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Abstract
✁

—An
✂

adaptive receiver is presented in this paper for
the
✄

reception of linearly modulated signals transmitted over a
time-
✄

and frequency-selective fading channel. The channel is
modeled
☎

as a truncated power series [1] which represents the
dispersive
✆

fading channel as a sum of three elementary flat-
fading
✝

channels. The proposed receiver consists of a sequence
estimator
✞

with a parallel channel estimator. The channel es-
timator
✄

recovers the instantaneous fading processes associated
with
✟

each elementary channel and filters them to generate one-
step
✠

predictions of each fading process. Some implementation
difficulties
✆

and solutions are also discussed. Computer simulations
using
✡

quadrature phase-shift keying (QPSK) and channels with
moderate
☎

delay spreads and fade rates have been used to evaluate
the
✄

performance of the receiver. The results show that our tech-
nique has potential in channels with delay spread of about 20%,
signal-to-noise
✠

ratio (SNR) greater than 15 dB, and applications
requiring bit-error rates (BER’s) less than 10 ☛ ☞ .

Index
✌

Terms—Adaptive
✂

receiver, selective fading channel.

I. INTRODUCTION
✍

L
ODGE
✎

AND MOHER in [2] have suggested a Kalman

filtering
✏

approach to a maximum-likelihood sequence

estimation
✑

(MLSE) receiver for a general Rayleigh fading

channel.
✒

This receiver structure has been implemented by Dai

and
✓

Shwedyk [3] assuming that the second-order statistics of

the
✔

channel are available in defining the state model of the

channel
✒

impulse response (CIR).

Although the Kalman filtering approach to MLSE leads to

an
✓

elegant optimum receiver, there are practical difficulties

associated
✓

with it. First, its complexity grows exponentially

with✕ sequence length since one Kalman filter is required for

every
✑

hypothesized sequence. Next, the complexity of the

Kalman
✖

filter increases with the length of the CIR. Finally,

the
✔

statistics of the channel must be explicitly known in order

to
✔

specify the underlying state equation describing the time-

variant
✗

CIR. It has also been noted in [2] that the Kalman

filter
✏

generates redundant information, since the conditional

means
✘

and variances of the internal states, which are not

required
✙

by the MLSE, are also presented at the filter output.

However, for the special case of a flat-fading channel and a

constant
✒

envelope signaling format, this approach reduces to

a
✓

structure commonly known as the predictor receiver which

can
✒

be implemented with the Viterbi algorithm (VA) and a
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bank
✜

of linear predictors. Further complexity reduction may

be
✜

achieved using per-survivor processing (PSP) to reduce the

number of filtering operations [4].

In
✢

this paper, a reduced complexity sequence estimation

receiver
✙

is presented for the general Rayleigh fading (time- and

frequency-selective) channel. There are three major advantages

of
✣

this receiver over the Kalman filtering approach. First, like

the
✔

flat-fading case, the prediction algorithm is simplified by

using✤ linear prediction filters instead of Kalman filters. Second,

the
✔

channel is modeled as a truncated -power series [1], [5].

As
✥

a consequence, the number of channel parameters to be

estimated
✑

is not equal to the length of the CIR but to the

number of terms in the truncated series. Third, the predictors

use✤ the recursive least squares (RLS) algorithm to adapt to the

channel
✒

environment. Hence, the receiver can perform without

any
✓

prior statistical knowledge of the channel.

In the present work, we have truncated the series to the first

three
✔

terms and the resultant is referred to as the quadratic -

power
✦

series. The quadratic series model describes the time-

and
✓

frequency-selective channel as a sum of three elementary

flat-fading
✧

channels. Therefore, we are able to directly extend

the
✔

ideas of predictor receivers for the flat-fading channel to

the
✔

dispersive fading channel. For flat-fading channels, the

channel
✒

fading parameter is recovered by dividing the received

signal
★

by the transmitted signal. Similarly, the multiplicative

fading of each elementary channel is decoupled from the

received signal by a matrix–vector equivalent of this division

operation.
✣

A prediction filter is then used for each of the

elementary
✑

channels.

The organization of this paper is as follows. Section II

describes
✩

the channel and signal models which are used.

