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Abstract: Geosynchronous orbit (GSO) is the ideal orbit for communication, navigation, meteorology

and other satellites, but the space of GSO is limited, and there are still a large number of space debris

threatening the safety of spacecraft. Therefore, real-time detection of GSO debris is necessary to

avoid collision accidents. Because radar is limited by transmitting power and operating distance,

it is difficult to detect GSO debris, so photoelectric detection becomes the mainstream way to detect

GSO debris. This paper presents an adaptive real-time detection algorithm for GSO debris in

the charge coupled device (CCD) images. The main work is as follows: An image adaptive fast

registration algorithm and an enhanced dilation difference algorithm are proposed. Combining with

mathematical morphology, threshold segmentation and global nearest neighbor (GNN) multi-target

tracking algorithm, the functions of image background suppression, registration, suspected target

extraction and multi-target tracking are realized. The processing results of a large number of measured

data show that the algorithm can detect dim geostationary earth orbit (GEO) and non-GEO debris in

GSO belt stably and efficiently, and the processing speed meets the real-time requirements, with strong

adaptive ability, and has high practical application value.

Keywords: dim and small GSO debris; CCD image; adaptive fast registration; enhanced dilation

difference; mathematical morphology; multi-target tracking

1. Introduction

The GSO belt is 42,164 kilometers away from the center of the earth, 400 kilometers in radial

thickness and delimited by ±15◦ in latitude [1]. It is an ideal orbit for communications, navigation,

meteorology and other satellites [2,3]. According to data released by the U.S. Strategic Command,

as of July 2018, there were about 1200 objects in GSO orbit and about 400 satellites in service [1,4].

In addition, according to data from the European Space Agency, as of January 2019, there were

about 1950 spacecraft in normal working state in all Earth orbits. At the same time, it was estimated

that about 129 million debris were larger than 1mm, while only about 22.3 thousand objects were

catalogued in the database and could be continuously tracked. Although the density of debris in GSO

is much less than that in low Earth orbit (LEO), there is no debris clearance mechanism similar to

atmospheric damping in GSO; debris will persist for millions of years and pose a greater threat to

spacecraft [5,6]. Maintaining space security and accurately monitoring space debris is a part of space

situational awareness [7]. Accurate monitoring of GSO objects can judge the operational status of

satellites, evaluate the probability of collision events, and contribute to celestial mechanics, help people

understand orbit evolution and motion characteristics [8,9]. Therefore, it is meaningful to study the

detection algorithm of GSO debris [10,11]. The detection methods of space objects mainly include

radar detection and optical detection. Microwave radar has the advantages of high accuracy and
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all-weather, but its maximum operating distance is proportional to the fourth power of transmitting

power. Therefore, it is difficult to detect GSO debris with radar, which requires huge transmitting

power and large antenna size [12,13]. In view of this, optical detection has become the mainstream

method of GSO debris detection. Optical detection of GSO debris has been carried out for decades [14].

With the improvement of optical sensor performance, the sensitivity of optical detection is getting

higher and higher. Cohen et al. successfully observed GSO objects in daytime with two different

biologically-inspired cameras [15]. In addition, a 2-D GSO objects image with a resolution of 0.1 m can

be obtained by combining inverse synthetic aperture lidar (ISAL) [16].

Generally, when the telescope performs the task of optical detection of space objects, there are two

kinds of working modes, stellar tracking and target tracking. Stellar tracking mode is usually used to

detect LEO objects. GSO objects detection generally uses target tracking mode. Because, relative to

ground-based telescopes, GSO debris mainly includes GEO debris which is approximately stationary,

and non-GEO debris with uniform low-speed linear motion, the target tracking mode here actually

refers to fixing the telescope field of view in the target area [17]. In CCD images, target tracking mode

results in stripe-like images of stars, whereas GEO debris are dot images, and non-GEO debris are

stripe-like images with different lengths or directions of stellar stripes. Ultra-long-distance observation

results in the weak intensity and small size of GSO debris in CCD images. Therefore, it is a typical “dim”,

“small” and “slow” target. It is a challenge to detect GSO debris accurately. In addition, because of the

gravitational field disturbance of the sun, the moon and the earth, as well as the solar radiation pressure

disturbance, the intensity of GSO debris in the image and the orbit are time-varying. The change of

intensity leads to discontinuity of target extraction results, which is a challenge to both target extraction

and track association algorithms. Orbital variations make it difficult to predict their trajectories for

more than a week, requiring enhanced GSO debris continuous monitoring capacity [18–22].

GSO debris detection in CCD image mainly involves targets extraction and track association.

GSO debris extraction algorithms can be divided into feature extraction based on shape difference

and target enhancement through multi-frame cumulative energy. The main methods are masking

method [23], continuous frame image comparison method [24], point spread function fitting method [25],

mathematical morphology method [26] and so on. Generally, feature extraction algorithms have

high complexity and require prior feature information of target or background; multi-frame energy

accumulation algorithm needs to ensure efficient suppression of stars and background. Considering

the real-time performance and adaptability of the algorithm, this paper proposes an adaptive fast

registration algorithm and an enhanced dilation difference algorithm for GSO debris extraction.

The track association of GSO debris belongs to the field of multi-target tracking. For multi-target

tracking, there are two main types of algorithms based on random finite set (RFS) and data association,

respectively. Multi-target tracker based on RFS includes unlabeled RFS type and labeled RFS type.

Unlabeled RFS type lacks target discrimination, while labeled RFS type increases the complexity of

the algorithm. The biggest problem is that in the application of GSO debris optical detection, the

birth model of targets is difficult to be given, while the typical RFS tracker cannot work without the

birth model [27–30]. Multi-target trackers based on data association include GNN [31] (pp. 203–205),

joint probabilistic data association (JPDA) [32], multiple hypothesis tracking (MHT) [33] tracker and

their variants. JPDA and MHT trackers are superior to GNN tracker in complex tracking scenarios,

but their computational complexity will increase dramatically. The motion form of GSO debris is

relatively simple: approximately stationary or uniformly low-speed linear motion, so GNN tracker can

complete the tracking task well. Considering comprehensively, we choose GNN tracker to track GSO

debris. The measured data processing results also verify that the GNN tracker can accomplish the

tracking task well, and the computational complexity is low.

In this paper, an adaptive real-time detection algorithm for dim and small photoelectric GSO

debris is proposed. The algorithm has the advantages of low computational complexity, excellent

detection performance and strong adaptive ability. The algorithm consists of targets extractor and

tracker. Target extractor has the following parts: background suppression based on the morphological
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Top-Hat transform algorithm, image registration based on the adaptive fast registration algorithm,

stellar suppression based on the enhanced dilation difference algorithm, GSO debris enhancement

and target segmentation based on inter-frame correlation and threshold segmentation technology.

The target tracker uses GNN multi-target tracker and can estimate the inter-frame interval adaptively

to improve the performance of the tracker.

The rest of the paper is organized as follows. In the second section, each component of GSO

debris extractor is introduced, and the adaptive fast registration algorithm and the enhanced dilation

difference algorithm proposed in this paper are emphatically introduced. In the third section, the GSO

debris tracker is introduced. The principle of GNN tracker and the adaptive inter-frame interval

estimation technique proposed in this paper are described. The fourth section contains the introduction

of test data and the processing results of the algorithm. The fifth section gives the conclusions and the

prospects of future work.

2. GSO Debris Extractor

This section will introduce each component of GSO debris extractor, including background

suppression, image registration, stellar suppression, GSO debris enhancement and target segmentation.

2.1. Background Suppression Based on Morphological Top-Hat Transform

The background of CCD star image will be disturbed by various noises, including photon noise,

environmental noise, readout noise and so on. These interferences seriously affect the effect of

subsequent image processing steps, so they must be suppressed. In view of the strong image adaptive

ability of mathematical morphology, parallel processing and fast computing speed [34], this paper

uses morphological Top-Hat transform algorithm for background suppression. Top-Hat transform

background suppression algorithm has been widely used because of its advantages in background

suppression and real-time operation. The formula of top-hat transform is as follows:

g = f − ( f ◦ b), (1)

where f is the original input image and b is the structural element. f ◦ b stands for open operation of

image f using structural element b, which is equivalent to a non-linear low-pass filter. It can remove

bright details smaller than the size of structural element, while preserving the overall gray value of

the image, and the larger bright areas are almost unaffected. The background of the image can be

estimated by using appropriate structure element b to perform open operation. The g obtained by

subtraction is the target image that suppresses the background.

