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Abstract. Recommendation systems are widely adopted in e-commerce businesses for helping customers locate
products they would like to purchase. In an earlier work, we introduced a recommendation system, termed Yoda,
which employs a hybrid approach that combines collaborative filtering (CF) and content-based querying to achieve
higher accuracy for large-scale Web-based applications. To reduce the complexity of the hybrid approach, Yoda
is structured as a tunable model that is trained off-line and employed for real-time recommendation on-line. The
on-line process benefits from an optimized aggregation function with low complexity that allows the real-time
aggregation based on confidence values of an active user to pre-defined sets of recommendations. In this paper,
we extend Yoda to include more recommendation sets. The recommendation sets can be obtained from different
sources, such as human experts, web navigation patterns, and clusters of user evaluations. Moreover, the extended
Yoda can learn the confidence values automatically by utilizing implicit users’ relevance feedback through web
navigations using genetic algorithms (GA). Our end-to-end experiments show while Yoda’s complexity is low and
remains constant as the number of users and/or items grow, its accuracy surpasses that of the basic nearest-neighbor
method by a wide margin (in most cases more than 100%). The experimental results also indicate that the retrieval
accuracy is significantly increased by using the GA-based learning mechanism.
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1. Introduction

As the amount of available products in e-commerce businesses is burgeoning, searching for
desired products among enormous offerings is becoming increasingly difficult. As a result,
e-commerce users frequently suffer from information overload. To alleviate this problem,
recommendation systems are being widely adopted to help customers locate products they
would like to purchase. In essence, these systems apply data analysis techniques to provide
a list of recommended products for each online customer. The most famous example in
e-commerce businesses is the “Customers who bought” feature used in Amazon.comTM,
which is basically applied to every product page on its websites. With the help of this
feature, Amazon.comTM’s system recommends similar products to the current buyer based
on the purchase histories of previous customers who bought the same product.
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In an earlier work [24], we introduced a hybrid recommendation system—Yoda, which
simultaneously utilizes the advantages of clustering, content analysis, and collaborate fil-
tering (CF) approaches. Basically, Yoda is a two-step approach recommendation system.
During the offline process, Yoda maintains numerous recommendation lists obtained from
typical navigation patterns analyzed by clustering and content analysis techniques. During
the online process, the confidence value of an active user to each navigation-pattern cluster
is estimated using the PPED distance measure [25] by comparing the user’s navigation
pattern with centroid of each cluster. Finally, Yoda generates customized recommendations
for the user by aggregating across recommendation lists (one list for each cluster) using the
confidence values as the weights.

To expedite the aggregation step, we proposed an optimized fuzzy aggregation function
that reduces the time complexity of aggregation from O(N × E) to O(N ), where N is
the number of recommended items and E is the number of clusters. Besides the advantage
of efficiency, our aggregation function (similar to FALCON [31]) can manage disjunctive
queries while the traditional weighted average method cannot. For example, assume that
the system knows all the information about users and user U is interested in the items
recommended by expert A or B. The traditional weighted average method can only generate
the list of items recommended by both expert A and B while our aggregation method can
retrieve the expected list.

In sum, the time complexity is reduced through a model-based technique, a clustering
approach, and the optimized aggregation method. Additionally, due to the utilization of con-
tent analysis techniques, Yoda can detect the latent association between items and therefore
provides better recommendations. Moreover, Yoda is able to collect information about user
interests from implicit web navigation behaviors while most other recommendation systems
[3, 9, 20, 23, 28] do not have this ability and therefore require explicit rating information
from users. Consequently, Yoda puts less overhead on the users.

Since content analysis techniques only capture certain characteristics of products, some
desired products might not be included in the recommendation lists produced by analyzing
the content. For example, picking wines based on brands, years, and descriptors might not
be adequate if “smell” and “taste” are more important characteristics. In order to remedy
for this problem, we extend Yoda to incorporate more recommendation lists than just web
navigation patterns. These recommendation lists can be obtained from various experts, such
as human experts and clusters of user evaluations.

Meanwhile, because PPED is specially designed for measuring the similarity between
two web navigation patterns including related data such as browsed items, view time, and
sequences information, it can only be used for estimating confidence values to navigation-
pattern clusters. Therefore, a learning mechanism is needed for obtaining the complete
confidence values of an active user toward all experts. We propose a learning mechanism
that utilizes users’ relevance feedback to improve confidence values automatically using
genetic algorithms (GA) [7].

To the best of our knowledge, only a few studies [18, 29] incorporate GA for improving the
user profiles. In these studies, users are directly involved in the evolution processes. Because
users have to enter data for each product inquiry, they are often frustrated with this method.
On the contrary, in our design, users are not required to offer additional data to improve
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the confidence values. These confidence values are corrected by the GA-based learning
mechanisms using users’ future navigation behaviors. Our experimental results indicate a
significant increase in the accuracy of recommendation results due to the integration of the
proposed learning mechanism.

The remainder of this paper is organized as follows. Section 2 summarizes the related
work. In Section 3, we provide an overview on the functionality of Yoda. In Section 4,
we discuss the detailed design of Yoda . Section 5 depicts the learning mechanism of
Yoda. Section 6 describes the results of our evaluations as well as the details of the system
implementation and our benchmarking method. Section 7 concludes the paper.

