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Abstract—An adaptive receiver is presented in this paper for
the reception of linearly modulated signals transmitted over a
time- and frequency-selective fading channel. The channel is
modeled as a truncated power series [1] which represents the
dispersive fading channel as a sum of three elementary flat-
fading channels. The proposed receiver consists of a sequence
estimator with a parallel channel estimator. The channel es-
timator recovers the instantaneous fading processes associated
with each elementary channel and filters them to generate one-
step predictions of each fading process. Some implementation
difficulties and solutions are also discussed. Computer simulations
using quadrature phase-shift keying (QPSK) and channels with
moderate delay spreads and fade rates have been used to evaluate
the performance of the receiver. The results show that our tech-
nique has potential in channels with delay spread of about 20%,
signal-to-noise ratio (SNR) greater than 15 dB, and applications
requiring bit-error rates (BER’s) less than 1072,

Index Terms—Adaptive receiver, selective fading channel.

1. INTRODUCTION

ODGE AND MOHER in [2] have suggested a Kalman

filtering approach to a maximum-likelihood sequence
estimation (MLSE) receiver for a general Rayleigh fading
channel. This receiver structure has been implemented by Dai
and Shwedyk [3] assuming that the second-order statistics of
the channel are available in defining the state model of the
channel impulse response (CIR).

Although the Kalman filtering approach to MLSE leads to
an elegant optimum receiver, there are practical difficulties
associated with it. First, its complexity grows exponentially
with sequence length since one Kalman filter is required for
every hypothesized sequence. Next, the complexity of the
Kalman filter increases with the length of the CIR. Finally,
the statistics of the channel must be explicitly known in order
to specify the underlying state equation describing the time-
variant CIR. It has also been noted in [2] that the Kalman
filter generates redundant information, since the conditional
means and variances of the internal states, which are not
required by the MLSE, are also presented at the filter output.
However, for the special case of a flat-fading channel and a
constant envelope signaling format, this approach reduces to
a structure commonly known as the predictor receiver which
can be implemented with the Viterbi algorithm (VA) and a
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bank of linear predictors. Further complexity reduction may
be achieved using per-survivor processing (PSP) to reduce the
number of filtering operations [4].

In this paper, a reduced complexity sequence estimation
receiver is presented for the general Rayleigh fading (time- and
frequency-selective) channel. There are three major advantages
of this receiver over the Kalman filtering approach. First, like
the flat-fading case, the prediction algorithm is simplified by
using linear prediction filters instead of Kalman filters. Second,
the channel is modeled as a truncated f-power series [1], [5].
As a consequence, the number of channel parameters to be
estimated is not equal to the length of the CIR but to the
number of terms in the truncated series. Third, the predictors
use the recursive least squares (RLS) algorithm to adapt to the
channel environment. Hence, the receiver can perform without
any prior statistical knowledge of the channel.

In the present work, we have truncated the series to the first
three terms and the resultant is referred to as the quadratic f-
power series. The quadratic series model describes the time-
and frequency-selective channel as a sum of three elementary
flat-fading channels. Therefore, we are able to directly extend
the ideas of predictor receivers for the flat-fading channel to
the dispersive fading channel. For flat-fading channels, the
channel fading parameter is recovered by dividing the received
signal by the transmitted signal. Similarly, the multiplicative
fading of each elementary channel is decoupled from the
received signal by a matrix—vector equivalent of this division
operation. A prediction filter is then used for each of the
elementary channels.

The organization of this paper is as follows. Section II
describes the channel and signal models which are used.
In Section III, the development of the proposed receiver
structure from the predictor receiver for a flat-fading channel is
described. The performance of the new receiver is evaluated by
computer simulations and the results are presented in Section
IV. Finally, conclusions are provided in Section V.

II. CHANNEL AND SIGNAL MODEL

Fig. 1 shows the complex baseband model of the commu-
nication system. The transmitter consists of a symbol source
generating a sequence {a;} of uncorrelated data symbols and
a bandlimited transmit filter with impulse response g(¢). The
1th symbol is denoted by «a; and the symbol period is denoted
by 7. The symbols are filtered by the transmit filter to yield
the transmitted signal

s(t) = Z aig(t — iT). (1)
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Fig. 1. Block diagram of the communication system.