Whether the selection of structural element is appropriate or not will have a great impact on the

processing efficiency and effect of Top-Hat transformation. According to the principle, the size of

structural element should be larger than the targets size. By analyzing the measured data, the CCD star

image mainly includes GEO debris, non-GEO debris and stars besides background noise, as shown in

Figure 1.

In the image data used in this paper, the size of GSO debris is between 2× 2 and 20× 20 pixels.

In order to reduce the computational complexity as much as possible while guaranteeing better

background suppression effect, the size of the structural element used in this algorithm is 25× 25, and

it is further decomposed into flat structural elements of 1× 25 and 25× 1 [35]. The erosion and dilation

operations of flat structural elements involved in the open operation are simplified to the minimum

and maximum filters with the support domain of structural elements as the window respectively,

which greatly reduces the algebraic computation. In order to further improve the processing speed

and take into account the portability of the algorithm, flat structure elements of 1 × 25 and 25 × 1

are decomposed into small size structure elements of 1× 3 and 3× 1 [36], as shown Figure 2. If the

image size is m× n, the computational complexity of the background suppression algorithm is O(mn).
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Figure 3 shows the CCD star images before and after background suppression. It can be seen that the

background is effectively suppressed.
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Figure 1. Composition of charge coupled device (CCD) star image besides background: (a) non-

geostationary earth orbit (GEO) debris; (b) GEO debris; (c) stars.
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Figure 2. Schematic diagram of structural element decomposition.
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Figure 3. CCD star image before and after background suppression: (a) before background suppression;

(b) after background suppression.
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2.2. Adaptive Fast Image Registration

Because GSO debris are typical dim and small targets, in order to improve the probability of

detection, an effective way is to accumulate energy through multi-frame images to improve the

signal-to-noise ratio (SNR) of the target. In this paper, local SNR is adopted, which is defined as follows:

SNR = ( fT − fB)/σ, (2)

where, fT and fB are the gray mean of the target area and background area respectively, and σ is the

gray mean variance of the background area. In order to prevent the interference between target and

background gray statistics, they are separated by isolation area. The definitions of different regions are

shown in Figure 4.
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Figure 4. Definition of correlation region of signal-to-noise ratio (SNR).

The premise of multi-frame image processing is image registration. GSO debris detection uses

ground-based telescope, and the tracking mode of the telescope is the target tracking mode. Because the

GSO debris moves slowly relative to the ground-based telescope, the target tracking mode here actually

means that the telescope field of view is fixed in the target sky area, that is, the telescope is stationary

when it is working normally. Therefore, the movement between the two frames is basically caused by

the motion of the stars. The motion of stars is mainly caused by the rotation of the earth, the rotation

speed of the earth is basically constant, and because the stars are very far away from the telescope.

So, on the CCD image, there is only the translational motion of the stars, and there is no rotation.

Overall, for the registration of CCD star images of GSO only involves translation transformation, and

often lacks information such as exposure time, telescope position, and optical axis pointing. In view of

this, an adaptive fast registration algorithm is proposed in this paper. The correlation coefficient is

a statistical index to reflect the degree of close correlation between variables. Obviously, when the

correlation coefficient of two images is the largest, it can be judged that two images have been registered.

Therefore, our goal is to find a translation vector ushi f t =
(

xshi f t, yshi f t

)

to maximize the correlation

coefficient between the shifted image Ishi f t and the reference image I f ixed. The formula for calculating

the correlation coefficient is as follows:

ρ
(

ushi f t

)

=

∑∑

(

Ishi f t

(

ushi f t

)

− E
(

Ishi f t

(

ushi f t

)))(

I f ixed − E
(

I f ixed

))

√

(

∑∑

(

Ishi f t

(

ushi f t

)

− E
(

Ishi f t

(

ushi f t

)))2
)(

∑∑

(

I f ixed − E
(

I f ixed

))2
)

, (3)

where Ishi f t

(

ushi f t

)

represents the shifted image after translation according to translation vector ushi f t,

ρ
(

ushi f t

)

represents the corresponding correlation coefficient, E(·) represents the average value of

the image.
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The maximum correlation coefficient can be measured by minimizing the sum of squared

differences (SSD) of two images [37]. The formula for calculating the SSD is as follows:

SSD
(

ushi f t

)

=
∑∑

(

Ishi f t

(

ushi f t

)

− I f ixed

)2
, (4)

where SSD
(

ushi f t

)

represents the SSD corresponding to translation vector ushi f t. When the size of

the image is large, the amount of calculation to get the SSD of the whole image is very large, which

seriously reduces the processing speed. In order to improve the efficiency, we uniformly select n

identical sub-images on the reference image and the shifted image, in which the sub-images on the

reference image is fixed and unchanged, and the sub-images on the shifted image moves within a given

search area, each moving step is one pixel. At each step, the SSD of the corresponding sub-images

is calculated. After all SSDs corresponding to the search area are calculated, the translation vector

corresponding to the minimum SSD is required. Let D denote the search area, I
(i)

f ixed_sub
and I

(i)

shi f t_sub

denote the i− th sub-image selected from the reference image and the shifted image respectively, and

u
(i)

shi f t
denote the translation vector determined by the i− th sub-image, then the calculation formula of

u
(i)

shi f t
is as follows:

u
(i)

shi f t
= Find

(

min

({

∑∑

(

I
(i)

shi f t_sub

(

ushi f t

)

− I
(i)

f ixed_sub

)2

; ushi f t ∈ D

}))

, (5)

where function Find(·) obtains the translation vector corresponding to SSD. Figure 5 shows how to

calculate the translation vector of the i− th sub-image. For clarity, the size of D is assumed to be 5× 5

and the translation vector u
(i)

shi f t
= (−1, 2) in Figure 5. Obviously, using this method, the computational

complexity is only related to the number and size of selected sub-images, and the size of search area,

which is independent of the size of the whole image, and the algorithm has good parallel processing

characteristics. When the number of sub-images is ns, the size of each sub-image is ms ×ms, and the

size of search area is rs × rs, then, the computational complexity is O
(

nsm
2
s r2

s

)

.
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Figure 5. The procedure of calculating the translational vector of the i− th sub-image.

An intuitive way to obtain the translation vector of the whole image is to directly calculate

the mean of the translation vector determined in all sub-images. This method is feasible in most

cases, but because the size of the selected sub-image is much smaller than that of the whole image,

the translation vector determined in the sub-image may have a larger error with the actual translation

vector of the whole image. The results of the measured data processing also show that there are such

problems. In order to overcome this problem, we noticed that the translation vector determined in most

sub-images are basically the same as the translation vector of the whole image. Therefore, we classify

all translation vectors determined in sub-images according to the 2-norm (Euclidean distance) of the
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difference between translation vectors, and calculate the translation vector of the whole image by using

the class with the largest number of translation vectors. The implementation process is as follows:

The first step is to calculate the Euclidean distance d
(i, j)

shi f t
between the translation vector

u
(i)

shi f t
determined in the i − th sub-image and the translation vector u

( j)

shi f t
( j , i) determined in

other sub-images.

d
(i, j)

shi f t
= ‖u(i)

shi f t
− u

( j)

shi f t
‖

2
, i , j, (6)

where ‖ · ‖2 denotes 2-norm.

In the second step, all translation vectors whose distances from u
(i)

shi f t
are less than threshold Tshi f t

are classified into categories determined by u
(i)

shi f t
and expressed in U

(i)

shi f t
, and the number of translation

vectors contained in U
(i)

shi f t
is calculated as follows:

U
(i)

shi f t
=

{

d
(i, j)

shi f t

∣

∣

∣

∣

d
(i, j)

shi f t
≤ Tshi f t, j = 1, · · · , n and i , j

}

, (7)

N
(i)

shi f t
=

∣

∣

∣

∣

U
(i)

shi f t

∣

∣

∣

∣

, (8)

where N
(i)

shi f t
represents the number of elements contained in U

(i)

shi f t
and |·| represents the potential

(the number of elements) of the set. Because the search step is one pixel, the accuracy of the translation

vectors is one pixel in both horizontal and vertical directions, so the distance threshold Tshi f t is set to√
2.

