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Abstract

This paper investigates marginal screening for detecting the presence of significant predictors in 

high-dimensional regression. Screening large numbers of predictors is a challenging problem due 

to the non-standard limiting behavior of post-model-selected estimators. There is a common 

misconception that the oracle property for such estimators is a panacea, but the oracle property 

only holds away from the null hypothesis of interest in marginal screening. To address this 

difficulty, we propose an adaptive resampling test (ART). Our approach provides an alternative to 

the popular (yet conservative) Bonferroni method of controlling familywise error rates. ART is 

adaptive in the sense that thresholding is used to decide whether the centered percentile bootstrap 

applies, and otherwise adapts to the non-standard asymptotics in the tightest way possible. The 

performance of the approach is evaluated using a simulation study and applied to gene expression 

data and HIV drug resistance data.
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1 Introduction

The problem of selecting significant predictors is a central aspect of scientific discovery, and 

has become increasingly important in an era in which massive data sets are readily available 

(Fan and Li, 2006). Much of the modern statistical literature in this area focuses on 

consistency of variable selection in high-dimensional settings based on machine learning 

and data mining techniques (e.g., Fan and Li 2001; Zou and Hastie 2005; Huang et al. 2008; 

Fan and Lv 2008; Genovese et al. 2012). A major gap in this literature, however, has been 

the scarcity of formal hypothesis testing procedures that take variable selection into account; 

the oracle property enjoyed by many variable selection methods in the presence of high 

dimensionality can not be applied directly for testing whether a post-model-selected variable 

is significant. In bioinformatics, for example, variable selection techniques based on 

penalization (such as lasso, scad, etc) are routinely used to produce lists of differentially-

expressed genes that are most related to disease risk, but few methods for obtaining valid p-

values have been developed.
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A more traditional approach to the selection of significant predictors is multiple testing to 

control either family-wise error rate (FWER), or false-discovery rate (Benjamini and 

Hochberg 1995; Dudoit et al. 2003; Efron 2006; Dudoit and van der Laan 2008; Efron 

2010). Procedures that control FWER (e.g., Bonferroni, or Holm's procedure) are often 

criticized as being too conservative (in the sense of having low power). False-discovery rate 

methods, on the other hand, although having greater power, incur the cost of inflated FWER. 

Our aim in the present paper is to introduce a more powerful single test that can be used as 

an alternative screening procedure to detect the presence of some significant predictor while 

rigorously controlling FWER.

The proposed procedure uses marginal linear regression to select the predictor (from among 

covariates X1, . . . , Xp) that has maximal sample correlation with a scalar outcome Y (as in 

marginal screening or correlation learning, Genovese et al. 2012). The test is based on  the 

estimated marginal regression coefficient of the selected predictor. If there is a unique 

predictor, say Xk0, maximally correlated with the outcome, then the selection procedure 

consistently estimates k0, and  is asymptotically normal; if all predictors are uncorrelated 

with the outcome, then the selected predictor does not converge (in probability) and  has a 

non-normal limiting distribution. In particular, the limiting distribution is discontinuous (at 

zero) as a function of the regression coefficient of Xk0 (where k0 is not identifiable), and this 

“non-regularity” causes non-uniform convergence.

Breiman (1992) drew early attention to the issue of invalid post-model-selection inference, 

calling it the “quiet scandal” of Statistics; even earlier references are mentioned in Berk et 

al. (2013). Samworth (2003) gave a detailed account of the inaccuracy of bootstrap methods 

applied to super-efficient estimators. Leeb and Pötscher (2006) (and other papers by the 

same authors) established that non-uniform limiting behavior of post-model-selected 

estimators is at the root of the problem, and that estimates of asymptotic null distributions in 

such settings can give a misleading picture of finite-sample performance. In particular, 

calibrating a test based on  in a way that does not adapt to the implicit post-model-

selection will be extremely inaccurate. This type of non-regularity occurs in various other 

settings as well, e.g., when a nuisance parameter is only defined under an alternative 

hypothesis (Davies, 1977), and when the parameter of interest under the null hypothesis is 

on the boundary of the parameter space (Andrews, 2000). McCloskey (2012) surveyed non-

standard testing problems in econometrics, and introduced some Bonferroni-based size-

correction methods designed to improve power. As far as we know, however, there is not yet 

a resolution of these issues for marginal screening.