In Section III, the development of the proposed receiver

structure
★

from the predictor receiver for a flat-fading channel is

described.
✩

The performance of the new receiver is evaluated by

computer
✒

simulations and the results are presented in Section

IV.
✢

Finally, conclusions are provided in Section V.

II.
✢

CHANNEL AND S
✪

IGNAL MODEL

Fig. 1 shows the complex baseband model of the commu-

nication system. The transmitter consists of a symbol source

generating
✫

a sequence of
✣

uncorrelated data symbols and

a
✓

bandlimited transmit filter with impulse response . The

th
✔

symbol is denoted by and
✓

the symbol period is denoted

by
✜

. The symbols are filtered by the transmit filter to yield

the
✔

transmitted signal

(1)
✬
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Fig.
✭

1. Block diagram of the communication system.

It is assumed that the impulse response is truncated to a

finite
✮

length such that for
✯

. The fading

channel
✰

introduces random phase and amplitude fluctuations

to
✱

the transmitted signal. In the case of a flat-fading channel,

the
✱

signal will✲ simply be distorted by multiplicative

fading
✯

. For a dispersive fading channel with impulse

response and
✳

corresponding time-variant transfer func-

tion
✱

,✴ the channel may be modeled as a time-variant

filter
✮

with tap weights which are zero-mean complex Gaussian

random variables [6]. At the front end of the receiver, the faded

signal
✵

is
✶

further corrupted by zero-mean additive white

Gaussian
✷

noise (AWGN) with power spectral density . The

receive
✸

filter is assumed to be an ideal zonal filter with

a
✳

bandwidth wide enough to accommodate the entire Doppler

widened✲ spectrum of the faded signal, but which limits the

noise
✹

at higher frequencies. The sampled received signal

is then processed by the receiver to recover the transmitted

data
✺

symbols.

A. The Quadratic -Power Series Channel Model

Letting the mean delay of the channel be zero, the Taylor’s

series
✵

expansion about of
✻

the complex baseband channel

transfer
✱

function is [1], [5] given by

(2)
✼

where✲

(3)
✼

The channel transfer function may therefore be approximated

by
✽

a truncated -power series with time-varying coefficients

. To further simplify the expression in (2), we define

the
✱

time-selective coefficient (TSC) as

(4)
✼

Using
✾

(4), the expression in (2) is rewritten as

(5)
✼

The time-variant transfer function is now described as a sum

in
✶

the variable with✲ each term weighted by .

Fig. 2. The quadratic ✿ -power series channel model. The dispersive fading
channel is made up of the linear combination of three elementary chan-
nels. The elementary channels correspond to the transmitted signal, its first
derivative, and its second derivative.

A
❀

filter with transfer function of is
✶

an th
✱

order

dif
✺

ferentiator. Therefore, the output signal from the channel is

(6)
✼

The series is truncated to the first three terms. This is known as

the
✱

quadratic -power series model. Accordingly, the filtered

received
✸

signal is

(7)
✼

The
❁

signal terms and
✳

are
✳

the first and second

derivatives
✺

of the transmitted signal ,✴ respectively. For

easy
❂

reference, the three signal terms are collectively known as

the
✱

frequency-selective variables (FSV’s). The FSV’s are data-

dependent
✺

and account for the intersymbol interference present

in the received signal. The filtered noise term is represented

by
✽

.

The
❁

received signal is sampled at the times and
✳

is
✶

written as

(8)
✼

where
✲

the sampling period and
✳

is the number

of
✻

samples per symbol interval. Therefore, within the th
✱

signaling
✵

interval, . To ensure

that
✱

the filtered and sampled noise remains uncorrelated, the

receive filter is assumed to have an ideal frequency response

.