The third step is to perform the same operation on all translation vectors determined in sub-images.

In the fourth step, the translation vector of the whole image is calculated according to the U
(M)

shi f t

corresponding to the maximum N
(M)

shi f t
.

N
(M)

shi f t
= max

({

N
(i)

shi f t
; i = 1, · · · , n

})

; U
(M)

shi f t
= Find

(

N
(M)

shi f t

)

, (9)

ushi f t =
∑

{

U
(M)

shi f t
, u

(i)

shi f t

}

/
(

N
(M)

shi f t
+ 1

)

, (10)

By using the above method, reliable translation vectors of the whole image can be obtained. However,

considering the sudden change of exposure time in order to adapt to the change of targets’ intensity

when using telescopes to observe GSO debris, it is difficult to determine the search area. It is often

necessary to give a larger area to satisfy different exposure times as much as possible, which leads to a

significant increase in processing time. In addition, it should be noted that the exposure time will not

change frequently on a large scale. Due to the instability of device state and other factors, it usually

changes in a very small range, so we can reduce the search area to reduce processing time.

In order to take into account the above two situations, an adaptive search strategy is proposed

in this paper. Initially, the translation vector uo is determined by using large search area Dlarge.

According to the exposure time, we set Dlarge as a 100× 100 rectangular area centered on the origin.

The processing steps of subsequent frames are as follows:

In the first step, the translation vector uk−1 determined in the previous frame is directly used to

extract suspected targets. It can be considered that the search area in this step is D1 with size 1× 1,

and the extraction algorithm will be introduced in Sections 2.3 and 2.4. If the number of suspected

targets is less than the threshold TSusObj, the translation vector uk−1 is judged to be correct and the

registration is completed. Also, make uk = uk−1. Otherwise, the translation vector is judged to

be wrong.

In the second step, if uk−1 is wrong, considering that the accuracy of the translation vector is one

pixel in both horizontal and vertical directions, and the exposure time of the telescope often varies
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in a small range, then the search area is enlarged to 5 × 5 area centered on uk−1 and marked as D2.

The translation vector
⌢
u2 is obtained by searching area D2, and the suspected targets are extracted by

⌢
u2. If the number of suspected targets met the quantitative constraint, less than the threshold TSusObj

and the translation vector satisfied the translation constraint Ru, then the translation vector
⌢
u2 is

judged to be correct and the registration is completed. Also, make uk =
⌢
u2. Otherwise, the translation

vector is judged to be wrong. How to determine the threshold TSusObj and translation vector constraint

Ru will be introduced later.

In the third step, if
⌢
u2 is wrong, considering that the exposure time may vary in a wide range

in order to adapt to the change of target intensity, the change range is generally half of the original

exposure time to twice the original exposure time. The search area is enlarged to 2|uk−1_x| × 2
∣

∣

∣uk−1_y
∣

∣

∣

area centered on uk−1 and recorded as D3, where, uk−1_x and uk−1_y represent x and y coordinates of

uk−1 respectively. The translation vector
⌢
u3 is obtained by searching area D3, and the suspected targets

are extracted by
⌢
u3. Similarly, if the number of suspected targets is less than the threshold TSusObj and

the translation vector satisfied the translation constraint Ru, the translation vector
⌢
u3 is judged to be

correct and the registration is completed. Also, make uk =
⌢
u3. Otherwise, the translation vector is

judged to be wrong.

In the fourth step, if
⌢
u3 is wrong, consider that the abnormal change of exposure time may be

caused by abnormal reasons. The translation vector
⌢
u4 is obtained by adjusting the search area to

D4 = Dlarge, and then suspected targets are extracted by
⌢
u4. The threshold TSusObj is used to judge

whether
⌢
u4 is correct or not. Note that the step does not need translation constraint Ru, because the

exposure time is likely to be abnormal at this time, so it is likely that the correct
⌢
u4 does not meet the

translation constraint. If
⌢
u4 is correct, registration is completed and uk =

⌢
u4. If

⌢
u4 is wrong, consider

that it may be due to the change of the telescope field of view, or a large amount of thick clouds

occlusion that cannot be registered, then stop searching and discard the frame. Also, make uk = uk−1.

The search strategy schematic is shown in Figure 6.
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Figure 6. The search strategy schematic.

Through the analysis of a large number of measured data, we found that the number of GSO debris

in CCD star image generally does not exceed 15, and the number of false targets extracted from a single

frame image by the target extractor in this paper generally does not exceed 10. Therefore, the threshold

TSusObj of quantitative constraints is set to 40. For translation constraint Ru, it should be noted that the
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processing of each frame image involves two registration processes, including the registration of the

previous frame image and the current frame image, whose registration translation vector is marked

as ushi f t_1, the registration of the first two frames with the current frame image, and the registration

displacement vector is marked as ushi f t_2. Considering that the stellar translation is generally greater

than 5 pixels and less than 50 pixels during the exposure period of GSO debris optical observation,

the first constraint of Ru is 5 ≤ ‖ushi f t_1‖2 ≤ 50 and 10 ≤ ‖ushi f t_2‖2 ≤ 100. In addition, in order to

improve robustness, we add the ratio of two translation vector modulus as the second constraint

condition. Normally, the interval of changing exposure time to adapt to the change of target intensity

is usually 0.5 to 2 times of the original exposure time. Considering that both horizontal and vertical

accuracy of translation vectors are 1 pixel, the maximum value M_R of the ratio of modulus of two

translation vectors can be determined by the following formula.















M_R =
√

max
(

k2
(

(x + 1)2 + (y+1)2
)

/(x2 + y2)
)

0 ≤ x ≤ 50, 0 ≤ y ≤ 50, x2 + y2 ≥ 25, 1.5 ≤ k ≤ 3
, (11)

and determine the minimum value m_R of the ratio of modulus of two translation vectors by the

following formula:














m_R =
√

min
(

k2
(

(x− 1)2 + (y−1)2
)

/(x2 + y2)
)

0 ≤ x ≤ 50, 0 ≤ y ≤ 50, x2 + y2 ≥ 25, 1.5 ≤ k ≤ 3
, (12)

Using the software of MATLAB, we get M_R ≈ 14.811, m_R ≈ 2.3409. The above image

registration algorithm, combined with the specific application of GSO debris optical detection, takes

into account most of the situations in image registration, has the characteristics of strong adaptive

ability, fast computing speed and parallel processing.

2.3. Stellar Suppression Based on the Enhanced Dilation Difference Algorithm

The stellar suppression algorithm based on enhanced dilation difference is an improved algorithm

proposed in this paper to overcome the shortcomings of dilation difference algorithm. GSO debris

detection generally adopts target tracking mode, so the translation of all stars in CCD images is

basically the same, and the motion mode of GSO debris is different from that of stars whether GEO

or non-GEO objects, so we can suppress stars by using inter-frame difference technology after image

registration. There are two main problems to be solved in the suppression of stars by inter-frame

difference technology. Firstly, using adaptive fast image registration algorithm, the accuracy of

translation vector in horizontal and vertical directions is 1 pixel. Therefore, if absolute difference

is used directly, there will be residual marks on the edge, even if the translation vector obtained is

accurate, because there are many stars, there are small differences in their translation, and the difference

results will also leave edge remnants. In particular, when GSO observations are performed, the camera

usually does not have a mechanical shutter, which results in a serious smear of high-brightness stars,

and the edge remnants left by the smear will seriously affect the subsequent target segmentation effect.

Secondly, the intensity of stars varies in time because of the interference of various internal and external

factors, that is, the intensity of the same star in the first and second frames is generally inconsistent,

especially the intensity of high-brightness stars is often very different, which leads to the difference

results leaving the remnants of stars. The remnants of high-brightness stars can be severe and can

even lead to the inability to segment targets. For the first problem, we can use the dilation difference

algorithm to solve [38]. Dilation difference first dilates the subtracted image using structural element b.