In this paper we introduce an adaptive resampling test (ART) for marginal screening that 

adapts to the small sample behavior of  in terms of a local model. Under local alternatives, 

we find an explicit representation of the asymptotic distribution of  and construct a 

suitable bootstrap estimator of this distribution that is consistent, thus circumventing the 

non-regularity mentioned above. Under non-local alternatives, we show that the critical 

values obtained in this way agree asymptotically with those used by the oracle (who is given 

knowledge of k0), so ART can be expected to provide good power as well.
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Several new approaches to post-model selection inference for linear regression have been 

proposed in recent years. Meinshausen et al. (2009) introduced a random sample splitting 

procedure in the high-dimensional setting to obtain (conservative) Bonferroni-adjusted p-

values following variable selection. Chatterjee and Lahiri (2011) developed a modified 

bootstrap method that provides an asymptotically valid confidence region for the regression 

parameters based on the lasso estimator; this method depends on the presence of at least one 

active predictor, so it is not applicable to marginal screening (under the null hypothesis there 

is no active predictor).

More relevant to marginal screening, the covariance test recently introduced by Lockhart et 

al. (2014) uses a forward stepwise lasso procedure to test for active predictors entering a 

sparse linear model under the assumption of normal errors. Also in the sparse linear model 

setting with normal errors, but further assuming that the predictors are nearly uncorrelated, 

Ingster et al. (2010) and Arias-Castro et al. (2011) have studied the detection boundary and 

optimality properties of general classes of multiple testing procedures (including Bonferroni 

and Higher Criticism). Berk et al. (2013) developed a valid method of post-model selection 

inference that is feasible for up to about p = 20 predictors, also assuming normal errors. In 

various sparse high-dimensional settings, Belloni et al. (2013), Bühlmann (2013), Zhang and 

Zhang (2014) and Ning and Liu (2015) have established asymptotically valid confidence 

intervals for a preconceived regression parameter after variable selection on the remaining 

predictors, but this does not apply to marginal screening (where no regression parameter is 

singled-out a priori).

This paper is organized as follows. We formulate the problem and discuss the issue of non-

regularity in Section 2. In Section 3, we develop the ART procedure and establish the 

consistency of the underlying bootstrap. Simulation studies and applications to gene 

expression data and HIV drug resistance data are presented in Section 4. Concluding 

discussion appears in Section 5, and proofs are collected in the Appendix.

2 Marginal regression and non-regularity

Consider a scalar outcome Y and a p-dimensional vector of covariates X = (X1, . . . , Xp)T 

such that the marginal variance of each covariate is finite and non-zero. Marginal regression 

consists in using separate linear models to predict Y from each Xk. Let k0 be the label of a 

covariate that maximizes the absolute correlation with Y :

and let α0 + θ0Xk0 be the best linear predictor based on Xk0, i.e.,

(1)

We are interested in testing whether at least one of the covariates is correlated with Y, for 

which it suffices to check whether Xk0 and Y are correlated. This is equivalent to testing
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Given an iid sample of size n, let , , and k̂
n be the least squares estimates of α0, θ0, and 

k0, respectively:

where  is the empirical distribution, and the hats indicate sample versions. It is natural to 

base the test on  but calibration is problematic because the distribution of 

does not converge uniformly with respect to θ0, as mentioned in the Introduction. The non-

uniformity occurs in the neighborhood of θ0 = 0. Specifically, there exists a bounded 

continuous function  such that  does not converge 

uniformly in any neighborhood of θ0 = 0, despite converging pointwise. To see this, first 

note that under mild conditions

where Vk = Var(Xk), , and (Z1, . . . , Zp)T is a mean-zero normal 

random vector with covariance matrix depending on parameters of the full linear model (this 

is a special case of Theorem 1 below). From the form of the distribution of U, we can choose 

h so that f∞(θ0) ≡ Eh(U) is discontinuous at θ0 = 0 (this is the non-regularity mentioned in 

the Introduction). If fn were to converge uniformly to f∞ on some compact neighborhood of 

zero, we would have a contradiction because each fn is continuous, and the uniform limit of 

a sequence of continuous functions on a compact interval is continuous.