Expanding (8) and substituting for the FSV, the sampled

received signal becomes

(9)
✼

The
❁

observed signal model of the quadratic -power series

model
❃

is shown in Fig. 2. It may be viewed as a sum of

three
✱

purely time-selective fading channel outputs and additive

noise. Each of the three terms in (9) corresponds to an ideal

elementary
❂

flat-fading channel.
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❄

III.
❅

THE L
❆

EAST
❇

S
❈

QUARES E
❉

STIMATES P
❊

REDICT
❋

OR R
●

ECEIVER
❇

It
❅

was shown in the previous section that the quadratic -

power
❍

series is made up of three flat-fading channels. The

proposed
❍

receiver is developed by extending the predictor

receiver for the flat-fading channel model to the model shown

in
✶

(8). To clearly describe the receiver, the predictor receiver

for
✯

the flat-fading channel is briefly discussed. An analogy is

then
✱

drawn between the two channel models, and ideas from

the
✱

flat-fading channel receiver are applied to the design of

the
✱

receiver for the dispersive fading channel.

A. Channel Estimator for the Flat-Fading Channel

It is well known that the th
✱

sample of the received signal

over
✻

a frequency flat-fading channel [2] is given by

(10)
✼

where✲ represents
✸

the sampled multiplicative fading vari-

able,
✳

is the sampled transmitted signal, and is the

low-pass filtered AWGN. An optimum receiver is an MLSE

with
✲

a bank of linear predictors [2], [7], [8]. Each hypothesized

sequence
✵

requires a predictor to obtain estimates of the channel

state
✵

information (CSI). The tap weights of the linear pre-

dictors
✺

may be precomputed if the channel autocorrelation is

known or repeatedly updated using an adaptive algorithm such

as
✳

the least mean squares or RLS algorithms [9]. Implemen-

tation
✱

of this receiver with complexity reduction is achieved

by
✽

using the VA and PSP [4].

Assuming that each predictor in the bank is of order

,✴ the prediction of the channel sample requires

the
✱

estimates of the preceding channel samples

[9]. To obtain the instantaneous estimate

of
✻

the channel sample for a given transmitted sequence

at
✳

the th
✱

step, the received sample is divided by the hypoth-

esized
❂

transmitted signal associated
✳

with the most recent

element
❂

of that survivor, which is

(11)
✼

The received sample is a noisy version of the faded signal

sample
✵

and, therefore, the estimate of the fading process

is also noisy.

B. Channel Estimator for the Time-Dispersive Fading Channel

Analogous to the predictor receiver for the flat-fading chan-

nel,
✹

the proposed channel estimator for the dispersive fading

channel
✰

also employs linear predictors. Unlike the receiver

for
✯

the flat-fading case, three predictors are used for a given

transmitted
✱

signal, one for each of the TSC’s ,✴ ,✴
and

✳
.

Like
❆

the flat-fading receiver described in Section III-A, the

proposed
❍

receiver estimates the noisy version of the fading

processes
❍

,✴ ,✴ and which✲ are then used to

predict
❍

the TSC’s for the next metric evaluation. However, the

simple
✵

division operation of (11) cannot be applied here. The

received signal model consists of a sum of three elementary

channel
✰

outputs and, hence, the TSC’s are coupled.

W
■

e assume that the fading is slow enough that ,✴ ,✴
and
✳

are
✳

essentially constant over a symbol interval but

may
❃

vary from symbol to symbol. The receiver takes samples
✵

of
✻

the channel output over
✻

each symbol interval. Letting

,✴ the received samples over one symbol period are written

as
✳

(12)
✼

These
❁

equations in (8) can be rewritten in matrix–vector form

as
✳

(13)
✼

where✲

(14)
✼

is the received sample vector

(15)
✼

is the data dependent frequency-selective matrix

(16)
✼

is
✶

the unknown time-selective coefficient vector and

(17)
✼

is
✶

the noise vector. The elements of the frequency-selective

matrix
❃

consist
✰

of samples from outputs of each of the three

elementary
❂

channels without any fading.