2. Related work

Recommendation systems are designed either based on content-based filtering or collab-
orative filtering. Both types of systems have inherent strengths and weaknesses, where
content-based approaches directly exploit the product information, and the collaboration
filtering approaches utilize specific user rating information.

Content-based filtering approaches are derived from the concepts introduced by the In-
formation Retrieval (IR) community. Content-based filtering systems are usually criticized
for two weaknesses:

1. Content limitation: IR methods can only be applied to a few kinds of content, such as
text and image, and the extracted features can only capture certain aspects of the content.

2. Over-specialization: Content-based recommendation system provides recommendations
merely based on user profiles. Therefore, users have no chance of exploring new items
that are not similar to those items included in their profiles.

The collaborative filtering (CF) approach remedies for these two problems. Typically,
CF-based recommendation systems do not use the actual content of the items for recommen-
dation. Moreover, since other user profiles are also considered, user can explore new items.
The nearest-neighbor algorithm is the earliest CF-based technique used in recommendation
systems [20, 28]. With this algorithm, the similarity between users is evaluated based on
their ratings of products, and the recommendation is generated considering the items visited
by nearest neighbors of the user. In its original form, the nearest-neighbor algorithm uses
a two-dimensional user-item matrix to represent the user profiles. This original form of
CF-based recommendation systems suffers from three problems:

1. Scalability: The time complexity of executing the nearest-neighbor algorithm grows
linearly with the number of items and the number of users. Thus, the recommendation
system cannot support large-scale applications such as Amazon.comTM, which provides
more than 18 million unique items for over 20 million users.

2. Sparsity: Due to large number of items and user reluctance to rate the items, usually
the profile matrix is sparse. Therefore, the system cannot provide recommendations for
some users, and the generated recommendations are not accurate.
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3. Synonymy: Since contents of the items are completely ignored, latent association between
items is not considered for recommendations. Thus, as long as new items are not rated,
they are not recommended; hence, false negatives are introduced.

In order to solve these problems, a variety of different techniques have been proposed.
Some of techniques, such as dimensionality reduction [22, 23], clustering [16], and Bayesian
Network [3, 9], mainly are remedies for the scalability problem. These techniques extract
characteristics (patterns) from the original dataset in an offline process and employ only these
patterns to generate the recommendation lists in the online process. Although this approach
can reduce the online processing cost, it often reduces the accuracy of the recommending
results. Moreover, the online computation complexity keeps increasing with the number of
patterns.

Some other techniques, such as association rules [17, 23], content analysis [1, 2, 15],
categorization [6, 12], are emphasized on alleviating the sparsity and synonymy problems.
Basically, these techniques analyze the Web usage data (from Web server logs) to capture the
latent association between items. Subsequently, based on both item association information
and user ratings, the recommendation systems can thus generate better recommendation
to users. However, the online computation time concurrently increases, as more data are
incorporated into the recommendation progress. Additionally, because Web usage data from
the server side are not reliable [26], the item association generated from Web server logs
might be wrong.

With Yoda [24], we introduced a hybrid recommendation model, which consists of two
steps. During the offline process, Yoda generates cluster recommendation lists based on the
Web usage data from the client-side through clustering and content analysis techniques.
This approach not only can address the scalability problem by the preprocessing work,
but also can alleviate the sparsity and synonymy problems by discovering latent associa-
tion between items. Since the Web usage data from the client-side can capture real user
navigation behaviors, the item association discovered by the Yoda system would be more
accurate. Beside the cluster recommendation lists, Yoda also maintains numerous recom-
mendation lists obtained from different experts, such as human experts of the Website
domain, and the cluster representatives of the user ratings. By these additional recom-
mendation lists, Yoda is less impacted by the preprocessing work as compared to other
systems.

During the online process, for each user who is using the system, Yoda estimates his/her
confidence values to each expert, who provides the recommendation list, based on his/her
current navigation behaviors through the PPED distance measure [25] and our GA-based
learning mechanism. Subsequently, Yoda generates customized recommendations for the
user by aggregating across recommendation lists using the confidence value as the weight.
In order to expedite the aggregation step, Yoda employs an optimized fuzzy aggregation
function that reduces the time computation complexity of aggregation from O(N × E)
to O(N ), where N is the number of recommended items in the final recommendation list
to users and E is the number of recommendation lists maintained in the system. Conse-
quently, the online computation complexity of Yoda remains the same even if number of
recommendation lists increases.
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3. Overview

The primary objective of a web-based recommendation system can be stated as follows:

Problem 1. Suppose the item-set I = {i | i is an item presented in a web-site} and u is a
user interactively navigating the Web-site. The recommendation problem is to obtain the
u’s wish-list Iu ∈ I , which is a list of items that are ranked based on u’s interests.

In general, to acquire a wish-list for a user, a recommendation process goes through three
steps/phases:

1. Obtaining user perceptions: Data about user perceptions such as navigation behaviors
are collected. In some systems [9, 22], these data need further processing for inferring
information which is used in the later phases.

2. Ranking the items: The inferred user interests are utilized to provide the predicted user
wish-list.

3. Adjusting user settings: The system acquires relevance feedback (or follow-up navigation
behaviors) from the user and employs it to refine the user settings, which represent the
user perceptions. On occasion, this phase is integrated into phase one.