It is assumed that the impulse response is truncated to a
finite length such that g(¢) = 0 for |¢| > L.T. The fading
channel introduces random phase and amplitude fluctuations
to the transmitted signal. In the case of a flat-fading channel,
the signal s(t) will simply be distorted by multiplicative
fading c(t). For a dispersive fading channel with impulse
response ¢(t,7) and corresponding time-variant transfer func-
tion C(¢, f), the channel may be modeled as a time-variant
filter with tap weights which are zero-mean complex Gaussian
random variables [6]. At the front end of the receiver, the faded
signal r(t) is further corrupted by zero-mean additive white
Gaussian noise (AWGN) with power spectral density N,. The
receive filter w(¢) is assumed to be an ideal zonal filter with
a bandwidth wide enough to accommodate the entire Doppler
widened spectrum of the faded signal, but which limits the
noise at higher frequencies. The sampled received signal
is then processed by the receiver to recover the transmitted
data symbols.

A. The Quadratic f-Power Series Channel Model

Letting the mean delay of the channel be zero, the Taylor’s
series expansion about f = 0 of the complex baseband channel
transfer function is [1], [5] given by

oo

ot = —Cm @

m=0
where
_ dmC(t, f)

C(m) (t) dfm

‘ . 3)
f=0

The channel transfer function may therefore be approximated
by a truncated f-power series with time-varying coefficients
C™)(t). To further simplify the expression in (2), we define
the time-selective coefficient (TSC) as

1

0= iy

cm(2). @)
Using (4), the expression in (2) is rewritten as
C(t, f) = Y Tm®)(G2r )™ (5)
m=0

The time-variant transfer function is now described as a sum
in the variable (j27f)™ with each term weighted by T,,,(%).
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Fig. 2. The quadratic f-power series channel model. The dispersive fading
channel is made up of the linear combination of three elementary chan-
nels. The elementary channels correspond to the transmitted signal, its first
derivative, and its second derivative.

A filter with transfer function of (j27f)™ is an mth order
differentiator. Therefore, the output signal from the channel is

S d"[s(®)]
() = T (t) ———. 6
r(t) m; B ©)
The series is truncated to the first three terms. This is known as
the quadratic f-power series model. Accordingly, the filtered
received signal is

y(t) = To()s(t) + Tu(t)s' () + Ta(t)s" (1) +n(E).  (7)

The signal terms s'(¢) and s/(t) are the first and second
derivatives of the transmitted signal s(¢), respectively. For
easy reference, the three signal terms are collectively known as
the frequency-selective variables (FSV’s). The FSV’s are data-
dependent and account for the intersymbol interference present
in the received signal. The filtered noise term is represented
by n(t).

The received signal is sampled at the times ¢ = k7 and
is written as

yp = To(k)sk + T1(k)sy, + To(k)sy + ny 3)

where the sampling period 75 = T/r and r is the number
of samples per symbol interval. Therefore, within the nth
signaling interval, k = nr + j,5 =0,1,---, (r—1). To ensure
that the filtered and sampled noise ns remains uncorrelated, the
receive filter is assumed to have an ideal frequency response
rect({Ty).

Expanding (8) and substituting for the FSV, the sampled
received signal becomes

n+L. n+L.
yr = To(k) Z a;gp—ir + T1(k) Z @iGh—ir
t=n—L. t=n—L.
n+L.
+ To(k) Z @i iy + Nk )
t=n—L.

The observed signal model of the quadratic f-power series
model is shown in Fig. 2. It may be viewed as a sum of
three purely time-selective fading channel outputs and additive
noise. Each of the three terms in (9) corresponds to an ideal
elementary flat-fading channel.