To address this problem, in the next section we develop a formal test procedure (ART) 

inspired by work of Cheng (2008, 2015) concerning robust confidence intervals for non-

linear regression parameters in the presence of weak-identifiability. Other variations of this 

approach have been used by Laber and Murphy (2011) to construct a confidence interval for 

the classification error, by Laber et al. (2014) in a sequential decision making problem, and 

by Laber and Murphy (2013) to provide robust confidence intervals for adaptive lasso. As 

already noted, the distribution of  does not converge uniformly in the 

neighborhood of θ0 = 0, so its small sample behavior can be very far from normal when the 

true parameter is close to zero. Therefore an understanding of the asymptotic behavior of 

under local alternatives plays a crucial role in devising a suitable test, or more generally in 

providing robust confidence intervals for θ0.
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3 Adaptive resampling test

In this section, we develop the proposed ART procedure for detecting the presence of a 

significant predictor. The idea is to adapt to the inherent non-regular behavior of the post-

model-selected estimator  in a way that accurately captures its asymptotic behavior in -

neighborhoods of the null hypothesis.

We frame the problem in terms of the general local linear model

(2)

where , , the noise ε has mean 0, finite variance, and is uncorrelated with X, 

and βn = β0 + n−1/2b0, where  is the local parameter. The distributions of ε and X are 

assumed to be fixed, so only the distribution of Y depends on n (although we suppress n in 

the notation for Y). The relevant hypotheses are now

where θn = Cov(Xkn, Y)/Var(Xkn) and kn is the label of a component of X that maximizes 

absolute correlation with Y.

Our first result gives the asymptotic distribution of . To state the result, we need the 

notation

for any . Note that kn = k̄(βn) under the local model. If k0 ≡ k̄(β0) is unique (so β0 ≠ = 

0), then kn → k0, and θn is asymptotically bounded away from zero (a non-local alternative). 

On the other hand, if β0 = 0 and k̄(b0) is unique, then kn = k̄(b0); also θn is in the 

neighborhood of zero and represents a local alternative. Finally, if β0 = b0 = 0, then kn is not 

well-defined and the null hypothesis θn = 0 holds. We need the uniqueness of the most active 

predictor k0 (away from the null hypothesis), but this seems to be a very mild condition 

because the likelihood that there would be two or more predictors having exactly the same 

maximal correlation with Y seems remote in practice. Even in practice, as we will see in the 

simulation study, non-uniqueness of the maximally correlated predictor does not adversely 

affect power.

Theorem 1

Suppose that k0 = k̄(b0) is unique when β0 ≠ 0, and k̄(b0) is unique when β0 = 0 and b0 ≠ 0. 

Then, under the local model (2),
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where , and  is a 

mean-zero normal random vector with covariance matrix Σ(β) given by that of the random 

vector with components

for k = 1, . . . , p, and Σ(β0) is assumed to exist.

The non-regularity at β0 = 0 is explained by the dependence of the limiting distribution on 

the (non-identifiable) local parameter b0. The limiting distribution is nevertheless continuous 

as a function of  into the space of distribution functions (this is a simple 

consequence of Lemma 3 in the Appendix), and the convergence is uniform over compact 

subsets of , unlike the limiting behavior discussed in the previous section, so finite-

sample accuracy should be less of an issue when designing a screening test using this result. 

On the other hand, naive resampling methods that do not take into account the local 

asymptotic behavior will fail to provide consistent estimates of the distribution of 

, as discussed in the Introduction for the non-local case.

To get around this problem, we decompose  in a way that isolates the 

possibility that β0 ≠ 0 by comparing |Tn| to some threshold λn (to be specified later), where 

 is the post-model-selected t-statistic and sn is the standard error of the slope 

estimator when regressing Y on Xk̂
n. Specifically,

(3)

where ,  is the empirical process, and Pn is the 

distribution of (X, Y). It is clear that the nonparametric bootstrap is consistent for the first 

term in (3) if  and λn → ∞, since it is easily shown that P(|Tn| > λn) → 1β0≠0. 

The second term is more problematic though because k̂
n does not converge in probability to 

k0 when β0 = 0. Denote the term in the square brackets by , indexed by . 

Note that when this term is active (under β0 = 0),  and kn = K̄(b0), where

and
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so

(4)

All parts of  are now seen to be smooth functions of , so it is reasonable to expect 

that a consistent bootstrap can be constructed by replacing  by its nonparametric bootstrap 

, and replacing Pn by . In such a construction, the event indicated in the second term of 

(3) is naturally replaced by the event that  and |Tn| ≤ λn.