Considering the accuracy of the registration algorithm, this paper chooses b as a flat structure element

of 3× 3. Let I0(x, y) be the intensity of the image at (x, y) after background suppression of the current
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frame, and I1(x, y) be the intensity of the image at (x, y) after background suppression of the previous

frame and already registered with the current frame. The dilation difference formula is as follows:

Id_01(x, y) =

{

I0(x, y) − (I1(x, y) ⊕ b) , i f I0(x, y) > I1(x, y)

0 , i f I0(x, y) ≤ I1(x, y)
, (13)

where Id_01(x, y) represents the intensity of the image at (x, y) of the dilation difference result, “ ⊕ ”

is the dilation operator. Dilation difference algorithm solves the problem of stellar edge remnants

caused by scale mismatch. For the second problem, we need to solve the problem of stellar remnants

caused by the difference of stellar intensity. The specific reason is that the intensity of the star in the

current frame is stronger than that in the previous frame. In order to solve this problem, we propose

multiplying an intensity enhancement factor η after the dilation operation of the previous image.

It should be pointed out that the same GSO debris will not be in the same position in the previous

frame and the current frame image after registration because of the difference between the motion

mode of GSO debris and the stars, while the enhancement factor only changes the gray value of the

image, so the enhanced dilation difference operation will not suppress the GSO debris. The enhanced

dilation difference formula is as follows:

Ied_01(x, y) =

{

I0(x, y) − η(I1(x, y) ⊕ b) , i f I0(x, y) > I1(x, y)

0 , i f I0(x, y) ≤ I1(x, y)
, (14)

where Ied_01(x, y) represents the intensity of the image at (x, y) after the enhanced dilation difference

operation, and the enhancement factor η generally ranges from 1.5 to 2. In order to determine the

range of η, the average number of false alarms and missed detections per frame of 496 images in

seven image sequences is counted when η = 1 : 0.1 : 3, as shown in Figure 7. Thus, when 1.5 ≤ η ≤ 2,

the number of false alarms and missed detection is relatively small. In addition, according to [39–41],

the magnitude of a variable star will not change more than 0.75 in 5 to 15 seconds of exposure time,

that is, the brightness of the same variable star is less than twice that of the previous frame. In order

to show the effect of the algorithm, the result image and the corresponding gray distribution of the

same high-brightness star after the operation of absolute difference, dilation difference and enhanced

dilation difference are given, as shown in Figure 8.
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Figure 7. The change of average false alarm and missed detection number per frame with η.
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Figure 8. Result image and corresponding gray distribution of different differential algorithms:

(a) absolute difference result image; (b) dilation difference result image; (c) enhanced dilation difference

result image (η = 2); (d) absolute difference gray distribution; (e) dilation difference gray distribution;

(f) enhanced dilation difference gray distribution.

2.4. GSO Debris Enhancement and Target Segmentation Based on Inter-Frame Correlation and Threshold
Segmentation Technology

This section contains two processing steps, GSO debris enhancement and target segmentation,

but because the two operations are closely related, we did not discuss them separately for ease of

understanding. In view of the weak SNR of GSO debris on CCD image, there are two main methods

to improve the SNR of the target. The first method is to prolong the exposure time. This strategy is

indeed used in the GSO debris observation task. However, it should be noted that exposure time is

limited. When the exposure time is too long, it will cause the saturation overflow of CCD sensor pixels.

In addition, the long exposure time only improves the SNR of the GEO debris, but has little effect on

the non-GEO debris. The second method is to accumulate energy by using multiple frames. This paper

uses the inter-frame correlation processing algorithm to achieve this goal. Firstly, the current frame and

the previous frame, and the current frame and the first two frames are used to obtain two differential

images Ied_01 and Ied_02 respectively by using the enhanced dilation difference algorithm.

Ied_01(x, y) =

{

I0(x, y) − η(I1(x, y) ⊕ b) , i f I0(x, y) > I1(x, y)

0 , i f I0(x, y) ≤ I1(x, y)
, (15)

Ied_02(x, y) =

{

I0(x, y) − η(I2(x, y) ⊕ b) , i f I0(x, y) > I2(x, y)

0 , i f I0(x, y) ≤ I2(x, y)
, (16)

Then, multiplying the two differential images can enhance the GSO debris and further suppress

the stars:

Imultip_0(x, y) = Ied_01(x, y) ∗ Ied_02(x, y), (17)

where Imultip_0 represents the result of the current frame processed by inter-frame correlation. At this

point, we get the background and stars are effectively suppressed, the GSO debris are effectively

enhanced image, then we can extract the suspected GSO debris on Imultip_0.
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In this paper, threshold segmentation technology is used to extract GSO debris.

Threshold segmentation is mainly divided into global threshold segmentation and local threshold

segmentation. Generally speaking, the performance of segmentation algorithm based on local threshold

is better than that of global threshold, but the complexity of the algorithm is much higher than that

of global threshold. In view of the fact that the background and stars in the CCD star image have

been effectively suppressed based on the preprocessing algorithm mentioned above, in order to

improve the processing speed, we choose to segment and extract GSO debris using global thresholds.

Firstly, the segmentation threshold is calculated as follows:

Tsegmen = E
(

Imultip_0

)

+ κ× SD
(

Imultip_0

)

, (18)

where, E
(

Imultip_0

)

represents the mean of the image, SD
(

Imultip_0

)

represents the standard deviation

of the image, and κ is the adjustment coefficient, which is determined by the minimum SNR of

the detectable target. For dim and small GSO debris segmentation, in order to improve detection

probability, κ is usually set as small as possible, but at the same time, it also increases the false alarm

probability when extracting suspected targets, which challenges how to efficiently complete GSO

debris track association. After the segmentation threshold is determined, the image is segmented by

the threshold, and the binary image Ibinary_0 is obtained as follows:

Ibinary_0 =

{

1 , i f Imultip_0 ≥ Tsegmen

0 , i f Imultip_0 < Tsegmen
, (19)

For the binary image Ibinary_0, the connected area is searched according to the 8-connected objects,

and each connected component is labeled. Finally, the centroid of each suspected target area is

calculated. Generally, there are three kinds of suspected targets: GEO debris, non-GEO debris and false

targets. The image of an GEO debris is a circular dim region. The image of a non-GEO debris appears

as a dim strip or ellipse. False targets are usually incompletely suppressed stars, and their images

are long strips, but their lengths or directions are generally different from those of non-GEO debris.

There are two methods for calculating the centroid of an object image: fitting method and modified

moment method. Fitting method has high positioning accuracy, but its calculation is huge, and its

accuracy depends heavily on the accuracy of the fitting template. The shape of the extracted suspected

object image is different, so it is difficult to determine the fitting template. Modified moment method

has good accuracy for centroid location of dim target and low computational complexity. Considering

the complexity and accuracy of the algorithm, the modified moment method is used to locate the

centroid of the suspected target. The calculation formula is as follows:
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∑
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, (20)

where (centroid_x, centroid_y) represents the centroid coordinate of the target, D is the target area,

that is, the connected area of the suspected target, and I(x, y) represents the image used to calculate the

centroid of the target. In order to avoid background interference, this paper calculates the centroid of

the target using the image after background suppression. When the centroid of all suspected targets is

extracted, all steps of GSO debris extractor are completed. It should be noted that we only extract the

centroid information of the suspected target, but not the size, gray level, shape and other information,

which is often an important basis for judging whether the target is a false alarm. This is because through

the measured data testing, we found that the GSO debris extractor used in this paper can suppress

background and stars very well. Among all the suspected targets extracted from a single frame image,

the false targets are generally about 2 to 3, and in extreme cases, there will be no more than 10, so there

is no need to eliminate false targets. In addition, because GSO debris are dim and small targets, if false
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alarm removal is performed, the GSO debris is likely to be deleted by mistake. Although we do not

extract other information of suspected targets, the algorithm has good expansibility, and it is easy to

extract other information in parallel while calculating the centroid.

3. GSO Debris Tracker

Track Association of GSO debris belongs to the field of multi-target tracking. There are mainly two

kinds of multi-target tracking algorithms, one is based on RFS and the other is based on data association.

