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Abstract—This paper proposes a novel adaptive recursive 

discrete Fourier transform (ARDFT) technique for the reference 
current generation of single-phase shunt active power filters 
(APFs). The suggested method is robust to input frequency 
changes and exactly extracts the reference current of the APF. 
Modeling of the converter system and design procedure of the 
control parameters are presented in this paper. To confirm the 
theoretical results, simulation results are provided. These results 
show effectiveness and excellent performance of the suggested 
technique. 
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I.  INTRODUCTION 
Nowadays, the utilization of nonlinear loads, such as 

CFLs, LEDs, computers, electronic drives and so on is more 
increased in the grid. These loads cause power quality 
problems, additional losses, stability problems and create 
resonance, fault in the protection systems, electromagnetic 
interference (EMI), damage to the power system equipment 
and etc. To solve these problems, many type of compensators 
are introduced. Passive filters are the first compensators that 
introduced for the current harmonics elimination and the 
power factor improvement. Although passive filters have 
advantages of simplicity and low cost, but due to their drastic 
limitations, always have been used with cautions. Active 
power filters (APFs) are proposed to be used in distribution 
systems, which have the capability of eliminating the whole 
undesired harmonics and improving the power factor by 
compensating the reactive power, simultaneously [1]-[4]. 

Reference current generation is the most important part of 
the control system of APFs. Up to now, many different 
methods for the reference current generation of APFs are 
proposed in literature. These methods can be categorized into 
time-domain and frequency-domain techniques [5]-[7]. 
Fourier transform method is the most known reference current 
generation technique in the frequency-domain. This method 
provides high accuracy in harmonic detection and is used in 
single-phase and three-phase systems. Despite of many 
advantages of Fourier transform technique, this method suffers 

from high computational burden and high sensitivity to 
frequency changes of the measured signal [8]-[17]. 

This paper proposes a new frequency adaptive recursive 
discrete Fourier transform (ARDFT) structure to overcome the 
problems of sensitivity to input frequency changes. The paper 
is organized as follows: in section II, the modeling of a single-
phase shunt APF and its controller parameters design are 
described. In section III, the proposed technique for the APF is 
explained. Section IV is devoted to simulation of the system 
with the proposed reference current generation technique. 
Finally, conclusion is coming in section V. 

II. MODELING OF THE SINGLE-PHASE SHUNT APF AND 
CONTROLLERS DESIGN 

A. System Modeling 
Fig. 1 shows the power and control system of a single-

phase shunt APF. According to this, the APF is intended to 
inject a compensating current, so that the grid current will be 
an in-phase sinusoidal waveform with grid voltage in point of 
common coupling (PCC). The power circuit of APF is 
composed of a single-phase full-bridge inverter, a DC-link 
capacitor and an inductor. The grid voltage includes harmonic 
contents and the nonlinear load is a single-phase diode 
rectifier that in DC-side sees a resistor parallel with a 
capacitor.  

 

Fig. 1. Single-phase shunt active power filter. 
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TABLE I. SYSTEM PARAMETERS 

Parameter Symbol Value 

DC-link voltage Vdc 380 V 

Grid voltage VS 220 Vrms 

Inverter rating S 2 kVA 

Filter inductance L 1 mH 

ESR of the inductance rL  0.25   

DC-link capacitance  Cdc 2200 uF 

Grid frequency f 50 Hz 

Switching/sampling frequency fsw/fsamp 12.8 kHz 

 

Table I listed system parameters. The following equation 
shows the inductor voltage: 

F
F L F S

di
v r i L v

dt

where L and rL are inductance and resistance of the inductor. 
Equation (1) can be rewritten as 

1F
F L F S

di
v r i v

dt L

By applying Laplace operator to (2), the transfer function 
of the filter current, iF(s) based on vF(s) and vS(s) is obtained as 

1( ) ( ) ( )F F S
L

I s V s V s
Ls r

Also, according to Fig. 1, the filter capacitor current based 
on average model method is [1] 

ˆ ˆ ˆdc dc
dc F

dc

dv v
C di

dt r

where rdc represent the inverter losses. Also, the transfer 
function of i�F(s) based on d�(s) assuming v�S=0 can be 
readily obtained as 