The
❁

frequency-selective matrix is
✶

conditionally known

for
✯

any given transmitted data sequence. The objective is

to
✱

recover the time-selective vector from the channel

observation
✻

vector . If the noise vector is
✶

ignored,

the
✱

matrix–vector equation in (13) reduces to a set of three

simultaneous
✵

linear equations in the three unknown quantities

,✴ ,✴ and . The simplest and most intuitive

approach
✳

to recovering is
✶

by solving (13) since and
✳

are
✳

known. However, we have yet to consider the effects

of
✻

noise. In the presence of additive noise, the solution to the

set
✵

of equation in (13) becomes

(18)
✼
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and
✳

may be rewritten as

(19)
✼

where
✲

is the noisy estimate of the time-

selective
✵

fade vector . The first term of the right-hand

side
✵

of (19) is the original time-selective fade vector and

the
✱

second term is an augmented noise vector. The original

noise vector has been transformed by the inverse of matrix

to
✱

yield the augmented. In general, the Jacobian of the

linear transformation by is not unity and this may cause

considerable
✰

noise enhancement.

The
❁

noise enhancement may be minimized by using an

overdetermined
✻

system. This is achieved by taking more than

three
✱

samples per symbol. For example, assuming

samples
✵

per symbol, the received samples are written as

(20)
✼

From (20), it is seen that the solution for the estimates

becomes
✽

that of a standard least

squares
✵

problem [9], [10]. For a given transmitted sequence,

the
✱

object of the channel estimator is to obtain the linear least

squares
✵

estimate (LLSE) of from
✯

the observed vector

and
✳

the conditionally known frequency-selective matrix .

Following [9] and [10], the LLSE of the time-selective fade

vector
❏

is obtained as

(21)
✼

where
✲

the superscript denotes
✺

Hermitian transposition. If the

slow
✵

fading assumption holds, then the least squares estimates

is
✶

an unbiased estimate of the vector . According

to
✱

[9], if the noise samples in (20) are uncorrelated, is
✶

also
✳

the best
❑

linear unbiased estimator of
✻

and
✳

it achieves

the
✱

Cramér–Rao
❂

lower bound for unbiased estimates. The

elements
❂

of the vector are
✳

then used as inputs to the

predictors
❍

in order to obtain future estimates of the TSC’s.

Note
▲

that (21) is the matrix–vector equivalent of the division

operation
✻

seen in (11) for the flat-fading channel.

C. The Receiver for the Dispersive Fading Channel

The
❁

proposed receiver is a sequence estimator implemented

by
✽

the VA with a parallel channel estimator and is shown in

Fig. 3. We define the trellis state as

(22)
✼

The branch metric associated with the state transition

is
✶

(23)
✼

The term is the hypothesized received

sample
✵

associated with the state transition and
✳

Fig. 3. The proposed receiver structure for the time- and frequency-selective
channel.

is
✶

defined as

(24)
✼

The
❁

terms ,✴ and
✳

are
✳

the hypothesized transmitted th
✱

sample and its

first and second derivatives associated with the transition

. ,✴ ,✴ and are
✳

the

predictions
❍

of the TSC’s from the channel estimator.

Past
❊

least squares estimates of the TSC’s are used by

the
✱

channel estimator to predict ,✴ ,✴ and

. At the th
✱

symbol interval, the received vec-

tor
✱

defined
✺

in (20) is processed by a least squares estima-

tor
✱

as in (21) to obtain the estimate for
✯

each trellis state.

Estimates prior to the th
✱

period

are
✳

also obtained in a similar manner. The three elements of

these
✱

estimated vectors are used as inputs to three linear one-

step
✵

predictors to obtain ,✴ ,✴ and .

The receiver uses linear predictors and least squares estima-

tors,
✱

and therefore, it is appropriately called the least squares

estimates
❂

predictor receiver (LSEPR). Although it takes

samples
✵

of the received signal per symbol interval, the VA and

the
✱

predictors are updated only once per symbol interval. The

computation
✰

can be sped up by precomputing the estimator

matrices for all possible data sequences

of
✻

length and
✳

storing them in a lookup table. The

proposed
❍

channel estimator is shown in Fig. 4.

IV.
❅

SIMULA
▼

TION R
●

ESUL
❇

TS

The
❁

LSEPR has been developed for the purpose of com-

plexity
❍

reduction. It is suboptimum and it is difficult to

mathematically analyze its performance. Its performance is

evaluated
❂

using computer simulations.