III. THE LEAST SQUARES ESTIMATES PREDICTOR RECEIVER

It was shown in the previous section that the quadratic f-
power series is made up of three flat-fading channels. The
proposed receiver is developed by extending the predictor
receiver for the flat-fading channel model to the model shown
in (8). To clearly describe the receiver, the predictor receiver
for the flat-fading channel is briefly discussed. An analogy is
then drawn between the two channel models, and ideas from
the flat-fading channel receiver are applied to the design of
the receiver for the dispersive fading channel.

A. Channel Estimator for the Flat-Fading Channel

It is well known that the kth sample of the received signal
over a frequency flat-fading channel [2] is given by
yrp = c(k)s(k) + ng (10)
where c(k) represents the sampled multiplicative fading vari-
able, s(k) is the sampled transmitted signal, and nj is the
low-pass filtered AWGN. An optimum receiver is an MLSE
with a bank of linear predictors [2], [7], [8]. Each hypothesized
sequence requires a predictor to obtain estimates of the channel
state information (CSI). The tap weights of the linear pre-
dictors may be precomputed if the channel autocorrelation is
known or repeatedly updated using an adaptive algorithm such
as the least mean squares or RLS algorithms [9]. Implemen-
tation of this receiver with complexity reduction is achieved
by using the VA and PSP [4].

Assuming that each predictor in the bank is of order
L, the prediction of the channel sample c¢(k + 1) requires
the estimates of the preceding channel samples c(k),c(k —
1), --,c(k— L+1) [9]. To obtain the instantaneous estimate
&(k) of the channel sample for a given transmitted sequence
at the kth step, the received sample is divided by the hypoth-
esized transmitted signal 3(k) associated with the most recent
element of that survivor, which is

&(k) =

Yk
—. 11
5(k) (n
The received sample y;, is a noisy version of the faded signal
sample and, therefore, the estimate of the fading process ¢(k)
is also noisy.

B. Channel Estimator for the Time-Dispersive Fading Channel

Analogous to the predictor receiver for the flat-fading chan-
nel, the proposed channel estimator for the dispersive fading
channel also employs linear predictors. Unlike the receiver
for the flat-fading case, three predictors are used for a given
transmitted signal, one for each of the TSC’s Ty(k), T1(k),
and Ty(k).

Like the flat-fading receiver described in Section III-A, the
proposed receiver estimates the noisy version of the fading
processes 1p(k), T1(k), and Ty(k) which are then used to
predict the TSC’s for the next metric evaluation. However, the
simple division operation of (11) cannot be applied here. The
received signal model consists of a sum of three elementary
channel outputs and, hence, the TSC’s are coupled.

We assume that the fading is slow enough that To(k), 71 (k),
and T5(k) are essentially constant over a symbol interval but
may vary from symbol to symbol. The receiver takes 7 samples
of the channel output %(¢) over each symbol interval. Letting
r = 3, the received samples over one symbol period are written
as

Yrt1 = To(k)ska1 + Ta(k)spqq + To(k)skoy + i
Ytz = To(k)spy2 + T1(k)s)yo + To(k)siyo + nk+2-(12)

These equations in (8) can be rewritten in matrix—vector form
as

Yk = STy +nk (13)
where
Yk
Yk = |Uk+1 (14)
Yk+2
is the received sample vector
Sk = [Sk+1 Spq1 it (15)
Sk+2  Skyz  Skiz
is the data dependent frequency-selective matrix
[To(k)
Ti = |Ti(k) (16)
| T (k)
is the unknown time-selective coefficient vector and
o
ng = (Ng+1 (17)
| "V k+2

is the noise vector. The elements of the frequency-selective
matrix Sy consist of samples from outputs of each of the three
elementary channels without any fading.