ˆ ( ) 0

ˆ 2( )
ˆ( ) S

dcF
v s

Vi s
Lsd s

The transfer function of i�S(s) to v�dc(s) is 

ˆ ( ) 1
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Therefore, by assuming that the power losses is equal to 

zero (rdc tends to infinity), (6) simplifies to 

ˆ ( )
ˆ 2( )
dc S

dc dcS

v s V
C V si s

B. Controller Parameter Design 
The filter current controller is a simple proportional 

regulator. The inner filter current loop is shown in Fig. 2. 
Therefore, the closed loop transfer function of the inner loop is 
obtained as 

,

( )
( )

( )
F

I
F ref L

i s PG s
i s Ls r P

By considering -3dB attenuation of (8) at the current 
bandwidth frequency, one has 

2

22
1
2

L bi

P

r P L

So, the current loop proportional gain, P is obtained as 

2 2 22L L biP r r L

In this case, the current control bandwidth is considered 
1000 Hz which is in the range of ten times the grid frequency 
(500 Hz) and one-tenth the switching frequency (1280 Hz). 

Fig. 2. Inner filter current control loop. 

Fig. 3. Outer DC-link voltage control loop. 
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To control the DC-link voltage of APF, we consider a 
proportional-integral (PI) controller. Also, a low-pass filter for 
the disturbance and noise rejection of the DC-link voltage is 
used. Fig. 3 shows the outer voltage control loop of APF. The 
closed-loop transfer function of the outer loop is 

,

3 2

( )
( )

( )

2 2

dc
Vdc

dc ref

S p i

dc dc dc dc c p S c i S c

v s
G s

v s

V K s K

C V s C V s K V s K V

Tuning the PI controller is a compromise between 
accessible control bandwidth and the loop stability [18]. The 
effect of the integral part of PI controller around the crossover 
and bandwidth frequency can be neglected. So, equation (11) 
without Ki simplified to 

0 2
,

( )
( ) 2 2i

S pdc
K

dc ref dc dc dc dc c p S c

V Kv s
v s C V s C V s K V

By considering -3dB attenuation of (12) at the voltage 
bandwidth frequency, the proportional gain of the DC-link 
voltage is calculated as 

2 dc dc bv bv c
p

S c

C V
K

V

The voltage bandwidth frequency is always selected 
bellow one-tenth the grid frequency. Therefore, the voltage 
bandwidth is selected as bv = 15 rad/s. On the other hand, 
characteristic equation of the system from (11) is 

3 22 2 0dc dc dc dc c p S c i S cC V s C V s K V s K V

By applying Routh-Hurwitz stability criterion to (14), the 
following condition is obtained. 

i p cK K

So, according to (15), the integral part of DC-link voltage 
controller is selected in the range [0, Kp c]. 

III. ADAPTIVE RECURSIVE DISCRETE FOURIER TRANSFORM 
TECHNIQUE 

Fourier transform is one of the amplitude and phase 
detection methods of harmonics. The Fourier series integral in 
time-domain is [8]: 

1( ) ( )
t

jh
h

t T

x t x e d
T

The above equation determines harmonic coefficients of 
the Fourier series of the signal. The discrete form of (16) can 
be written as 

2

1

1[ ] [ ]
hkn j

N
h

k n N
x n x k e

N

Equation (17) is the direct or non-recursive calculation way 
of discrete-time Fourier transform. This equation implies that 
for the calculation of amplitude and phase, a whole AC cycle 
information is required. Equation (17) can be rewritten as 

1

[ ]

1 2 2[ ] cos sin

h
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hk hk
x k j

N N N

Because of high calculation requirement of direct method, 
the recursive technique is already proposed. The following 
subsections, focus on conventional recursive method and 
proposed adaptive recursive method.  