Multi-target tracker based on RFS includes unlabeled RFS type and labeled RFS type. Unlabeled RFS

type has the advantage of fast computation, but it does not have the ability to distinguish target tracks.

Strictly speaking, it can be considered that the unlabeled label type is a target validator, and subsequent

processing steps are needed to obtain target tracks. Labeled RFS type has the ability to distinguish

target tracks, but it has a large amount of computation. In addition, all RFS trackers require that the

target’s birth model be known prior, while in GSO debris tracking applications, the birth model is

unknown. Multi-target tracking algorithm based on data association includes GNN, JPDA, MHT and

their variants. In complex application scenarios, the tracking effect of MHT and JPDA is better than

that of GNN, but the real-time performance of GNN is better than that of MHT and JPDA. Considering

the simplicity of GSO debris motion, approximately stationary or uniformly low-speed linear motion,

and the GSO debris extractor used in this paper can suppress background and stars very well, and

the extraction results contain few false alarms. In this case, GNN multi-target tracker can complete

GSO debris tracking task very well. Therefore, this paper uses GNN multi-target tracker to track

GSO debris.

3.1. Adaptive Inter-Frame Interval Estimation

Before introducing the principle of GNN multi-target tracker, there is still a problem to be solved.

Any tracker needs a relatively accurate time input, that is, the inter-frame interval is known. It is not

necessary to consider this problem when the image sequence is of equal interval, but sometimes the

exposure time is changed during GSO debris observation, which results in inconsistent inter-frame

intervals. When the tracking error caused by time error is larger than the maximum error allowed by

the tracker, it will cause the failure of target-track association at that time. The whole image sequence

shows that the track is discontinuous, that is, the same target has multiple tracks. Therefore, it is

necessary to extract the information related to the inter-frame interval from the image. Through analysis,

the inter-frame interval can be represented by the translation vector obtained during image registration.

Specifically, the inter-frame interval is the sum of charge transfer time and exposure time. The charge

transfer time is much smaller than the exposure time, so the inter-frame interval can be approximated

to the exposure time. When the telescope is in target tracking mode, the stars will form stripes on the

CCD image. The stripes are caused by the rotation of the earth during exposure time, and the rotation

speed of the earth is basically constant. Therefore, the exposure time can be estimated by the length of

the stripes. The length of the stripes is positively correlated with the modulus of the translation vector,

so the modulus of the translation vector can represent the exposure time. In summary, the modulus of

the translation vector can indirectly represent the inter-frame interval.

In this paper, the translation vector modulus of 5 seconds exposure is taken as the reference

modulus. The ratio of translation vector modulus obtained by adaptive fast registration algorithm to

reference modulus is used as an adaptive estimation of inter-frame interval.

3.2. GNN Multi-Target Tracking Algorithm

This section introduces the principle of GNN multi-target tracker and gives a comparison with other

trackers in GSO debris tracking applications. In the following description, Xo =
{

xo_1, · · · , xo_m
}

is used

to represent the track table of the previous moment, where m is the number of targets.
⌢

X =
{⌢
x 1, · · · ,

⌢
x m

}

represents the predicted track table at the current time,
⌢

P1, · · · ,
⌢

Pm represents the corresponding
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prediction error covariance matrix. Linear multiple-target motion model X = FXo + V =
⌢

X + V is

adopted, where X =
{

x1, · · · , xq

}

is the real track table at the current time, F is the state transition

matrix, V is the process noise with zero mean and covariance matrix Q; then the transfer function

can be expressed as f
(⌢

x |xo

)

= NQ

(⌢
x − Fxo

)

. Z = {z1, · · · , zn} is used to represent the suspected target

state table extracted at the current time, that is, the observation at the current time. The observation

model is Z = H
⌢

X + W, where H is the observation matrix, W is the observation noise with zero

mean and covariance matrix R; then the likelihood function can be expressed as f
(

z
∣

∣

∣

∣

⌢
x
)

= NR

(

z−H
⌢
x
)

.

Considering the Euclidean distance between observation z and prediction
⌢
x , the uncertainty R of z and

the uncertainty
⌢

P of
⌢
x , referring to [42] (p. 95), the associated distance d

(

z,
⌢
x
)

between observation

and track is defined by Bayesian method as follows:

d
(

z,
⌢
x
)

=

√

(

z−H
⌢
x
)T

(

H
⌢

PHT + R
)−1(

z−H
⌢
x
)

, (21)

GNN multi-target tracker is based on global associated distance. All possible associated distance

between observation and prediction tracks are considered as follows:

zπ(1) ↔
⌢
x 1, · · · , zπ(m) ↔

⌢
x m, (22)

where π : {1, · · · , m} → {1, · · · , n} is any possible one-to-one mapping. Therefore, the optimal association

problem can be solved by solving π, which minimizes the following formula:

d2
π =

m
∑

i=1

d
(

zπ(i),
⌢
x i

)2
=

m
∑

i=1

(

(

zπ(i) −H
⌢
x i

)T
(

H
⌢

P iH
T + R

)−1(

zπ(i) −H
⌢
x i

)

)

, (23)

The mapping π obtained here is the optimal association between observation and prediction

tracks determined by GNN multi-target tracking algorithm.

GNN multi-target tracking algorithm has low complexity and good tracking effect when the

motion model is relatively simple. Let Dnum, Tnum and Fnum represent the number of observations,

tracks and false alarms respectively, and assume that there is no target missed detection. Then the

complexity of GNN tracking algorithm is O
(

CTnum
Dnum

Tnum!
)

= O(Dnum!/Fnum!). Since the motion

form of GSO debris is relatively simple, GNN algorithm is adopted in this paper. In order to show the

rationality of using GNN tracker in GSO debris tracking application, we record the processing time of

GSO debris tracking using GNN tracker and other trackers in seconds, such as Table 1.

Table 1. GEO debris tracking processing time-consuming by different trackers.

Time(s)
Seq_I
(144)

Seq_II
(105)

Seq_III
(104)

Seq_IV
(44)

Seq_V
(42)

Seq_VI
(36)

Seq_VII
(21)

JointGLMB (SMC) [30] 189.523 130.008 108.813 29.544 19.893 28.419 13.075

GLMB(GMS) [43] 197.426 68.187 57.745 16.503 5.623 15.390 9.381

CBMeMBer (GMS) [29] 1.181 0.702 0.864 0.151 0.116 0.361 0.093

CPHD(GMS) [28] 1.005 0.795 0.745 0.186 0.167 0.264 0.101

PHD(GMS) [27] 0.51 0.484 0.516 0.084 0.093 0.172 0.066

MHT [33] 5.398 4.33 4.79 1.918 3.002 1.903 1.672

JPDA [32] 2.493 2.075 2.262 0.763 1.345 0.754 0.612

GNN [31] (pp. 203–205) 2.176 1.972 2.253 0.732 1.525 0.729 0.597
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It should be noted that according to the processing results of the measured data, all the tracking

algorithms used in the table can achieve better tracking results. There is no missing track in all tracking

algorithms. There are three and one false tracks in the tracking results of PHD and CPHD algorithms,

respectively. There are no false tracks in the tracking results of other algorithms. When the target

track is established, the tracking algorithm based on RFS and MHT has a delay of 3–6 frames, and the

GNN and JPDA algorithms have a delay of 3 frames. Seq_I–Seq_VII image sequences were tested.

The numbers in parentheses represent the number of images in the corresponding image sequences.

JointGLMB and GLMB are tracking algorithms based on labeled RFS. The contents in parentheses

indicate the implementation method adopted. SMC represents sequential Monte Carlo method and

GMS represents Gauss mixture method. CBMeMBer, CPHD and PHD are tracking algorithms based

on unlabeled RFS, and their processing results need follow-up processing. In order to complete the test

of the RFS tracker, we first analyze the data to obtain the birth model, and then use it as the input of the

RFS tracker. This is obviously unreasonable in practical application. However, it should be noted that

the unlabeled RFS tracker has a better processing speed advantage, and it is necessary to further study

it, but this is beyond the content of this paper. MHT, JPDA and GNN are all tracking algorithms based

on data association. When tracking applications are complex, MHT has the best performance, followed

by JPDA and GNN. However, because the motion mode of target in GSO debris tracking application is

relatively simple, and the target extractor used in this paper can suppress background and stars very

well, there are a few false alarms in the extracted results. Therefore, there is no significant difference in

the effectiveness of the three trackers. According to the above information, considering the tracking

effect and real-time performance of the algorithm, it is reasonable to select GNN multi-target tracker

for GSO debris tracking.