The frequency-selective matrix Sy is conditionally known
for any given transmitted data sequence. The objective is
to recover the time-selective vector Ty from the channel
observation vector yk. If the noise vector ny is ignored,
the matrix—vector equation in (13) reduces to a set of three
simultaneous linear equations in the three unknown quantities
To(k), T1(k), and T»(k). The simplest and most intuitive
approach to recovering T is by solving (13) since yx and
Sk are known. However, we have yet to consider the effects
of noise. In the presence of additive noise, the solution to the
set of equation in (13) becomes

-1

To(k) sk Sk Sk Yr
Ti(k) | = [Sk41 Spy1 Shan Y41
15(k) Sk+2  Skya  Siia Yk+2
! 1 -1
+ [Sk41 Sk Shaa net1 | (18)
Sk+2  Sky2  Siyo it
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and may be rewritten as

Ty(k) To(k) 7o,
Tk | = |Tik) | + [ (19)
T5(k) T5(k) Mo k

where [Ty(k), Ty(k), T2 (k)]7 is the noisy estimate of the time-
selective fade vector Tx. The first term of the right-hand
side of (19) is the original time-selective fade vector and
the second term is an augmented noise vector. The original
noise vector nk has been transformed by the inverse of matrix
Sk to yield the augmented. In general, the Jacobian of the
linear transformation by S, L is not unity and this may cause
considerable noise enhancement.

The noise enhancement may be minimized by using an
overdetermined system. This is achieved by taking more than
three samples per symbol. For example, assuming r = 4
samples per symbol, the received samples are written as

Yk+1 Sk+1 32+1 3%+1 To(k) NE41
Yk+2 Sk42 32+2 3%+2 Tl(k) NE42
Yk+3 Sk+3  Ski3  Sh4s 2 Ng+3

From (20), it is seen that the solution for the estimates
[To(k), T1(k), To(k)]T becomes that of a standard least
squares problem [9], [10]. For a given transmitted sequence,
the object of the channel estimator is to obtain the linear least
squares estimate (LLSE) of Ty from the observed vector yi
and the conditionally known frequency-selective matrix Sk.
Following [9] and [10], the LLSE of the time-selective fade
vector is obtained as

TES = (sifs) " sf v @1)
where the superscript H denotes Hermitian transposition. If the
slow fading assumption holds, then the least squares estimates
’i‘ﬁs is an unbiased estimate of the vector Ty. According
to [9], if the noise samples in (20) are uncorrelated, ’i‘ﬁs is
also the best linear unbiased estimator of T} and it achieves
the Cramér—Rao lower bound for unbiased estimates. The
elements of the vector ’i‘ﬁs are then used as inputs to the
predictors in order to obtain future estimates of the TSC’s.
Note that (21) is the matrix—vector equivalent of the division
operation seen in (11) for the flat-fading channel.

C. The Receiver for the Dispersive Fading Channel

The proposed receiver is a sequence estimator implemented
by the VA with a parallel channel estimator and is shown in
Fig. 3. We define the trellis state as
(22)

A, = [an-I-Lc—lv A an—Lc]'

The branch metric associated with the state transition A,, —
An-l—l is
At (An = Angr) = [y — k(A = Ang)]?. (23)

The term (A, — Ap41) is the hypothesized received
sample associated with the state transition A,, — A, 1 and

Ye

received

delay |q samples

T=rT, {

Y
e v

A 4

Channel T,(k), T,(k), T(k)

# evaluation

metric

Estimator channel estimates
A
{a.}
survivor Viterbi

sequence Algorithm
detected
symbols

Fig. 3. The proposed receiver structure for the time- and frequency-selective

channel.

is defined as

gk(An - An-l'l) = To(/{}, An)sk(An - An-l—l)
+ D1k, An)sh (D — Apyr)
+ ok, AR)SE(D, = Apy1). (24)

The terms sp(Ap — Apt1), $5,(An — Apyq) and s7 (A, —
A, 41) are the hypothesized transmitted kth sample and its
first and second derivatives associated with the transition
An = Apgr. To(k,A), Ty(k, Ay), and To(k, A,,) are the
predictions of the TSC’s from the channel estimator.

Past least squares estimates of the TSC’s are used by
the channel estimator to predict To(k,An), Tl(k,An), and
Ty(k,Ay). At the (n— 1)th symbol interval, the received vec-
tor yx—, defined in (20) is processed by a least squares estima-
tor as in (21) to obtain the estimate TLS _for each trellis state.
Estimates prior to the nth period ’i‘ﬁ%r, ’i‘{;ﬁg,,,, cee ’i‘ﬁﬁ Lr
are also obtained in a similar manner. The three elements of
these estimated vectors are used as inputs to three linear one-
step predictors to obtain To(k, Ay ), T1(k, Ay ), and To(k, Ay,).

