estimated for � after faults 3–5.

Fig. 22. Instability risk index for � after faults 4 and 5.

after faults 3–5. It is lower than 10% (i.e., %) after
fault 3 but has two peaks exceeding 90% (i.e., %)
after faults 4 and 5.

Still let and p.u. The method is then per-
formed on to obtain Figs. 21 and 22, which indicate the
same trend as for . The test results on and indi-
cate such a finding: when a power system is going to collapse at
an interface, different system variables near that interface may
have similar dynamics patterns, indicating decreasing stability
margin. Thus, the proposed method has potentials to online indi-
cate the trend toward instability by real-time high-sampling-rate
measurements about strategically selected variables. It is also
noticed that synchronized phasor measurements are unneces-
sary for this case because the monitored and are either
at or close to the interface that is involved in instability.

To benchmark with the results from synchronized phasor
measurements, the method is also tested on with
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Fig. 23. ���� estimated for � after faults 3–5.

Fig. 24. Instability risk index for � after faults 4 and 5.

and . The results are given in Figs. 23 and 24, which
indicate the same trend for and .

IV. CONCLUSION

This paper presents a novel method for real-time estimation
of power system stability margin. The method is based on
an adaptive power system equivalent—BOCS system, which
represents the dynamics behavior of a monitored variable under
disturbances. The parameters of the BOCS system are adaptive
to the operating condition and online identified using high-sam-
pling-rate measurement data by means of the phase-plane
trajectory of the monitored variable. Then, stability margin
can directly be estimated from the BOCS system. Application
of high-sampling-rate data taken at proper locations is a key
because those data can authentically present real-time system
dynamics, e.g., by phase-plane trajectories about the concerned
stability problem. This paper aims at building a quantitative
relationship between key parameters of a phase-plane trajectory
and real-time stability margin. By means of that relationship,
the proposed method can online indicate the trend of either
decreasing stability margin due to disturbances or increasing
stability margin thanks to mitigation measures. With synchro-
nized phasor measurements available, the method also has
potentials in monitoring wide-area stability for interconnected
power systems. This paper has presented a new idea for using
real-time high-sampling-rate measurements to develop and
identify a power system’s adaptive equivalent as a basis for on-
line instability prediction. Case studies have validated that idea
and demonstrated the performance of the proposed method.
Implementation issues with the method on actual large-scale
power systems will be addressed by future work. Moreover,
other types of adaptive power system equivalents (e.g., elec-
trical systems rather than mechanics systems), which can be
designed better for complex power systems, might be studied
in the future.
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