4. Results

4.1. Introduction of Measured Data

In order to test the algorithm comprehensively, we collected seven groups of image sequences by

two telescopes, named Seq_I–Seq_VII. Seq_I–Seq_III was collected by telescope I, and Seq_IV–Seq_VII

was collected by telescope II. The observation sites of telescope I and II are different, and their

parameters are identical. The number of frames in each sequence is shown in Table 1. The exposure

time of a single frame is usually between 5 and 10 seconds, so the frame rate is 0.1 to 0.2 frames per

second. The images are all 16-bit gray-scale images of 2K × 2K, and the single frame data is 8MB.

We annotated ground-truth labels based on the public version of USSTRATCOM catalogue [44] and

combined with manual screening. The characteristics of each image sequence are described as follows:

Seq_I, which contains two frames of irrelevant images, is located in the first frame and in the

middle of the sequence, to test the adaptability of the registration algorithm in case of abnormality.

It also contains two targets with very close distance. As shown in Figure 9a, the distance between two

targets is less than 10 pixels, which can test the algorithm’s ability to distinguish close targets.
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Figure 9. Typical cases of measured data: (a) close target; (b) dim target; (c) targets similar to

stars; (d) high-brightness and fast-moving disturbing object; (e) exposure time change; (f) strong

moonlight interference.

Seq_II, which contains more targets, is used to test the performance of the algorithm in the case of

a large number of targets. Also, a new non-GEO debris enters the field of view, which can test the

acquisition ability of the algorithm for the new-emerging target.

Seq_III is the typical data of Telescope I. It contains a very dim GEO debris, which can be used to

test the limit detection ability of the algorithm. As shown in Figure 9b, the SNR of the target is very

small. It also contains a non-GEO debris whose direction of motion is basically the same as that of

stars, but whose velocity is smaller than that of stars. As shown in Figure 9c, the stripe direction of the

target is basically the same as that of stars, but the stripe length is shorter than that of stars, which can

be used to test the ability of the algorithm to detect targets with similar stellar motions.

Seq_IV image quality is poor. There are multiple frame dropouts and interference from fast

moving bright object. As shown in Figure 9d, the interference target has a long bright smear, which can

be used to test the performance of the algorithm in complex situations.

Seq_V, there is a change of field of view, testing the performance of the algorithm when the field of

view changes. In addition, the exposure time changed once. As shown in Figure 9e, due to the change

of exposure time, the length of the stellar stripe in frame 16 is shorter than that in frame 17, which can

be used to test the adaptive ability of the algorithm when the exposure time changes.

Seq_VI, in which there is strong moonlight interference. As shown in Figure 9f, moonlight

causes strong background noise, which can be used to test the effectiveness of background

suppression algorithm.

Seq_VII is a typical data of telescope II, which can be used to test the performance of the algorithm

under normal conditions.

4.2. Processing Results of Measured Data

All the tests in this paper are completed on Lenovo M410-PC with Intel i7-7700CPU@3.6GHz

(8 CPUs), 8GB DDR4 RAM by using the software of MATLAB R2019(a). In order to show the detection

ability for dim and small targets, we give the time-varying SNR of all targets detected in Seq_III,

as shown in Figure 10, and the SNR of targets after image preprocessing, as shown in Figure 11.
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Figure 10. SNR of targets before image preprocessing.

 

 

Figure 11. SNR of targets after image preprocessing.

Figures 10 and 11 show that the proposed image processing algorithm can effectively improve

the SNR of the target, and then increase the detection probability of dim and small targets. Figure 12

shows the receiver operating characteristic curves (ROC) of the proposed algorithm and the twice

frame differential algorithm [1]. The method of drawing the ROC curve is referred to [45].
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Figure 12. The receiver operating characteristic curves (ROC) of the proposed algorithm and the twice

frame differential algorithm.
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Figure 12 shows that the proposed algorithm has better detection performance than the twice

frame differential algorithm. Table 2 shows the number of GEO debris and non-GEO debris detected in

seven groups of sequences, and the mean of SNR enhancement multiples of all targets in the sequence

after preprocessing.

Table 2. The number of detected targets and the mean of SNR enhancement multiples.

Number Seq_I Seq_II Seq_III Seq_IV Seq_V Seq_VI Seq_VII

GEO debris 6 7 6 4 4 5 3

Non-GEO debris 2 4 3 0 1 0 2

SNR Multiples 1313 1343 234 1390 595 539 780

Table 2 shows that the algorithm can detect not only GEO debris, but also non-GEO debris, and

at least can improve the SNR of detected targets by about 200 multiples. Table 3 gives the minimum

SNR and missed detection accuracy of all detected GSO debris in seven sequences, in which SNR_min

represents the minimum SNR of detected targets and Omi_R represents the missed detection accuracy.

The definition of Omi_R in this paper is as follows:

Omi_R = M_num/E_num, (24)

where M_num denotes the number of frames that the target has not been detected, E_num denotes the

total number of frames in which the target exists.

Table 3. Minimum SNR and missed detection accuracy of detected targets.

Target
SNR_min

(dB)
Omi_R

(%)
Target

SNR_min
(dB)

Omi_R
(%)

Target
SNR_min

(dB)
Omi_R

(%)

Target1 9.85 0.00 Target17 27.12 0.70 Target33 17.43 4.35

Target2 13.4 0.00 Target18 10.26 1.41 Target34 19.53 4.35

Target3 14.14 0.00 Target19 13.21 1.41 Target35 22.61 4.35

Target4 14.23 0.00 Target20 15.45 1.41 Target36 25.71 4.35

Target5 14.78 0.00 Target21 17.06 1.41 Target37 10.71 4.90

Target6 16.32 0.00 Target22 22.96 1.41 Target38 16.7 6.52

Target7 16.99 0.00 Target23 7.37 1.96 Target39 13.33 9.38

Target8 19.28 0.00 Target24 14.35 2.63 Target40 17.13 12.50

Target9 20.5 0.00 Target25 8.24 2.82 Target41 5.91 16.67

Target10 23.06 0.00 Target26 6.98 2.88 Target42 10.91 17.65

Target11 24.22 0.00 Target27 7.68 2.88 Target43 15.81 19.05

Target12 25.31 0.00 Target28 18.27 2.88 Target44 6.024 30.39

Target13 29.89 0.00 Target29 7.19 2.94 Target45 24.56 40.66

Target14 33.08 0.00 Target30 10.55 2.94 Target46 17.69 53.33

Target15 33.5 0.00 Target31 9.97 3.13 Target47 12.49 56.67

Target16 24.46 0.70 Target32 11.48 3.92

Table 3 shows that the minimum SNR of the target detected by this algorithm is not more than

5.91 dB. At the same time, it should be noted that the missed detection accuracy of some targets is very

high, so we relax the condition of judging the target track loss in the tracking algorithm. Only when

the target is missed eight times in a row can it be judged that the track is lost. In addition, when the
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minimum SNR of different detectable targets is almost the same, the target miss detection accuracy

is significantly different. This is due to the time-varying brightness of GSO objects. Because of the

rotation and irregular shape of the object, the brightness of the object changes with time, and the change

rate will be very large [21,22]. The intense change of brightness results in discontinuous detection

results of targets, which leads to the above problems. For example, let the minimum SNR of the target

detected by the algorithm be 5.9 dB. At k-time, the SNR of target A and target B are both 7 dB and

detected. At k + 1, the target A changes bright, the SNR increases, the target B changes dark, and the

SNR is less than 5.9 dB, which results in that A can be detected and B cannot be detected. That is to

say, the minimum detectable SNR of A and B is 7 dB, but the missed detection accuracy is different.

The number of false targets detected in each frame of seven image sequences is shown in Figure 13.

 

Figure 13. The number of false targets detected in each frame of seven image sequences.