A. Conventional Recursive Discrete Fourier Transform 
To extract the fundamental component of a signal, the 

recursive discrete Fourier transform (RDFT) is proposed as 
follows 

1

1

1 2cos

1 2sin

j j j j N

j j j j N

j
C C x x

N N
j

S S x x
N N

where N is the number of samples per one cycle, and Sj and Cj 
are the real and imaginary part of the Fourier transform. Fig. 4 
shows the corresponding block diagram of equation (19). The 
main advantage of recursive method over the direct method is 
the high memory and calculation space saving. But the main 
limitation of the conventional recursive method is the high 
sensitivity to frequency changes of the input signal. Such that, 
the truncation, accumulation and rounding errors lead to 
instability of the output signal in presence of a small 
frequency deviation of the input signal. To clarify the 
situation, assume that the input signal of the Fourier transform 
is a pure sinusoidal waveform with 10V amplitude and 50Hz 
frequency. Suddenly, the frequency changed to 49.5Hz (shown 
in Fig. 5). The output amplitude and phase of the Fourier 
transform is shown in Fig. 6. As can be seen, the amplitude 
and phase of the output signal is unstable following the 
frequency change.   

 Therefore, the recursive method, despite the fewer memory 
occupation, has the major problem of instability in case of 
frequency changes. 
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B. Improved Recursive Discrete Fourier Transform 
The following equations show the improved recursive 

discrete Fourier transform method 

1

1

j j j j N

j j j j N

C C P P

S S M M

 
where Pj and Mj are equal to (1/N)xj cos(2 j/N) and          
(1/N)xj sin(2 j/N), respectively. Fig. 7 shows the 
corresponding block diagram of this technique. Except adding 
two Pj and Mj calculations, the improved technique has no 
calculations more than the conventional method. In order to 
present the performance of this technique, the same sinusoidal 
waveform of Fig. 6 is applied to the improved technique and 
the output amplitude and phase are reported in Fig. 8. As 
shown in this figure, the output signal of the improved 

9.8

10

10.2

10.4
Output

M
ag

n
it

u
d

e 
(V

)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
-1

-0.5

0

0.5

1

A
n

g
le

 (
D

eg
)

Time (s)

Fig. 9. Output amplitude and phase of the improved recursive discrete Fourier 
transform with updating N for frequency change from 50Hz to 49.5Hz at t=0.5
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Fig. 8. Output amplitude and phase of the improved recursive discrete Fourier 
transform for frequency change from 50Hz to 49.5Hz at t=0.5 s. 

Fig. 7. Improved recursive discrete Fourier transform. 
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Fig. 6. Output amplitude and phase of the conventional recursive discrete 
Fourier transform for frequency change from 50Hz to 49.5Hz at t=0.5 s. 
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Fig. 5. A pure sinusoidal waveform with 50Hz frequency, frequency changes 
to 49.5Hz at t=0.5 s. 

Fig. 4. Conventional recursive discrete Fourier transform. 
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technique remains 

 
stable after the frequency change and only oscillates in a 
narrow band. These oscillations originates from the variations 
N as a result of the frequency change of the input signal. In the 
proposed technique, N is estimated continually by a phase 
locked loop (PLL) and its real value is used in the Fourier 
transform. The output result of applying sinusoidal waveform 
of Fig. 6 to the input of the ARDFT is shown in Fig. 9. In fact, 
for 10kHz sampling frequency and 50Hz fundamental 
frequency, the value of N was equal to 200 which by changing 
the frequency, the actual value of N is 202.02. By comparing 
Fig. 8 and Fig. 9, it can be seen that oscillations around the 
steady-state value have decreased. The remained oscillations 
are caused by the rounding error of N for the new frequency. 

C. Phase Locked Loop and Frequency Adaptation 
In this paper, for the calculation of the grid frequency and 

update of N, a second order generalized integrator (SOGI) 
based PLL is used that has many advantages, such as simple 
implementation, low computational burden, high accuracy, 
high speed and robust performance to disturbances. In fact, 
with having a PLL, two goals of grid phase and frequency 
extraction are fulfilled. Fig. 10 shows the PLL block diagram 
to extract the grid phase and frequency [5]. In this figure, v�i, 

�, � and ff are the grid voltage, extracted phase, extracted 
frequency and nominal grid frequency, respectively. To 
calculate  and  component of the grid voltage, the SOGI 
block is used, which its structure is shown in Fig. 11. The 
SOGI provides the necessary signals for the PLL, and at the 
same time, creates a pure sinusoidal voltage for the reference 
current generation by attenuating the grid voltage harmonics 
and noises. The PLL provides required frequency for 
appropriate performance of the ARDFT technique and has an 
important role in increasing the system robustness against grid 
frequency changes. 