The receiver uses linear predictors and least squares estima-
tors, and therefore, it is appropriately called the least squares
estimates predictor receiver (LSEPR). Although it takes 7 = 4
samples of the received signal per symbol interval, the VA and
the predictors are updated only once per symbol interval. The
computation can be sped up by precomputing the estimator
matrices (SfSy)71S{ for all possible data sequences ay
of length 2L. + 1 and storing them in a lookup table. The
proposed channel estimator is shown in Fig. 4.

IV. SIMULATION RESULTS

The LSEPR has been developed for the purpose of com-
plexity reduction. It is suboptimum and it is difficult to
mathematically analyze its performance. Its performance is
evaluated using computer simulations.

The computer simulations were performed using a quadra-
ture phase-shift keying (QPSK) modulation format. The im-
pulse response of the transmit filter was truncated to three
symbol intervals. The multipath fading channel was assumed
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Fig. 4. The channel estimator of the proposed receiver.

to be a two-ray channel with wide sense stationary uncorre-
lated scattering (WSSUS) statistics. For simplicity, a channel
with a uniform delay power profile was used. It has been
shown in [5] that for small delay spread, the performance
of the communication system is not dependent on the delay
power profile. To eliminate phase ambiguity, a pilot symbol
is inserted every nn = 10 symbols in the transmitted data
symbol stream. This avoids the need for differential encoding
and decoding. The receiver consists of a 16—state VA with
a decision delay of DD = 30 symbols. To ensure rapid
convergence of the tap weights of the predictors, the RLS
algorithm with a forget factor of 0.9999 was used for the
adaptation of the predictor tap weights [9]. The signal-to-noise
ratio (SNR) is defined as Ej, /N, where Ej is the energy per bit.

The initial results of the simulations were poor. It was
observed that the conditioning number Nyo,q Of the estimator
matrix (S£Sk)~1S{ in (21) significantly affects the noise en-
hancement in the least squares estimate ’i‘ﬁs and the receiver
performance can be severely degraded. If Ngoyq is large, then
’i‘ﬁs will deviate greatly from the actual vector Ty. Fig. 5(a)
and (b) shows the mean square estimation errors between the
least squares estimates and the actual value of Ty(k). Two
different sets of Sy over all possible symbol sequences were
generated by taking samples at two different sets of uniformly
spaced sampling points (r = 4). The maximum Nonq = 36
for the simulation in Fig. 5(a) and the mean square error is
about 10~* most of the time. The maximum Negpq = 4772
was found for the simulation in Fig. 5(b) and the mean square
error is about 10~2 most of the time. Both simulations were at
an SNR of 40 dB. In the second case, the receiver performance
is severely degraded.

The reduction of N.,,q can be achieved by careful selection
of the sampling points or the transmit pulse shape g(t). It
is noted that square root raised-cosine pulses generally yield
a smaller N onq than estimator matrices generated from full
raised-cosine pulses [6] with equivalent rolloff factor cv.

Although the careful selection of the sampling points may
reduce the large conditioning number of the estimator matrix,
it is a restrictive solution. A better solution lies in the ma-
nipulation of the last column of Sy. Recall from (20) that
the last column of Sy consists of [s7, -+, s}, 4]*, the second
derivative terms of the channel model. Assuming a two-ray
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Fig. 5. (a) Least squares estimation error of the time-selective coefficient
To(k) with condition number of 36. (b) Least squares estimation error of the
time-selective coefficient Tp (k) with condition number of 4772.

channel with a uniform delay power profile and a maximum
delay spread of 7,4 = 0.27, the normalized average power
of T»(k) is calculated from its autocorrelation function [5]
and is found to be about 2.5 x 107?. Since the normalized
average power of T5(k) is small, changing s}, marginally will
not affect the least squares estimation in (21) significantly.
For the simulations, about —50 dB of noise with respect to bit
energy is added to each element of s, - -, s, 5]* to improve
the conditioning of the estimator matrix. This is generally
known as “dithering” and it leads to significant performance
improvement as it significantly reduces Ngopnq to the range of
10 and 300 and, thereby, the estimation error.