The
❁

computer simulations were performed using a quadra-

ture
✱

phase-shift keying (QPSK) modulation format. The im-

pulse
❍

response of the transmit filter was truncated to three

symbol
✵

intervals. The multipath fading channel was assumed
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◆

Fig.
✭

4. The channel estimator of the proposed receiver.

to
✱

be a two-ray channel with wide sense stationary uncorre-

lated
❖

scattering (WSSUS) statistics. For simplicity, a channel

with
✲

a uniform delay power profile was used. It has been

shown
✵

in [5] that for small delay spread, the performance

of
✻

the communication system is not dependent on the delay

power
❍

profile. To eliminate phase ambiguity, a pilot symbol

is
✶

inserted every symbols
✵

in the transmitted data

symbol
✵

stream. This avoids the need for differential encoding

and
✳

decoding. The receiver consists of a 16–state VA with

a
✳

decision delay of symbols.
✵

To ensure rapid

conver
✰

gence of the tap weights of the predictors, the RLS

algorithm
✳

with a forget factor of 0.9999 was used for the

adaptation
✳

of the predictor tap weights [9]. The signal-to-noise

ratio
✸

(SNR) is defined as where✲ is
✶

the energy per bit.

The
❁

initial results of the simulations were poor. It was

observed
✻

that the conditioning number of
✻

the estimator

matrix
❃

in
✶

(21) significantly affects the noise en-

hancement in the least squares estimate and
✳

the receiver

performance
❍

can be severely degraded. If is large, then

will✲ deviate greatly from the actual vector . Fig. 5(a)

and
✳

(b) shows the mean square estimation errors between the

least squares estimates and the actual value of . Two

dif
✺

ferent sets of over
✻

all possible symbol sequences were

generated
P

by taking samples at two different sets of uniformly

spaced
✵

sampling points ( ).
◗

The maximum

for
✯

the simulation in Fig. 5(a) and the mean square error is

about
✳

10 most of the time. The maximum

was
✲

found for the simulation in Fig. 5(b) and the mean square

error
❂

is about 10 most
❃

of the time. Both simulations were at

an
✳

SNR of 40 dB. In the second case, the receiver performance

is
✶

severely degraded.

The
❁

reduction of can
✰

be achieved by careful selection

of
✻

the sampling points or the transmit pulse shape . It

is noted that square root raised-cosine pulses generally yield

a
✳

smaller than
✱

estimator matrices generated from full

raised-cosine
✸

pulses [6] with equivalent rolloff factor .

Although the careful selection of the sampling points may

reduce
✸

the large conditioning number of the estimator matrix,

it
✶

is a restrictive solution. A better solution lies in the ma-

nipulation of the last column of . Recall from (20) that

the
✱

last column of consists
✰

of ,✴ the second

derivative
✺

terms of the channel model. Assuming a two-ray

(a)

(b)

Fig. 5. (a) Least squares estimation error of the time-selective coefficient❘ ❙ ❚ ❯ ❱
with condition number of 36. (b) Least squares estimation error of the

time-selective
❲

coefficient ❳ ❨ ❩ ❬ ❭ with condition number of 4772.

channel
✰

with a uniform delay power profile and a maximum

delay
✺

spread of ,✴ the normalized average power

of
✻

is calculated from its autocorrelation function [5]

and
✳

is found to be about 2.5 10 . Since the normalized

average
✳

power of is small, changing marginally will

not
✹

affect the least squares estimation in (21) significantly.

For
❪

the simulations, about 50
❫

dB of noise with respect to bit

ener
❂

gy is added to each element of to
✱

improve

the
✱

conditioning of the estimator matrix. This is generally

known
❴

as “dithering” and it leads to significant performance

improvement
✶

as it significantly reduces to
✱

the range of

10 and 300 and, thereby, the estimation error.

Figs.
❪

6–9 show the bit-error rate (BER) curves for the

LSEPR
❆

using different fade time-bandwidth products or (nor-

malized)
❃

and
✳

maximum delay spreads . is the two-

sided
✵

bandwidth of the channel fading process. All simulations

were✲ performed using a square root raised-cosine transmit
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(a)

(b)

Fig. 6. (a) Steady-state BER performance curves of the LSEPR and EMLSE
for ❵ ❛ ❜ ❝ ❞ ❡ ❢ and ❣ ❤ ✐ ❥ ❦ ❧ ♠ ♥ ♦ ♣ q . (b) Steady-state BER performance
curves of the LSEPR and EMLSE for r s t ✉ ✈ ✇ ① and ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ .

pulse
❍

shape with rolloff . The received signal was

sampled
✵

times
✱

per symbol interval and the predictors

were✲ updated once per symbol interval.