Here and throughout the paper, a superscript * is used to indicate the nonparametric 

bootstrap (sometimes called “bootrapping in pairs” in regression settings, to distinguish it 

from the residual bootstrap). The above arguments lead to our main result showing that 

 can indeed be consistently bootstrapped under the general local model. The 

precise definition of  is given at the start of the proof.

Theorem 2

Suppose all assumptions in Theorem 1 hold, and the tuning parameter λn satisfies 

 and λn → ∞ as n → ∞. Then, under the local model (2),

converges to the limiting distribution of  conditionally (on the data) in 

probability.

ART procedure

ART provides a bootstrap calibration for the test statistic  based on a special case of the 

above theorem. Under H0 we have the simplification . For some nominal 

level γ, let cl and cu be the lower and upper γ/2 quantiles, respectively, of

If  falls outside the interval [cl, cu], then we reject H0 and conclude that there is at least 

one significant predictor.
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Before applying ART, it is advisable to standardize all the variables Xk and Y (by sample 

mean and standard deviation), which has the advantage of making the procedure scale 

invariant (  is then the maximal sample correlation); our results naturally extend, but we 

develop the theory only for the unstandardized variables to keep the presentation simple.

Robust confidence intervals

The above theorem also allows the construction of a robust confidence interval for θn by 

treating b0 as unknown, then finding the widest bootstrap quantiles over all b0. Here by 

“robust” we mean asymptotically valid uniformly over b0. For testing purposes, however, 

this approach would be too conservative and also computationally intensive (grid search over 

 is needed); for this reason, in ART we set b0 = 0 under the null, so the critical values can 

be readily computed from . In contrast, Laber and Murphy (2013) propose using almost 

sure bounds over their local parameter b0 to find robust confidence intervals for adaptive 

lasso; this involves less computation than distributional bounds, but is still computationally 

intensive, and it produces more conservative confidence intervals than the distributional 

approach.

Choice of the tuning parameter λn

The above theorem requires that  and λn → ∞ as n → ∞. Under this condition, 

the thresholding provides a consistent pre-test (for θn = 0) with asymptotically negligible 

type I error rate: limn→∞ P(|Tn| > λn|θn = 0) = 0. On the other hand, if λn increases too 

quickly, the pre-test will be conservative. One simple choice would be to set , 

for some constant a > 0, but it is also desirable that λn increase with p, see Section 5 for 

discussion about the null limiting behavior of Tn as both p and n → ∞. To that end, note that 

by Theorem 1 in the special case that ε and X are independent, under θn = 0 (or b0 = 0 and 

β0 = 0) we have , where , and (Z̃1, . . . ,Zp̃)T is a vector of 

standard normal random variables. Thus, for any fixed λ > 0,

Hence the pre-test type I error rate can be asymptotically controlled below level γ, without 

sacrificing consistency, by choosing

(5)

In the simulation study below we describe a way of specifying the constant a via the double 

bootstrap, and this is used whenever we refer to ART in the sequel.

Forward stepwise ART

If we find a significant predictor using ART, it would be reasonable to continue applying the 

procedure in a forward stepwise fashion until no more significant predictors are detected. 

That is, in successive stages the residual  is treated as a new outcome 
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variable and marginal regression carried out on the remaining predictors. Although it would 

be challenging to extend our theoretical results to this procedure, we find that in real data 

applications it performs well, and in a similar way to the covariance test of Lockhart et al. 

(2014), as we discuss in the HIV drug resistance example considered in the next section.

4 Numerical studies

In this section, we study the performance of the proposed ART procedure using simulated 

data, and give illustrations of the approach in two real data examples.

4.1 Finite sample simulations

We compare the performance of ART with four procedures that are commonly used for 

detecting the presence of a significant predictor:

Likelihood ratio test (LRT)—This test is based on assuming a full linear model involving 

all of the covariates, and is applicable when n > p. Under the null hypothesis, all the 

regression coefficients are zero. The reduction in the residual sum of squares is compared to 

the residual sum of squares for the full model using an F-ratio [see, e.g. Section 7.4 of 

Johnson and Wichern (2007)]. When the full linear model holds, it can be seen that both null 

and alternative hypotheses are identical to those used in ART.

Multiple testing with Bonferroni correction—As in ART, marginal linear models are 

used to predict Y from each Xk. A t-test with Bonferroni correction is then carried out to 

detect whether each regression coefficient is non-zero. The intersection of the p null 

hypotheses coincides with the null used in ART.