 

IV. SIMULATION RESULTS 
The overall control block diagram of the APF is shown in 

Fig. 12. According to Fig. 12, firstly the grid voltage phase 
and frequency are extracted by the PLL. Then, the ARDFT 
block calculates the fundamental component of the load 
current and by multiplying it by the voltage phase, the grid 
reference current is constructed. On the other hand, the 
difference between the DC-link voltage and its reference 
passes through a PI controller and by multiplying the 
controller output signal by the voltage phase, the filter power 
losses is calculated. The difference of filter current with its 
reference passes through a simple proportional gain. Also, in 
the proposed method, a feedforward path including grid 
voltage is added to the control signal to improve system 
dynamics. Finally, the resulting control signal enters PWM 
block and gating signals of inverter switches are produced. 
Table I shows the system parameters. The nominal value of N 
is N=12800/50=256. 

 In this section, different test on system in 
MATLAB/Simulink are done. It should be noted that the grid 
voltage has 5% third harmonic and 3% fifth harmonic and the 
nonlinear load consists of a single-phase diode rectifier as 
shown in Fig. 13 with R1=1 , R2=10  and C=1000 uF. The 
grid inductance is 20uH. 

 First, the steady-state response of the system is shown in 
Fig. 14. In this figure, the grid voltage, grid current, load 
current, filter current and DC-link voltage are shown. While 
the grid voltage THD is equal to 5.72% and load current THD 
is equal to 46.64%, the grid current THD is obtained equal to 
2.36%. The filter current follows its reference properly and the 
maximum current amplitude is 25A. Also, the DC-link voltage 
by 2.6% ripple oscillates around the 380V reference. 

R1 

C R2 

 
Fig. 13. Structure of the nonlinear load. 

Fig. 12. Overall proposed control block diagram of the single-phase shunt 
active power filter. 

Fig. 11. Second order generalized integrator. 

Fig. 10. Phase locked loop. 
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THDi=2.32% THDi=2.98%

Fig. 17. Transient waveforms in response to sudden load change: grid voltage, 
grid current, load current, filter current and DC-link voltage. 

THDi=2.96% THDi=2.81%

Fig. 16. Transient waveforms in response to grid voltage frequency changes: 
grid voltage, grid current, load current, filter current and DC-link voltage. 

THDi=2.30% THDi=2.33%

Fig. 15. Transient waveforms in response to grid voltage amplitude changes: 
grid voltage, grid current, load current, filter current and DC-link voltage. 
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current and DC-link voltage. 
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In the next test, the transient behavior of the system against 
grid voltage amplitude and grid frequency changes is 
analyzed. Figs. 15 and 16 show the output result of these tests. 
In Fig. 15, the grid voltage amplitude jumped 20% at t=0.825 
s and the fell 50% at t=0.905 s. In Fig. 16, the grid voltage 
frequency changes from 50Hz to 47.5Hz at t=0.825 s and from 
47.5Hz to 52.5Hz at t=0.905 s. As can be seen in Fig. 15, a 
little change in the grid current and DC-link voltage occurred 
at the moment of sudden change of grid voltage amplitude, but 
the current control system acts quickly and the current attain to 
its steady-state in less than one cycle. According to Fig. 16, 
the grid frequency change has no effect on the control system 
and reference current generation performance, and this shows 
excellent and robust performance of the proposed technique. It 
should be noted that in two above tests, the grid current THD 
remains in [2% - 3%] range. 

In the final test, a nonlinear load consists of a single-phase 
rectifier along with a 5  resistor series with a 30mH inductor 
in DC-side enters to the system at t=0.9 s and previous load is 
disconnected. The output result of this test is shown in Fig. 17. 
Despite the load change from capacitive to inductive, the grid 
current THD remains 3% and accurate performance of the 
reference current generation is well done.  

V. CONCLUSION 
This paper proposed an adaptive recursive discrete Fourier 

transform technique for the reference current generation of 
single-phase shunt APFs. The proposed technique has 
advantages of simplicity, high accuracy in current extraction, 
less calculation burden than non-recursive Fourier transform 
and robust performance to the frequency changes. To confirm 
the theoretical achievements, simulation results are presented. 
The results show excellent performance of the control system 
and the reference current generation in steady-state and 
transient conditions. 
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