Figs. 6-9 show the bit-error rate (BER) curves for the
LSEPR using different fade time-bandwidth products or (nor-
malized) BT and maximum delay spreads 7,,,,. B is the two-
sided bandwidth of the channel fading process. All simulations
were performed using a square root raised-cosine transmit
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for BT = 0.01 and Tmax = 0.1257". (b) Steady-state BER performance
curves of the LSEPR and EMLSE for BT = 0.03 and Tmax = 0.1257.

pulse shape with rolloff o« = 0.5. The received signal was
sampled » = 4 times per symbol interval and the predictors
were updated once per symbol interval.

Figs. 6 and 7 compare the steady-state performance of the
LSEPR to the performance of the extended MLSE (EMLSE) in
[11]. Steady-state performance is achieved when the receiver
has processed sufficient channel samples such that the tap
weights of the predictors have converged to essentially their
final and optimal values. In these simulations, the predictors
were trained for the first 10 000 symbols to ensure that steady-
state conditions are attained. The bold curves in the figures
represent the analytical BER performance of the optimum
EMLSE receiver using ideal channel state information.

At E, /N, = 10 dB, the LSEPR is about 1-3 dB worse
in performance than the optimum EMLSE. The difference
of the performances between the optimum and suboptimum
receiver gradually increases from lower SNR to higher SNR.
At E, /N, = 30 dB, the LSEPR is between 4-6 dB worse
in BER performance than the EMLSE. It is also seen that
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Fig. 7 (a) Steady-state BER performance curves of the LSEPR and EMLSE
for BT = 0.01 and Tmax = 0.27". (b) Steady-state BER performance curves
of the LSEPR and EMLSE for BT = 0.03 and Tiax = 0.27.

at a faster fade rate, the proposed receiver tends to perform
closer to optimum at lower SNR. This may be attributed to
the increased diversity due to faster fading. If the receiver
is capable of obtaining high-quality CSI, then an increase in
channel delay spread should improve its performance since the
implicit delay diversity of the channel also increases. Instead,
simulation results show that the performance of the LSEPR
has degraded slightly for a channel with a larger delay spread.
Furthermore, the difference between the BER curves for the
EMLSE and the proposed receiver is more significant with
increased delay spread. As seen in Figs. 6 and 7, the BER of
the LSEPR for the BT = 0.01 and 7,,,x = 0.1257 case at
an SNR of 30 dB is about 2 x 10~* and for the BT = 0.01
and 7. = 0.207 case is about 3 x 10~%. The performance
penalty appears to have two causes. First, the increase in
channel delay spread is relatively small and, therefore, any
performance gain attributed to increased delay diversity may
be insignificant. Second, the performance of the receiver may



~

average BER

10 5 10 15 20 25 30 35 40
E/N, (dB)
Fig. 8. The simulated average BER curves of the LSEPR for packet recep-

tion. Predictor length is 8.

J—
<Q
c

average BER

L L L L L

10 g ‘10 15 20 25 35
E,/N, (dB)

40

Fig. 9. The simulated average BER curves of the LSEPR for packet recep-
tion. Predictor length is 12.

be affected by the truncation error in the quadratic f-power
series model. From [5], it is known that the truncation error
of the power series model increases with increasing channel
delay spread. Therefore, the slight decrease in the performance
of the receiver may be due to an increase in modeling error.

By using the RLS algorithm, the L tap weights of the
predictors require at least 2L iterations before convergence
[9]. This implies that a training sequence of 2L symbols is
required prior to data transmission to train the predictors. For
systems employing a time-division multiple-access (TDMA)
format, the initial or startup condition is especially important
because data is transmitted in relatively small packets with an
interval between packets. The predictors are then required to
be retrained for the reception of every packet.