Figure 1 illustrates the processing flow of Yoda. Suppose that music CDs are the recom-
mending items in the Yoda web-site. The objective of Yoda is to provide each active user,
who is using the system, a satisfactory-and-customized recommendation list of CDs by

Figure 1. Processing flow of Yoda.
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analyzing his/her navigation behaviors. To accomplish this goal, Yoda performs a two-step
process. During the offline process, Yoda clusters the collected Web usage data from the
browser side and generates the corresponding cluster recommendation list (termed experts’
wish-lists) and the centroid for each navigation-pattern cluster. Moreover, Yoda also main-
tains other experts’ wish-lists obtained from different experts, such as human experts, and
the cluster representatives of user ratings.

Later, during the on-line recommendation process, the system first acquires the initial
confidence values by softly classifying1 the active user into navigation-pattern clusters. Note
that the confidence values between the user and other experts are not estimated at this step
because the estimation process is comparably time consuming. Subsequently, Yoda uses
these confidence values to generate the customized recommendation (termed user wish-
list) by weighted aggregation of the experts’ wish-lists. After the user receives the user
wish-list and continue to navigate the website, Yoda will correct the confidence values in a
background process by utilizing the follow-up user navigation behaviors and the GA-based
learning mechanism.

4. System design

In this section, we provide a detailed description of Yoda’s components. Since phase I is
based on our previous work [25], here we elaborate more on phase II and III of Yoda. The
phase III is described in Section 5.

4.1. Phase I—Obtaining user perception

Yoda uses the client-side tracking mechanism proposed in [27] to capture view-time, hit-
count, and sequence of visiting the web-pages (items) within a web-site. These features
reflect users’ interests on items. To analyze these features and infer the user interests, Yoda
employs the Feature Matrices (FM) model, which we introduced in [25]. FM is a set of hyper-
cube data structures that can represent various aggregated access features with any required
precision. With FM, the patterns of both a single user and a cluster of users are modeled.

Here, Yoda uses FM to model the navigation patterns of the active users individually, and
then the aggregated navigation pattern of each cluster is generated by clustering a collection
of user navigation behaviors. Yoda also applies a similarity measure, termed Projected Pure
Euclidean Distance (PPED) [25], to evaluate the similarity of a user navigation to a cluster
navigation pattern.

Thus, Yoda can quantify the confidence value of a user to each navigation-pattern cluster.
However, because PPED can only apply to the navigation pattern behaviors modeled by FM
model, Yoda cannot acquire the confidence values of a user’s interests to the recommendation
lists of other experts at this step.

4.2. Phase II—Ranking the items

Two types of work in Yoda involve ranking the items. The first type is generating the experts’
recommendations, which are lists of ranked items produced by either human experts, clusters
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of users, or clusters of navigation patterns. In our previous work [24], a content analysis
technique was proposed to abstract common interests from navigation patterns. With this
technique, the system can generate a list of ranked items for each navigation-pattern cluster.
However, for the sake of simplicity, we briefly describe this technique and only focus on
another type of ranking work—generating the user wish-list online. In order to properly
describe this method, we first formally define some necessary terms.

Definition 4.1. An item i is an instance of product, service, etc. that is presented in a
web-site. Items are described by their properties, which are abstract perceptual features,
and the corresponding degrees of the properties.

i = {(p, p̃i ) | p is a property ∈ P, p̃i is the degree of i to p} ∈ I (1)

For example, for a music CD as an item, “styles” of the music, “ratings”, and “popularity”
can be considered as properties of the item.

Since most of properties are perceptual and asking for precise values to rate these percep-
tual properties is inappropriate, we use limited fuzzy-sets ( f ∈ F) to evaluate proprieties.
By this design, we can also ease the difficulties of the content analysis in the later process.

Definition 4.2. A wish-list, Ix , for user/expert x is defined as:

Ix = {(i, vx (i)) | i is an item, vx (i) ∈ [0, 1]} (2)

where the preference value vx (i) measures the probability of item i be of interest to
user/expert x .

Definition 4.3. A cluster browse-list, Bk , for navigation-pattern cluster k is a list of items
visited by all users in this cluster.

Definition 4.4. A confidence value π for a user u to an expert e is formally defined as:
π : u, e ∈ E → bu,e, where E denotes a set of experts in the system and U represents the
set of users who have assigned reference confidence values to experts. Note that the value
of bu,e is represented as a fuzzy term for two reasons. First, using fuzzy terms to describe
forms of human judgment is more appropriate. Second, by the limited set of fuzzy terms,
the online computation process can be expedited.

4.2.1. Generating navigation-pattern cluster wish-lists. Yoda represents the aggregated
interests of the users in each cluster by a set of property values (PVs), termed favorite PVs
of the cluster. These favorite PVs indicate the emphasized degree of the properties by the
majority of users in this cluster. In order to extract these values from the navigation data in
this cluster, we design a voting procedure defined as:

Definition 4.5. The favorite PV, Fp(k), identifies likelihood of the cluster k being inter-
ested in property p of the items and is extracted from the cluster browse-list Bk through
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Eq. (4).