Centered percentile bootstrap (CPB)—This procedure is similar to ART, except 

 is used to estimate the upper and lower quantiles of , providing 

critical values for the test statistic , see Efron and Tibshirani (1993).

Higher Criticism (HC)—This is a test originally proposed by John Tukey for determining 

the overall significance of a collection of independent p-values. We apply the statistic 

developed by Donoho and Jin (2004, 2015), which is expected to perform well if the 

predictors are nearly uncorrelated.

We consider three examples for the data generating model: i) Y = ε, ii) Y = X1/4+ε, and iii) 

, where β1 = . . . = β5 = 0.15, β6 = . . . = β10 = −0.1, and βk = 0 for k = 

11, . . . , p. In the first example, there is no active predictor, in the second there is a single 

active predictor, and in the third there are 10 active predictors and the maximally correlated 

predictor is not unique. The covariate vector X is distributed as p-dimensional normal with 

each component Xk ~ N(0, 1), an exchangeable correlation structure Corr(Xj, Xk) = ρ for j ≠ 

k, where ρ takes values 0, 0.5 and 0.8, and the noise ε ~ N(0, 1) is independent of X.

We consider two sample sizes (n = 100 and 200), and five values of the dimension (p = 10, 

50, 100, 150 and 200). A nominal 5% significance level is used throughout. The bootstrap 
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sample size is taken as 1,000. To specify the threshold λn in ART the double bootstrap is 

implemented by generating 1,000 bootstrap estimates , then choosing λn so that 5% of the 

ARTs (based on 1,000 nested bootstrap samples) with test statistic  reject.

Empirical rejection rates based on 1,000 Monte Carlo replications are reported in Figures 1–

3. For model i), the figures provide type I error rates, which should be compared with the 

5% nominal rate; for models ii) and iii), the figures provide the power of each test. The ART 

procedure has good control of the type I error rate throughout (compared to all the other 

methods), while consistently maintaining relatively high power. Comparing the results of 

models ii) and iii), non-uniqueness of the maximally correlated predictor has no adverse 

effect on the power of ART.

Bonferroni is highly conservative when ρ = 0.5 and 0.8, see the left panels of Figures 1 and 

2. The CPB method is highly anti-conservative, with empirical type I error rates exceeding 

15% for both sample sizes (and thus out of range for most of the panels on the left). The 

LRT effectively controls the type I error rate at around the nominal 5% level when it is 

applicable, but it has very low power compared with all the other methods, except under 

model iii) in the “classical case” of small numbers of predictors that are not highly 

correlated, see the right panels of Figures 2 and 3. Higher Criticism fails to control type I 

error except when the predictors are independent (Figure 3), in which case it is slightly anti-

conservative and has excellent power under model iii), but very poor under model ii). That 

is, HC performs well (under zero correlation) when there are multiple active predictors, but 

not in the sparse case of only one active predictor. Except in the case of independent 

predictors, when Bonferroni is slightly better, ART outperforms all the competing 

procedures when both type I error and power are taken into account, and the improvement 

increases with the correlation between predictors.

4.2 Asymptotic power

In this section, we carry out a simulation study to assess the asymptotic power of ART 

compared with that of the Bonferroni procedure. The computational expense of 

implementing ART is high because of the double bootstrap, so our full simulation study of 

the previous section is only feasible for small sample sizes. Nevertheless, we are able to 

assess asymptotic power by making use of our results on the local model in Section 3.

Consider the local model Y = (n−1/2b0)X1 + ε, where . Here X and ε are generated in 

the same way as Section 4.1, but now we only consider ρ = 0.5. The local parameter b0 takes 

the special form (b0, 0, . . . , 0)T, and we allow b0 to vary over a grid in [0, 5], in increments 

of 0.5. We set β0 = 0, b0 = (b0, 0, . . . , 0)T and make use of the given covariance structure of 

X and the explicit form of the limiting distribution in Theorem 1 to generate a draws from 

the asymptotic distribution of . Specifically, we carry out the following steps:

1. For each value of b0 on the grid, take 5,000 draws from the limiting distribution of 

 given in Theorem 1 (this distribution only depends on b0 and the 

given distribution of (X, Y )), then add b0 to obtain draws from the limiting 
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distribution of . Based on these draws, we can obtain the (approximate) 

rejection rate of the test statistic  for any given rejection region. In particular, 

the asymptotic rejection rate of ART (for any given b0 on the grid) can be 

calculated by referring to the rejection rate corresponding to the particular critical 

values cl and cu generated by ART.