Figs. 6 and 7 compare the steady-state performance of the

LSEPR to the performance of the extended MLSE (EMLSE) in

[11]. Steady-state performance is achieved when the receiver

has
❸

processed sufficient channel samples such that the tap

weights
✲

of the predictors have converged to essentially their

final and optimal values. In these simulations, the predictors

were✲ trained for the first 10 000 symbols to ensure that steady-

state
✵

conditions are attained. The bold curves in the figures

represent the analytical BER performance of the optimum

EMLSE receiver using ideal channel state information.

At
❀

dB,
✺

the LSEPR is about 1–3 dB worse

in
✶

performance than the optimum EMLSE. The difference

of
✻

the performances between the optimum and suboptimum

receiver
✸

gradually increases from lower SNR to higher SNR.

At dB,
✺

the LSEPR is between 4–6 dB worse

in
✶

BER performance than the EMLSE. It is also seen that

(a)

(b)

Fig.
✭

7 (a) Steady-state BER performance curves of the LSEPR and EMLSE
for ❹ ❺ ❻ ❼ ❽ ❾ ❿ and ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ . (b) Steady-state BER performance curves
of the LSEPR and EMLSE for ➉ ➊ ➋ ➌ ➍ ➎ ➏ and ➐ ➑ ➒ ➓ ➔ → ➣ ↔ ↕ .

at
✳

a faster fade rate, the proposed receiver tends to perform

closer
✰

to optimum at lower SNR. This may be attributed to

the
✱

increased diversity due to faster fading. If the receiver

is
✶

capable of obtaining high-quality CSI, then an increase in

channel
✰

delay spread should improve its performance since the

implicit
✶

delay diversity of the channel also increases. Instead,

simulation
✵

results show that the performance of the LSEPR

has degraded slightly for a channel with a larger delay spread.

Furthermore,
❪

the difference between the BER curves for the

EMLSE
❉

and the proposed receiver is more significant with

increased delay spread. As seen in Figs. 6 and 7, the BER of

the
✱

LSEPR for the and
✳

case
✰

at

an
✳

SNR of 30 dB is about 2 10 and
✳

for the

and
✳

case
✰

is about 3 10 . The performance

penalty
❍

appears to have two causes. First, the increase in

channel
✰

delay spread is relatively small and, therefore, any

performance
❍

gain attributed to increased delay diversity may

be
✽

insignificant. Second, the performance of the receiver may
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➙

Fig. 8. The simulated average BER curves of the LSEPR for packet recep-
tion.

❲
Predictor length is 8.

Fig.
✭

9. The simulated average BER curves of the LSEPR for packet recep-
tion.

❲
Predictor length is 12.

be
✽

affected by the truncation error in the quadratic -power

series
✵

model. From [5], it is known that the truncation error

of
✻

the power series model increases with increasing channel

delay
✺

spread. Therefore, the slight decrease in the performance

of
✻

the receiver may be due to an increase in modeling error.

By
➛

using the RLS algorithm, the tap
✱

weights of the

predictors
❍

require at least iterations before convergence

[9]. This implies that a training sequence of symbols
✵

is

required
✸

prior to data transmission to train the predictors. For

systems
✵

employing a time-division multiple-access (TDMA)

format, the initial or startup condition is especially important

because
✽

data is transmitted in relatively small packets with an

interval
✶

between packets. The predictors are then required to

be
✽

retrained for the reception of every packet.

Figs. 8 and 9 show the simulated average BER curves for

the
✱

startup performances of the LSEPR for different fade rates

and
✳

predictor orders. The training sequence was limited to

symbols.
✵

Transmission is broken up into packets of 1000

data
✺

symbols per packet. After the initial symbol
✵

training

period,
❍

the first packet of 1000 symbols is received. The BER

is
✶

then calculated for the reception of that particular packet.