C p, f (k) = ‖{i | i ∈ Bk, p̃i = f }‖
(3)

Fp(k) = max
{

f | f ∈ F, C p, f (k) = max
∀ f ′∈F

{C p, f ′ (k)}}
Example 4.1. Suppose the browse-list of cluster K is {A, B, G, K, Y, Z}, and the values
of property “Rock” for the corresponding CDs are {(A, high), (B, high), (G, low), (K,
medium), (Y, high), (Z, high)}. Because “high” has the maximum vote, the favorite PV of
cluster K , FRock(K ), is “high”.

Based on these extracted favorite PVs of the cluster k, Yoda can evaluate vk(i), preference
value of an item i for cluster k, by quantifying the similarity between favorite PVs and
property values associated with item i . The aggregation function used to compute vk(i) is:

vk(i) = max{Fp(k) × p̃i } (4)

Example 4.2. Suppose the favorite PV of cluster K is (Rock, high), (Pop, high), (Vocal,
medium), (Soundtrack, medium), (Classic, low), and the item i is defined as {(Rock, low),
(Pop, low), (Vocal, low), (Soundtrack, high), (Classic, low)}. According to the equations
above, the preference value vK (i) = max {(high × low), (high × low), (medium × low),
(medium × high), (low × low)} = (medium × high) = 0.75.

4.2.2. Generating user wish-lists. During the on-line recommendation process, Yoda ag-
gregates the experts’ wish-lists to generate the predicted user wish-list for the active user
u. A fuzzy aggregation function is employed to measure and quantify the preference value
vu(i) of each item i for the user u based on the user profile of user u. We use an optimized
aggregation function with a triangular norm [4]. A triangular norm aggregation function g
satisfy the following properties:

Monotonicity: g(x, y) ≤ g(x ′, y′) if x ≤ x ′ and y ≤ y′

Commuatativity: g(x, y) = g(y, x)

Associativity: g(g(x, y), z) = g(x, g(y, z))

With these properties, the query optimizer can replace the original query with a logically
equivalent one and still obtain the exact same result. The optimized aggregation function
we propose for Yoda is:

Definition 4.6. First, experts are grouped based on their reference confidence values
assigned by user u.

G f (u) = {e | f is a fuzzy set ∈ F, πu,e = f } (5)

Then, the preference value vu(i) for item i is computed as:

Eu, f (i) = f × max{ve(i) | e ∈ G f (u)}
vu(i) = max{Eu, f (i) | ∀ f ∈ F} (6)
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Basically, this aggregation function partitions the preference values into ‖F‖ different
subgroups according to the confidence values of the expert e. Subsequently, the system
maintains a list of maximum preference values for all subgroups. Finally, the system com-
putes the preferences of all items in the user wish-list by iterating through all subgroups. As
compared to a naive weighted aggregation function with time complexity O(‖E‖ × ‖I‖)
(where ‖E‖ is the number of experts in the system) the complexity of the proposed ag-
gregation function is O(‖F‖ × ‖I‖) = O(‖I‖), where ‖F‖ is a small constant number
representing the number of fuzzy terms.

To reduce the time complexity of generating the user wish-lists further, we apply a
cut-off point on the expert wish-lists. Each shorten wish-list includes the N best-ranked
items according to their preference values for the corresponding expert. In Fagin [4], Fagin
has proposed an optimized algorithm, the A0 algorithm, to retrieve N best items from a
collection of subsets of items with time complexity proportional to N rather than total
number of items. However, the A0 algorithm can only be employed by the aggregation
function that satisfy triangular norm form.

Here, by taking the subgroups of items (as described above) as the subsets, the A0

algorithm can be incorporated into Yoda.2 Applying the A0 algorithm to generate a user
wish-list with cut-off point N , we reduce the time complexity to O(‖F‖×‖N‖) = O(‖N‖),
where ‖N‖ � ‖I‖.

5. The learning mechanism of Yoda

In this section, we provide a detailed description of the learning mechanism. We first describe
the background knowledge of GA. Next, we elaborate the details on phase III of Yoda in
Section 5.2.

5.1. Background on genetic algorithms

Genetic algorithms (GAs), which were introduced by Holland [7], are iterative search
techniques based on the spirit of natural evolution. By emulating biological selection and
reproduction, GAs can efficiently search through the solution space of complex problems.
Basically, a GA operates on a population of candidate solutions called chromosomes. A
chromosome, which is composed of numerous genes, represents an encoding of the problem
and associates it with a fitness value evaluated by the fitness function. This fitness value
determines the goodness and the survivability of the chromosome.

Generally, GA starts by initializing the population and evaluating its corresponding fitness
values. Before it terminates, GA produces newer generations iteratively. At each generation,
a portion of the chromosomes is selected according to the survivability for reproducing
offspring. The offspring are generated through crossover and mutation processes and are
used for replacing some chromosomes in the population with a probability consistent with
their fitness values. In other words, with the help of the fitness function to point out the
correct direction, GA could construct better and better chromosomes from the best partial
genes of past samplings. Please see reference [5] for mathematical foundations.
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In summary, GA is composed of a fitness function, a population of chromosomes and three
operators—selection, crossover and mutation. The parameter settings of the operators can
be chosen depending on the applications or remain unchanged even when the applications
are varied. However, the fitness function and the coding method are required to be specially
designed for each problem. The design of fitness function and encoding method for Yoda
will be described in Section 5.2.