Figure 13 shows that the GSO debris extractor can extract no more than 10 false targets per frame,

generally less than 4. This is because the extractor can suppress background and stars very well,

and effectively enhance GSO debris. The processing time of each sequence is shown in Table 4.

Table 4. The processing time of each sequence.

Time(s) Seq_I Seq_II Seq_III Seq_IV Seq_V Seq_VI Seq_VII

Total 189.197 130.945 122.649 83.118 85.445 76.034 31.661

Single Frame 1.314 1.247 1.179 1.889 2.034 2.112 1.508

Table 4 shows that the single frame processing time of the proposed algorithm is not more than

2.112 s, while the exposure time of GSO debris observed with telescopes is generally more than

5 seconds, so the algorithm designed in this paper fully meets the real-time requirements of GSO

debris detection tasks. In addition, there are differences in the processing time of single frame in

Table 4, which is caused by the different stability of exposure time in image sequence. If the exposure

time is stable, there is no need to use large-scale search frequently for registration, and the processing

speed will be fast. However, if the exposure time changes frequently, it will lead to frequent use of

large-scale search for registration, resulting in increased processing time. Finally, a representative

Seq_III detection result image is given, as shown in Figure 14. Among them, color lines represent tracks,

and different tracks are represented by different colors. The target with obvious track is non-GEO

debris, otherwise it is GEO debris. The green rectangle represents the position of the target whose

track has been established, and the red dot represents the position of the suspected target. Obviously,

in the detection result of Seq_III, target 1, 2, 3, 4, 6, 9 is GEO debris and 5, 7, 8 is non-GEO debris.
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Figure 14. Seq_III detection result.

5. Conclusions and Prospects

In this paper, an adaptive real-time detection algorithm for dim and small photoelectric GSO

debris was proposed. It can effectively improve the detection ability of dim and small GSO debris. It has

strong adaptability and does not require exposure time, telescope position and optical axis pointing

information. Moreover, the real-time performance of the algorithm is strong, and it can fully meet the

requirements of real-time processing ability in the application of GSO debris photoelectric detection.

In addition, the algorithm has good parallelism. The algorithm consists of GSO debris extractor and

GSO debris tracker. In the process of GSO debris extraction, an adaptive fast registration algorithm

is proposed. The adaptability and real-time performance of the algorithm are effectively improved.

In addition, in view of the shortcoming of the dilation difference algorithm, an enhanced dilation

difference algorithm is proposed to improve the suppression effect for stars. For GSO debris tracker, an

adaptive inter-frame interval technique is proposed to improve the performance. Using seven groups

of measured data in different situations, the algorithm is tested comprehensively. The test results show

that the proposed algorithm has the ability of self-adaptive detection of dim and small photoelectric

GSO debris, and its processing speed fully meets the real-time requirement.

Some prospects for future work can be given. Firstly, because the algorithm has good parallel

processing characteristics, it can be transplanted to embedded systems to further improve the processing

speed. Secondly, in view of the theoretical advantages of RFS tracker, it is meaningful to find the

method to solve the problem of unknown birth model in GSO debris tracking application with RFS

tracker. Thirdly, considering that ISAL can image GSO debris, it can combine GSO optical detection

system with ISAL imaging system to improve the recognition of GSO debris.

Author Contributions: Conceptualization, Q.S.; data curation, H.L., L.L. and X.L.; methodology, Z.N. and Q.S.;
project administration, Z.N.; software, Q.S.; validation, Q.S.; visualization, Q.S.; writing—original draft, Q.S.;
writing—review and editing, Z.N. and W.W.

Funding: This research was funded by a grant from the National Natural Science Foundation of China
(No. 61605243).

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for their valuable
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luo, H.; Mao, Y.D.; Yu, Y.; Tang, Z.H. FocusGEO observations of space debris at Geosynchronous Earth Orbit.

Adv. Space Res. 2019, 64, 465–474. [CrossRef]

http://dx.doi.org/10.1016/j.asr.2019.04.006


Sensors 2019, 19, 4026 21 of 22

2. Sun, R.Y.; Zhan, J.W.; Zhao, C.Y.; Zhang, X.X. Algorithms and applications for detecting faint space debris in

GEO. Acta Astronaut. 2015, 110, 9–17. [CrossRef]

3. Fu, J.; Cai, H.; Zhang, S. Research on Relative Motion of Approach to GEO satellite based on HEO. Procedia

Eng. 2011, 15, 4828–4834. [CrossRef]

4. Lupo, R.; Albanese, C.; Bettinelli, D.; Brancati, M.; Minei, G.; Pernechele, C. Lighthouse: A spacebased

mission concept for the surveillance of geosynchronous space debris from low earth orbit. Adv. Space Res.

2018, 62, 3305–3317. [CrossRef]

5. Molotov, I.; Agapov, V.; Titenko, V.; Khutorovsky, Z.; Burtsev, Y.; Guseva, I.; Biryukov, V. International

scientific optical network for space debris research. Adv. Space Res. 2008, 41, 1022–1028. [CrossRef]

6. Schildknecht, T.; Ploner, M.; Hugentobler, U. The search for debris in GEO. Adv. Space Res. 2001, 28, 1291–1299.

[CrossRef]

7. Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M. Ground-based optical observation system for LEO objects.

Adv. Space Res. 2015, 56, 414–420. [CrossRef]

8. Yu, Y.; Zhao, X.F.; Luo, H.; Mao, Y.D.; Tang, Z.H. Application of CCD drift-scan photoelectric technique on

monitoring GEO satellites. Adv. Space Res. 2018, 61, 2320–2327. [CrossRef]

9. Zhao, C.Y.; Zhang, M.J.; Wang, H.B.; Xiong, J.N.; Zhu, T.L.; Zhang, W. Analysis on the long-term dynamical

evolution of the inclined geosynchronous orbits in the Chinese BeiDou navigation system. Adv. Space Res.

2015, 56, 377–387. [CrossRef]

10. Schildknecht, T. Optical surveys for space debris. Astron. Astrophys. Rev. 2007, 14, 41–111. [CrossRef]

11. Sun, R.Y.; Zhao, C.Y. An adaptive threshold method for improving astrometry of space debris CCD images.

Adv. Space Res. 2014, 53, 1664–1674. [CrossRef]

12. Núñez, J.; Núñez, A.; Montojo, F.J.; Condominas, M. Improving space debris detection in GEO ring using

image deconvolution. Adv. Space Res. 2015, 56, 218–228. [CrossRef]

13. Zhou, Y.; Huang, J.J.; Wu, W.W.; Yuan, N.C. An antipodal Vivaldi antenna with band-notched characteristics

for ultra-wideband applications. AEU Int. J. Electron. Commun. 2017, 76, 152–157.

14. Schildknecht, T.; Hugentobler, U.; Ploner, M. Optical surveys of space debris in GEO. Adv. Space Res.

1999, 23, 45–54. [CrossRef]

15. Cohen, G.; Afshar, S.; Morreale, B.; Bessell, T.; Wabnitz, A.; Rutten, M.; Schaik, A.V. Event-based sensing for

space situational awareness. J. Astronaut. Sci. 2019, 66, 125–141. [CrossRef]

16. Hu, X.; Li, D.J.; Fu, H.C.; Wei, K. System Analysis of Ground-based Inverse Synthetic Aperture Lidar for

Geosynchronous Orbit Object Imaging. Acta Photonica Sin. 2018, 47, 0601003.

17. Do, H.N.; Chin, T.J.; Moretti, N.; Jah, M.K.; Tetlow, M. Robust foreground segmentation and image registration

for optical detection of GEO objects. Adv. Space Res. 2019, 64, 733–746. [CrossRef]

18. Skinner, M.A.; Russell, R.W.; Rudy, R.J.; Gutierrez, D.J.; Kim, D.L.; Crawford, K.; Kelecy, T. Time-resolved

infrared spectrophotometric observations of high area to mass ratio (HAMR) objects in GEO. Acta Astronaut.

2011, 69, 1007–1018. [CrossRef]

19. Kelecy, T.; Baker, E.; Seitzer, P.; Payne, T.; Thurston, R. Prediction and tracking analysis of a class of high

area-to-mass ratio debris objects in geosynchronous orbit. In Proceedings of the 2008 Advanced Maui Optical

and Space Surveillance Technologies Conference, Maui, HI, USA, 16–19 September 2008; p. 33.