The predictors are then reinitialized and prepared for training

and
✳

reception of the following packet. After all packets have

been
✽

sent, all of the BER’s calculated are averaged over the

total
✱

number of packets received.

The average BER curves of the startup performances of the

LSEPR
❆

do not exhibit premature error floors for the range of

SNR’s
❈

simulated. The startup performance is between 5–10

dB
✺

worse than the steady-state performance. The degradation

in the performance of the receiver during startup may be

attributed
✳

to the occurrences of deep fades which yield low

instantaneous
✶

SNR. Therefore, the channel observations during

the
✱

training interval can be very noisy and the predictors

may not converge completely. We were motivated to shorten

the
✱

predictor lengths to attain a shorter training period. The

simulations
✵

showed that there is no significant difference in the

results between using predictors of order and
✳

.

For low SNR, the results shown in Figs. 7–9 are comparable

to
✱

the BER results for a zeroth-order or one-term receiver

using➜ ideal CSI in [5]. For example, at an SNR of 15 dB and

channel
✰

delay of ,✴ the proposed receiver has BER between

10 and
✳

3 10 ,✴ which is approximately the same as the

zeroth-order➝ receiver in [5]. However, the latter will exhibit an

error
❂

floor of about 10 . As shown in [5], the error floor is

reduced but not eliminated if a first-order receiver is employed.

Although
❀

the performance of a zeroth-order receiver may be

acceptable
✳

for applications which require a BER of about 10

[12], it may not be acceptable for applications, such as video

and
✳

reliable data, which require lower BER.

The
❁

proposed scheme may be extended to channels with

delay
✺

spreads greater than by
✽

using three or more terms in

the
✱

power series. However, the complexity of the power series

model
❃

will approach that of the conventional tapped delay line

model with an increasing number of terms. This will lead to

larger frequency-selective matrices which will be numerically

unstable.
➜

Therefore, increasing the number of terms in the

power
❍

series much beyond three may not be appropriate.

V.
➞

CONCLUSION

In this paper, we have proposed a novel receiver struc-

ture
✱

for a time- and frequency-selective fading channel. The

receiver is a sequence estimator implemented using the VA

with✲ a data-aided channel estimator to provide channel state

information for Viterbi decoding. The proposed receiver has

been
✽

based on the use of Bello’s -power series channel

model
❃

truncated to three terms [1]. This model describes the

dispersive
✺

fading channel as a sum of flat-fading channels.

Hence, we have extended the ideas for channel estimation and

observation
✻

used by predictor receivers for flat-fading channels

to
✱

time- and frequency-selective channels.

The
❁

receiver known as the LSEPR uses a least squares

estimation
❂

algorithm to observe the fading for each elementary

channel
✰

along each survivor. These least squares estimates

are
✳

then used to obtain one-step predictions of the TSC’s for

the
✱

next VA iteration. The predictors use the standard RLS

fast-convergence algorithm to update their tap weights. The
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performance
❍

of the least squares estimation algorithm may

be
✽

degraded by the poor conditioning of the least squares

estimator
❂

matrix, but this problem is solved by dithering the

matrix
❃

to improve its conditioning.

The
❁

simulated performance of the new receiver using QPSK

shows
✵

that it can cope with channels having delay spread up

to
✱

and
✳

fade rates up to at least .

Some
❈

performance penalty is incurred during startup. The

performance
❍

of the proposed receiver may be comparable to

simpler
✵

receivers at low SNR. However, unlike the latter, the

BER
➛

curves of the new receiver do not floor at higher SNR.

Therefore, it is suitable for applications requiring lower BER.

Although the proposed receiver is suboptimum, its imple-

mentation
❃

is relatively simple compared to other receivers

for
✯

the same channel [3], [13], [14]. Complexity reduction

is also achieved by the fact that the LSEPR is only required

to
✱

estimate three unknown quantities ,✴ ,✴ and

per
❍

survivor unlike other receivers where the entire composite

channel
✰

impulse response is estimated. A further advantage

of
✻

the LSEPR is that it is adaptive, requiring only a short

training
✱

sequence, and it does not need the second-order

channel
✰

statistics a➟ priori.
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