Comparing to other learning techniques, GA has four major differences [5]:

– The learning processes of GA do not perform on the parameters directly but on a coding of
the parameter set. As a result, unlike other learning techniques, GA can perform learning
procedures for all types of parameters without limiting the learning ability. For example,
the solution space can be discrete or continuous in GA, while the Rocchio-based learning
algorithms [21] only allow continuous solution space.

– GA searches the optimal solution from a population of points. Since these points can
simultaneously seek the characteristics of the optimal solution, the learning process
is more efficient than other common learning techniques, such as neural network and
reinforcement learning.

– The learning processes of GA are based on the payoff information from the fitness function
only. Contrasting to GA, many learning techniques require auxiliary information during
learning. For example, derivatives are essential for gradient-based learning techniques,
and the environment information is necessary for dynamic programming method of the
reinforcement learning techniques. In relevance feedback problems, since GA does not
directly employ the relevance feedback but employ the payoff information as an objective
direction, the GA-based learning mechanism can tolerant incorrect relevance feedback.
Moreover, GA can also learn from the relevance feedback where the majority of items
receive negative scores.

– GA uses probabilistic transition rules to lead the search direction as well. Hence, GA has
less chance of stopping in local optimal answers.

Overall, given the facts that: 1) the solution space is discrete in Yoda, 2) the relevance
feedback data are usually imperfect, 3) the majority of items may indeed receive negative
scores, 4) the learning processes should be efficient, and 5) the chance of finding local
optimal should be minimized, the GA-based learning technique is more appropriate for
Yoda than other learning techniques.

5.2. Phase III—Adjusting user settings

Yoda’s learning mechanism is a background process performed at the same time that the
users navigate the web-site. It employs GA for improving the list of confidence values by
decoding the best chromosome to replace existing one in the system after its evolution.
Users are not required to make additional efforts to improve these confidence values. Yoda
collects users’ follow-up navigation behaviors and employs these behaviors as the goal
of GA prior to the beginning of evolution.3 Note that the learning mechanism is only
triggered after receiving enough navigation data. In our implementation, it is activated
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when the number of navigated items is the same as that of the recommended items in the
wish-list.

We first describe the method for transforming the navigation data to the relevance feed-
back needed in GA. Let FN be the set of follow-up navigation data and i be a navigated
item in FN. As described in Section 4.1, Yoda can capture the view-time, the hit-count and
sequence about the items. Therefore, F N can be formally defined as:

FN = {(i, υt (i), υs(i), υh(i)) | i : ∈ I, υt (i): view-time of i,

υs(i) : sequence of i in reverse order, υh(i): hit-count of i} (7)

Assume that users only navigate potentially desired items and they only browse the pages
of uninterested items for a comparably shorter time; therefore, the preferences of items can
be estimated from navigation behaviors. That is, the users are more interested in the items that
are navigated earlier, accesses more often, or viewed for longer periods of time. Conversely,
the items whose view-time is much shorter than the average view-time of all navigation
data will be considered as detested items and thus receive negative preference values. As a
result, the feedback preference v̄u(i) of the navigated item i from user u’s perspective could
be estimated based on the navigation data by using Eq. (10) (Table 1).

εt =



(
υt (i) − (µ̃t − 3σ̃t )

µ̃t − 3σ̃t
× µ f

µ̃t

)
if

(
υt (i) − (µ̃t − 3σ̃t )

µ̃t − 3σ̃t
× µ f

µ̃t

)
< 1

−1 else

ψt =




εt if υt (i) ≤ (µ̃t − 3σ̃t )
υt (i)

µ̃t + 3σ̃t
if (µ̃t − 3σ̃t ) < υt (i) ≤ (µ̃t + 3σ̃t )

1 if υt (i) > (µ̃t + 3σ̃t )

(8)

ψ( f =(h∨s)) =



υ f (i)

µ f + 3σ f
if υ f (i) ≤ (µ f + 3σ f )

1 if υ f (i) > (µ f + 3σ f )
(9)

v̄u(i) =
{

(ωs × ψs) + (ωh × ψh) + (ωt × ψt ) if ψt ≥ 0

ψt if ψt < 0
(10)

Table 1. Parameters for Eqs. (8), (9), and (10).

Parameter Definition

ω f Importance weight of feature f , where
∑

f ω f = 1

µ f Mean of user’s current navigation data in feature f

σ f Standard deviation of user’s current navigation data in feature f

µ̃t Mean of view-time from all users’ navigation data

σ̃t Standard deviation of view-time from all users’ navigation data
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Note that for the normalization purpose, we use (µ f +3σ f ) as the upper bound in Eq. (9).
This upper bound can prevent the effect from outliers [10] of the navigation data. Moreover,
in order to distinguish the uninterested items from other desired items, we employ (µ̃ f −3σ̃ f )
as the threshold. The navigated item whose view-time is lower than the threshold will be
assigned a negative preference value.