Figs. 8 and 9 show the simulated average BER curves for
the startup performances of the LSEPR for different fade rates
and predictor orders. The training sequence was limited to
2L symbols. Transmission is broken up into packets of 1000
data symbols per packet. After the initial 2L symbol training

period, the first packet of 1000 symbols is received. The BER
is then calculated for the reception of that particular packet.
The predictors are then reinitialized and prepared for training
and reception of the following packet. After all packets have
been sent, all of the BER’s calculated are averaged over the
total number of packets received.

The average BER curves of the startup performances of the
LSEPR do not exhibit premature error floors for the range of
SNR’s simulated. The startup performance is between 5-10
dB worse than the steady-state performance. The degradation
in the performance of the receiver during startup may be
attributed to the occurrences of deep fades which yield low
instantaneous SNR. Therefore, the channel observations during
the training interval can be very noisy and the predictors
may not converge completely. We were motivated to shorten
the predictor lengths to attain a shorter training period. The
simulations showed that there is no significant difference in the
results between using predictors of order L = 8 and L = 12.

For low SNR, the results shown in Figs. 7-9 are comparable
to the BER results for a zeroth-order or one-term receiver
using ideal CSI in [5]. For example, at an SNR of 15 dB and
channel delay of 0.27’, the proposed receiver has BER between
10~2 and 3 x 102, which is approximately the same as the
zeroth-order receiver in [5]. However, the latter will exhibit an
error floor of about 1072. As shown in [5], the error floor is
reduced but not eliminated if a first-order receiver is employed.
Although the performance of a zeroth-order receiver may be
acceptable for applications which require a BER of about 102
[12], it may not be acceptable for applications, such as video
and reliable data, which require lower BER.

The proposed scheme may be extended to channels with
delay spreads greater than 0.27 by using three or more terms in
the power series. However, the complexity of the power series
model will approach that of the conventional tapped delay line
model with an increasing number of terms. This will lead to
larger frequency-selective matrices which will be numerically
unstable. Therefore, increasing the number of terms in the
power series much beyond three may not be appropriate.

V. CONCLUSION

In this paper, we have proposed a novel receiver struc-
ture for a time- and frequency-selective fading channel. The
receiver is a sequence estimator implemented using the VA
with a data-aided channel estimator to provide channel state
information for Viterbi decoding. The proposed receiver has
been based on the use of Bello’s f-power series channel
model truncated to three terms [1]. This model describes the
dispersive fading channel as a sum of flat-fading channels.
Hence, we have extended the ideas for channel estimation and
observation used by predictor receivers for flat-fading channels
to time- and frequency-selective channels.

The receiver known as the LSEPR uses a least squares
estimation algorithm to observe the fading for each elementary
channel along each survivor. These least squares estimates
are then used to obtain one-step predictions of the TSC’s for
the next VA iteration. The predictors use the standard RLS
fast-convergence algorithm to update their tap weights. The
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performance of the least squares estimation algorithm may
be degraded by the poor conditioning of the least squares
estimator matrix, but this problem is solved by dithering the
matrix to improve its conditioning.

The simulated performance of the new receiver using QPSK
shows that it can cope with channels having delay spread up
to Tmax = 0.27 and fade rates up to at least BT = 0.037.
Some performance penalty is incurred during startup. The
performance of the proposed receiver may be comparable to
simpler receivers at low SNR. However, unlike the latter, the
BER curves of the new receiver do not floor at higher SNR.
Therefore, it is suitable for applications requiring lower BER.

Although the proposed receiver is suboptimum, its imple-
mentation is relatively simple compared to other receivers
for the same channel [3], [13], [14]. Complexity reduction
is also achieved by the fact that the LSEPR is only required
to estimate three unknown quantities Ty(k), 71(k), and Ta(k)
per survivor unlike other receivers where the entire composite
channel impulse response is estimated. A further advantage
of the LSEPR is that it is adaptive, requiring only a short
training sequence, and it does not need the second-order
channel statistics a priori.
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