20. Krisko, P.H.; Hall, D.T. Geosynchronous region orbital debris modeling with GEO_EVOLVE 2.0. Adv. Space

Res. 2004, 34, 1166–1170. [CrossRef]

21. Cardona, T.; Seitzer, P.; Rossi, A.; Piergentili, F.; Santoni, F. BVRI photometric observations and light-curve

analysis of GEO objects. Adv. Space Res. 2016, 58, 514–527. [CrossRef]

22. Seitzer, P.; Cowardin, H.M.; Barker, E.; Abercromby, K.J.; Kelecy, T.M.; Horstman, M. Optical photometric

observations of GEO debris. In Proceedings of the 2010 AMOS Technical Conference, Wailea, HI, USA,

14–17 September 2010.

23. Kong, S.; Zhou, J.; Ma, W. Effect Analysis of Optical Masking Algorithm for GEO Space Debris Detection. Int.

J. Opt. 2019, 2019, 2815890. [CrossRef]

24. Yanagisawa, T.; Nakajima, A.; Kadota, K.; Kurosaki, H.; Nakamura, T.; Yoshida, F.; Sato, Y. Automatic

detection algorithm for small moving objects. Publ. Astron. Soc. Jpn. 2005, 57, 399–408. [CrossRef]

25. Kouprianov, V. Distinguishing features of CCD astrometry of faint GEO objects. Adv. Space Res.

2008, 41, 1029–1038. [CrossRef]

http://dx.doi.org/10.1016/j.actaastro.2015.01.001
http://dx.doi.org/10.1016/j.proeng.2011.08.901
http://dx.doi.org/10.1016/j.asr.2018.03.005
http://dx.doi.org/10.1016/j.asr.2007.04.048
http://dx.doi.org/10.1016/S0273-1177(01)00399-4
http://dx.doi.org/10.1016/j.asr.2015.01.019
http://dx.doi.org/10.1016/j.asr.2018.02.005
http://dx.doi.org/10.1016/j.asr.2015.01.007
http://dx.doi.org/10.1007/s00159-006-0003-9
http://dx.doi.org/10.1016/j.asr.2014.02.023
http://dx.doi.org/10.1016/j.asr.2015.04.006
http://dx.doi.org/10.1016/S0273-1177(98)00229-4
http://dx.doi.org/10.1007/s40295-018-00140-5
http://dx.doi.org/10.1016/j.asr.2019.03.008
http://dx.doi.org/10.1016/j.actaastro.2011.06.018
http://dx.doi.org/10.1016/j.asr.2003.10.040
http://dx.doi.org/10.1016/j.asr.2016.05.025
http://dx.doi.org/10.1155/2019/2815890
http://dx.doi.org/10.1093/pasj/57.2.399
http://dx.doi.org/10.1016/j.asr.2007.04.033


Sensors 2019, 19, 4026 22 of 22

26. Laas-Bourez, M.; Blanchet, G.; Boër, M.; Ducrotté, E.; Klotz, A. A new algorithm for optical observations of

space debris with the TAROT telescopes. Adv. Space Res. 2009, 44, 1270–1278. [CrossRef]

27. Mahler, R.P.S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron.

Syst. 2003, 39, 1152–1178. [CrossRef]

28. Vo, B.T.; Vo, B.N.; Cantoni, A. Analytic implementations of the cardinalized probability hypothesis density

filter. IEEE Trans. Signal Process. 2007, 55, 3553–3567. [CrossRef]

29. Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its

implementations. IEEE Trans. Signal Process. 2008, 57, 409–423.

30. Vo, B.N.; Vo, B.T.; Hoang, H.G. An efficient implementation of the generalized labeled multi-Bernoulli filter.

IEEE Trans. Signal Process. 2016, 65, 1975–1987. [CrossRef]

31. Mahler, R. Advances in Statistical Multisourc-Multitarget Information Fusion. Artech House; Fan, H.Q., Ed.;

National Defense Industry Press: Beijing, China, 2017; pp. 203–205.

32. Dezert, J.; Bar-Shalom, Y. Joint probabilistic data association for autonomous navigation. IEEE Trans. Aerosp.

Electron. Syst. 1993, 29, 1275–1286. [CrossRef]

33. Blackman, S.S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag.

2004, 19, 5–18. [CrossRef]

34. Duan, Y. Research on LEO Target Detection for Binding Telescopes with Large FOV. Ph.D. Thesis, National

University of Defense Technology, Changsha, China, 2017.

35. Cheng, K.; Cheng, Y. Fast parallel algorithm of morphology operation based on element subsection. Video

Eng. 2016, 40, 26–29.

36. Sun, Q.; Niu, Z.D.; Yao, C. Implementation of Real-time Detection Algorithm for Space Debris Based on

Multi-core DSP. In Proceedings of the 2019 International Conference on Computer Graphics and Digital

Image Processing, Rome, Italy, 25–27 July 2019.

37. Huang, B.K. Research on Intensity-Based Image Registration Technology. Master’s Thesis, Jiangxi University

of Science and Technology, Ganzhou, China, 2016.

38. Xiu, P.S. Small Target Detection and Tracking in Deep Space. Master’s Thesis, University of Chinese Academy

of Science, Chengdu, China, 2015.

39. Drake, A.J.; Djorgovski, S.G.; Catelan, M.; Graham, M.J.; Mahabal, A.A.; Larson, S.; Christensen, E.;

Garradd, G. The Catalina Surveys Southern Periodic Variable Star Catalogue. Mon. Not. R. Astron. Soc.

2017, 469, 3688–3712. [CrossRef]

40. Drake, A.J.; Graham, M.J.; Djorgovski, S.G.; Catelan, M.; Mahabal, A.A.; Torrealba, G.; Garcia-Alvarez, D.;

Larson, S. The Catalina Surveys Periodic Variable Star Catalog. Astrophys. J. Suppl. Ser. 2014, 213, 9.

[CrossRef]

41. Griffiths, M. Observer’s Guide to Variable Stars; Springer: Cham, Switzerland, 2018; pp. 107–110.

42. Bar-Shalom, Y.; Li, X.R. Estimation and Tracking: Principles, Techniques, and Soft-Ware; Artech House: Norwood,

MA, USA, 1993; p. 95.

43. Vo, B.T.; Vo, B.N. Labeled random finite sets and multi-object conjugate priors. IEEE Trans. Signal Process.

2013, 61, 3460–3475. [CrossRef]

44. Früh, C.; Schildknecht, T. Accuracy of Two-Line-Element Data for Geostationary and High-Eccentricity

Orbits. J. Guid. Control. Dyn. 2012, 35, 1483–1491. [CrossRef]

45. Li, F.; Li, Y.P.; Wang, B.J. Application of ROC in Detection Performance Evaluation of Infrared Imaging

System. Opt. Optoelectron. Technol. 2012, 10, 28–31.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asr.2009.06.013
http://dx.doi.org/10.1109/TAES.2003.1261119
http://dx.doi.org/10.1109/TSP.2007.894241
http://dx.doi.org/10.1109/TSP.2016.2641392
http://dx.doi.org/10.1109/7.259531
http://dx.doi.org/10.1109/MAES.2004.1263228
http://dx.doi.org/10.1093/mnras/stx1085
http://dx.doi.org/10.1088/0067-0049/213/1/9
http://dx.doi.org/10.1109/TSP.2013.2259822
http://dx.doi.org/10.2514/1.55843
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	GSO Debris Extractor 
	Background Suppression Based on Morphological Top-Hat Transform 
	Adaptive Fast Image Registration 
	Stellar Suppression Based on the Enhanced Dilation Difference Algorithm 
	GSO Debris Enhancement and Target Segmentation Based on Inter-Frame Correlation and Threshold Segmentation Technology 

	GSO Debris Tracker 
	Adaptive Inter-Frame Interval Estimation 
	GNN Multi-Target Tracking Algorithm 

	Results 
	Introduction of Measured Data 
	Processing Results of Measured Data 

	Conclusions and Prospects 
	References