Subsequently, we explain the coding design for GAs in our learning mechanism. The
chromosomes represent a possible confidence list of a specific user and each gene corre-
sponds to a confidence value. Two types of records are involved in the genes. One is user
confidence information with k records, where k is the number of experts in the system. The
value of the i th gene is an integer, gi , in [0, L − 1], where L is the number of fuzzy terms
used in the system, and denotes the user’s confidence value (π (u, e) = gI +1

L ) to expert e.
The other is a user fuzzy cut value which is associated with the (k + 1)th gene. The value
of fuzzy cut is (α + 1)/L , where α ∈ [0, L − 1] is the value of this gene.

Example 5.1. Suppose that there are 50 experts and 8 different fuzzy terms in the system,
there will be 51 genes per chromosome where the first 50 genes represent the corresponding
confidence values to the experts, and the last gene represents the value of the user fuzzy
cut. Additionally, after decoding, the value of 0 in gene i indicates that the confidence
level to user i is “none” and the value of 6 in gene 51 indicates that the value of fuzzy
cut is (6 + 1)/8 = 0.875. Likewise, after encoding, “full” confidence level to user i is
represented by a number 7 in gene i and the 0.75 fuzzy cut is denoted by a number 5 in
gene 51.

This coding method can guarantee a one-to-one mapping of profiles to chromosomes.
That is, a chromosome will be decoded to one and only one legal user profile, and a user
profile will be encoded to one and only one chromosome. Consequently, the solution space
will be equal to the searching space in GA. This implies that our coding method is effective.

Next, we describe our GA fitness function, which heavily utilizes the preference list B
estimated by our converting method. The fitness function first decodes the chromosome
into a confidence list and a fuzzy cut value. Then, it obtains the user wish-list Q according
to the profile using Eq. (6). In other words, this process needs to interact with the system
for obtaining experts’ wish-lists. Finally, it generates the fitness value by measuring the
similarity between Q and B. The similarity values are computed by Eq. (13) which is based
on two measurements. Equation (11) evaluates the similarity on ranking, and Eq. (12)
measures the average satisfaction of the user wish-list.

Q = {(i, vu(i)) | vu(i)) ∈ [0, 1]}
B = {(i, v̄u(i)) | v̄u(i) ∈ [0, 1]}

Cos θ (Q, B) =
∑

i vu(i) × v̄u(i)√∑
i vu(i)2 × ∑

v̄u(i)2
(11)

Avg(Q, B) =
∑

i∈Q v̄u(i)

‖Q‖ (12)

Similarity(Q, B) = Cos θ (Q, B) + 3 × Avg(B, Q) (13)
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In summary, once the learning process is triggered, the learning mechanism first con-
verts the navigation behaviors to relevance feedback. Next, it encodes the corresponding
confidence list to a chromosome and randomly generates other chromosomes as the initial
population. Subsequently, GA iteratively discover better user profiles until it achieves the
terminal condition such as the fitness value of one chromosome being 1 or the generation
number being 200. In the end, the learning mechanism decodes the best chromosome to a
confidence list and a fuzzy cut value for replacing the current data. Example 5.2 illustrates
the processing flow of our GA-based learning mechanism.

Example 5.2. Suppose the number of items in the user wish-list is 5 and the GA-based
learning processes will be terminated after 50 generations. The learning mechanism is trig-
gered when the user navigates 5 items. Assume F N , ωh , ωt , ωs , µ̃t , σ̃t , L , and the number of
chromosomes in the population are {(i5, 10, 5, 2), (i7, 1, 3, 1), (i2, 78, 2, 1), (i8, 120, 5, 1),
(i3, 5, 1, 1)}, 0.3, 0.4,0.3, 145, 40, 8, and 10, respectively. First, based on Eq. (10), the
learning mechanism converts F N to relevance feedback B where the items and their cor-
responding preferences are {(i5, 0.66), (i7, −0.51), (i2, 0.30), (i8, 0.46),(i3, −0.42)}.

Next, assuming there are five experts in the system and we know the confidence values
of the first two experts as {0.5, 0.625} through the PPED measurement, Yoda encodes the
original confidence list and the standard fuzzy set value 0.5 to a chromosome, whose genes
are {4, 3, 0, 0, 0, 3}. Yoda also randomly generates other 9 chromosomes and employ these
10 chromosomes as the initial population.

During the learning processes, each chromosome will be decoded to a list of confidence
values and a fuzzy cut, and employed to generate the corresponding user wish-list. Based
on the user wish-list, each chromosome in the population is evaluated its fitness degree
(survivability) through Eq. (13).

Subsequently, the learning mechanism produces the next generation of the population
through crossover and mutation operations on the current population, where the higher the
survivability of the chromosome the higher the possibility it will be picked to generate its
offspring. This breeding procedure will be performed until the number of the next-generation
chromosomes is 10. These evaluation and breeding procedures will be repeatedly performed
for producing the newer generation until the termination of the GA-based learning processes.

Before terminating the learning processes, the learning mechanism will select one chro-
mosome that has highest survivability from the final population, and decode the chromosome
to replace the old setting. This updated setting (an updated confidence list and an updated
fuzzy cut) can then provide better suggestion in the later recommendation processes.

6. Performance evaluation

We conducted two different sets of experiments in this paper. The first one is an end-to-end
simulation to compare accuracy and scalability of Yoda with the basic nearest-neighbor
(BNN) method [22]. As far as we know, BNN is the most accurate method for recommen-
dation among current techniques; however, it suffers from low performance. Since we have
shown the complexity of Yoda in Section 4.2 for the performance comparison, we emphasis
on the accuracy comparison between BNN and Yoda in our first set of experiments.
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The second set is a simulation to illustrate the accuracy improvement by using our
GA-based learning mechanism. Both Yoda and BNN are implemented in C and on top
of Microsoft Access 2000, which is running on a Pentium II 233 MHz processor with
Microsoft NT4.0. Moreover, we developed a GA for Yoda using SUGAL [8] for its wide
range of operators and data types.

This section is structured as follows. In Section 6.1, we describe our benchmarking
methods for the two sets of experiments. Section 6.2 discusses the details of our experimental
results.

6.1. Experimental methodology

Theoretically, preference values and navigation behaviors collected from real users are the
best source of benchmarks. However, we have observed that the navigation behaviors of
volunteers, who are not the real users of an application, are usually inconsistent. Moreover,
it is difficult to acquire correct user feedback after the long duration of the experiments.
Therefore, we conduct all the experiments by utilizing synthetic data generated from our
benchmarking method, which can ensure the consistency of data, and therefore allow the
experimental results to be compared fairly.

In order to populate data for evaluation purposes, we propose a parametric algorithm
to simulate various benchmarks (see Table 2). The benchmarking method maintains a list
of preference values (denoted as A

◦

0) that contains the perfect knowledge about items of
interest to the active users. This is performed as follows. First, the algorithm randomly4

generates E experts and populates the preference information to an expert matrix Ē0. The
cell ē(i, j) ∈ Ē0 represents the preference values for item j by expert i . Note that among
these experts, there are K navigation-pattern clusters. Each cluster comprises a browse-list,
a list of favorite PVs, and a pattern of navigation as the cluster centroid.

Subsequently, the algorithm generates PVs for each item i based on the favorite PVs of
the cluster that has the highest preference value for item i , say cluster k ′. The higher the

Table 2. Benchmarking parameters.

Parameter Definition

d Number of properties

M Number of items in the web-site

Lmin Minimum size of user browse-lists

Lmax Maximum size of user browse-lists

N The cut-off point (number of items in a user wish-list)

F Number of fuzzy terms

E Number of experts

O Number of known experts (E ≥ O)

K Number of navigation-pattern clusters (O ≥ K )

P Percentage of interesting items within the item set

U Number of users
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preference value of item i in cluster k ′, the more similar PVs of i to favorite PVs of cluster
k ′.

Next, the system randomly generates a list of confidence values π̈ and a fuzzy cut value
for each active user. Each confidence value is represented by a fuzzy term, which is an
integer in the range of [0, 7]. Finally, the system populates the preference values to A

◦

0 by
aggregating π̈ and Ē0 using Eq. (6).

To simulate imperfect user feedback, all perfect knowledge will be tuned in a noisy
process. Based on the preference values in this imperfect knowledge, the system then
randomly selects a set of items and assigns feature values as the user navigation behaviors.5

These feature values are generated by a reverse procedure of Eq. (10). For example, the
higher the preference value of an item is, the longer is the view-time assigned to this item.
The corresponding preference values of browsed items in A

◦

0 are equivalent to the rating
values to be used by BNN. We use Yoda and BNN to construct wish-list Iu for each user
u and compare the average satisfaction with Eq. (12) to evaluate the accuracy of these
systems. Finally, the system generates the wish-lists after learning processes and evaluates
the accuracy improvement of Yoda.

6.2. Experimental results

6.2.1. Yoda and BNN comparison. We conducted several experiments to compare Yoda
with BNN. In these experiments, we observed a significant margin of improvement over
BNN in matching the user expectations for various settings. It also shows that performance
of Yoda is independent of the number of users.

The results shown for each set of experiments are averaged over many runs, where
each run is executed with different seeds for the benchmarking procedure. The benchmark
settings of the following parameters, i.e., d, Lmin, Lmax, N , F , E , O , K , and U , are fixed
at 20, 20, 40, 50, 10, 50, 10, 10, and 500, respectively.

Improvement (Yoda, BBN) = (Yoda − BBN)

BBN
(14)

Figure 2 illustrates the improvements of Yoda over BNN. The X-axis depicts the number
of items varying from 5000 to 30000. Y-axis of figure 2(a) depicts average satisfaction
computed by Eq. (12) and improvement computed by Eq. (14). The Y-axis of figure 2(b)
is the system processing time. The average portion of interested items among item set P is
25%. In other words, users are only interested in 25% of the items in the item sets and thus
only 25% of the items have positive preference values.

Figure 2(b) verifies that Yoda is scalable. As the number of items grows, the system
processing time of Yoda remains unchanged while the processing time of BNN increases
linearly. This is because Yoda is a model-based recommendation system. Figure 2(a) in-
dicates that Yoda always outperforms BNN in accuracy. Although performances of both
systems decrease as the number of items grow, the margin of improvement between Yoda
and BNN expands. We attribute this improvement to the incorporation of content-based
filtering into the Yoda framework.
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Figure 2. Impacts of number of items.
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Figure 3. Impacts of the percentage of interesting items within the item set.

With figure 3, we demonstrate the impacts of P in the average satisfaction of the two
systems. The X-axis depicts the percentage of interesting items within the item set from
25 to 5%. The Y-axis depicts the average satisfaction computed and the improvement. The
size of item sets is M = 5000. In figure 3, the average satisfaction values of both Yoda
and BNN decrease as users become more picky. However, the margin of improvement
between Yoda and BNN grows as P decreases. Again, adopting content-based filtering
enables Yoda to recognize the latent associations between items and hence locate more
items that would be desired by users. Note that the value of P in practical applications such
as e-commerce stores could be much smaller than in the above example. This observation
shows that Yoda is a more appropriate recommendation system in the real world. In the
next section, the experimental results indicate that the performance of Yoda can be further
improved from 0.13 to 0.6 (more than 350% improvement) by incorporating the GA-based
learning mechanism.
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6.2.2. System improvement after learning. We conducted several experiments to verify
our system performances and to compare the results of different GA parameter settings. In
these experiments, we observed a significant margin of improvement after incorporating GA
in matching the user expectations in various settings. It is also shown that the performance
improvement of our learning mechanism is independent of the number of users. Moreover,
the improvement is linearly increased with the number of items. However, due to the space
limitation, in this paper, we only stress the improvements achieved by applying our learning
mechanism.

The results shown for each set of experiments are averaged over twenty runs, where each
run is executed with different seeds for the random generator functions. The parameter
settings of the GA operators [5, 8] are: population size = 30, one-point crossover, tourna-
ment selection, keep the elitism, and mutation rate = 0.25. The benchmark settings of the
following parameters, i.e., the number of items, the number of cut-off point, the number of
fuzzy terms, the number of experts, and the number of navigation-pattern clusters, are fixed
at M = 5000, N = 100, F = 8, E = 50, K = 10, and P = 5%, respectively.

Figure 4 demonstrates the improvements achieved by our learning mechanism. The X-
axis of figure 4 depicts the number of generations. The Y-axis of figure 4(a) illustrates
the similarity distance (between query results and perfect user feedback) computed by
Eq. (11). The Y-axis of figure 4(b) represents average satisfaction computed by Eq. (12).
Figure 4 indicates that the accuracy of wish-lists improves drastically after incorporating
the learning mechanism. As observed, the average satisfaction increases nearly 50% within
ten generations of the evolution, and the similarity on ranking improves 100% after 40
generations of learning. Overall, in the majority of our experiments, GA can acquire nearly
ideal user profiles, i.e, the rankings in the retrieval wish-list has 90% similarity to those in
the perfect wish-list, within 40 generations. It should be noted that Yoda only recommends
the top 100 items for users and also only receives feedbacks about 100 items from users,
where the set of feedback items and the set of recommended items are not identical. In other
words, GA needs to search for ideal user profiles based on 2% of information. These results
suggest that our learning mechanism is efficient and can greatly improve user profiles.

Since GA only has 2% information for learning, the limited information might restrict
the learning ability. This problem was also observed in the experiments. In figure 4, the
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Figure 5. Impact of noise.

accuracy of wish-lists slightly decreases after 50 generations of learning. The reason is
that the learning mechanism is constrained by the limited feedback. To illustrate, consider
the following example. Assume user U likes most of the items recommended by expert
A. However, because the recommendation system only recommends few items and user U
does not have the chance to know expert A’s recommendations, the learning mechanism
has no ability to discover the relationship between A and U . Generally, this problem can
be alleviated by several evolutions.

In order to compare the system performance when the user relevance feedbacks are
imperfect, we introduce five different noise levels in the experiments of figure 5, where
noise level 0 represents perfect feedback and noise level 10 represents complete chaos.
The X-axis is the number of generations and the Y-axis depicts the similarity distance
(between query results and perfect user feedback) computed by Eq. (11). As revealed by
figure 5, although the noise levels affect the accuracy of results, our learning mechanism
still improves the quality of user profiles in the range of 20 to 50%. This figure indicates
that our learning mechanism has the ability to tolerate noises during the learning process.

7. Conclusion

We proposed a hybrid recommendation system that combines content-based and collabora-
tive filtering techniques in order to reduce the information overload problem in e-commerce
applications. Our system heavily relies on user profiles for providing accurate recommen-
dation lists. The system accuracy may decline if user profiles are inaccurate. Therefore, we
introduced a learning mechanism that utilizes the users’ navigation behaviors to improve
the profiles automatically using genetic algorithms. The experimental results indicated that
the accuracy of results significantly increased up to 100% by our GA-based learning mecha-
nism. The results also demonstrated that our learning mechanism has the ability of tolerating
noises during learning processes and improvement is in the range of 20 to 50% depending
on the noise level.
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Notes

1. That is, the active user can be classified into different navigation-pattern clusters with the corresponding
possibilities (confidence values) between 0 to 1.

2. Since our aggregation function is in triangular norm form, it satisfies the requirements of the A0 algorithm.
3. Note that GA would converge per evolution process and there is no guarantee that it converges across several

evolutions if the user’s navigation behavior is inconsistent. However, in general, no learning mechanism can
deal with inconsistent behaviors.

4. The random number is generated through a linear congruential formula [11].
5. In other words, currently, we only consider product description pages as navigated pages in this experiment.
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