2. To assess the asymptotic power of ART at each given b0, we generate 10 

independent large samples (with n = 5,000) from the local model, find cl and cu for 

each sample, and display in a boxplot the corresponding asymptotic rejection rates 

(using the results of step 1).

3. For comparison, we also plot the asymptotic power of the Bonferroni procedure, 

which is approximated using 1,000 samples each of size n = 5,000.

The results are presented in Figure 4 for p = 10 and 50. The main source of variation within 

each boxplot is due to randomness over the 10 independent samples drawn from the local 

model, rather than bootstrap randomness (in view of bootstrap consistency and the large 

sample size n = 5,000). The median of each boxplot provides a suitable reference point to 

compare with the asymptotic power of Bonferroni (indicated by the circle). Note that ART 

provides accurate control of asymptotic type I error, and, as expected, Bonferroni is slightly 

conservative. In terms of median power, ART always outperforms Bonferroni, and can 

provide an additional 25% power (e.g., at b0 = 3 for p = 10, and at b0 = 3.5 for p = 50).

The cost of implementing the double bootstrap part of ART makes it prohibitive to extend 

the results in Figure 4 to larger p, but if we fix λn, then it becomes practical to run the 

simulations for p = 1000. Figure 5 shows how the asymptotic power of ART compares with 

Bonferroni as the constant a used to specify λn takes values 2, 4, 5 and 8 (the corresponding 

λn are 4.3, 6.1, 6.8 and 8.6). Note that as a increases (going from one panel to the next), ART 

becomes more stable and provides more accurate type I error control, but the overall power 

decreases. At small values of a, ART behaves like the CPB, which is anti-conservative (as 

we have already seen in the previous section), whereas at larger values the influence of CPB 

is diluted. For the CPB (which corresponds to setting λn = 0), the plot (not shown) appears 

very similar to that for a = 2; also, for a > 8 the plots appear very similar to a = 8. The best 

choice of a, therefore, is a trade-off between type I error control and power; comparing with 

Figure 4, ART with double bootstrapping appears to achieve a satisfactory balance in this 

regard. Also note that, even at the largest value a = 8, ART can provide an additional 20% 

power over Bonferroni, and thus outperform Bonferroni by a considerable margin in high-

dimensional settings as well, at least when there is a high degree of correlation among the 

components of X.

4.3 Gene expression example

We consider gene expression profiles from the tumors of n = 156 patients diagnosed with a 

common type of adult brain cancer (glioblastoma), collected as part of the Cancer Genome 

Atlas pilot project (TCGA, 2008). Our analysis is based on log gene expression levels X at p 

= 181 loci along chromosome 1. We are interested in detecting the presence of a gene that is 

significantly related to log-survival time Y.
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We compare the results from applying the Bonferroni, CPB and ART procedures; LRT is not 

applicable since p > n. The three methods yield very different p-values. The smallest 

Bonferroni adjusted p-value is 40.8%, suggesting that no gene is significantly related to Y. 

The CPB and ART p-values are 3.2% and 17.2%, respectively, from 1000 bootstrap samples. 

Figure 6 shows how these p-values are calculated. Thus the CPB method suggests the 

presence of a significant genetic effect, whereas ART does not.

4.4 HIV drug resistance example

Our second example uses data from the HIV Drug Resistance Database (2014), an important 

public resource for understanding how HIV-1 mutation patterns cause resistance to 

antiretroviral drugs (Rhee et al., 2002). We will compare our results with those of Lockhart 

et al. (2014), who applied their covariance test to data on the susceptibility (a measure of 

drug resistance) of the nucleotide reverse transcriptase inhibitor lamivudine (3TC). We code 

susceptibility on a log-scale (Y), and each predictor Xj is taken as indicating the presence/

absence of a mutation at a given sequence position. The viral sequence positions are indexed 

by j. Excluding missing data and rare mutations resulted in data on p = 103 positions and a 

total of 1266 isolates.

We randomly split the data 50 times into a training set of size n = 126 and a test set of size 

1140. For each split, we carry out 20 steps of forward stepwise ART and standard forward 

stepwise regression using the training data, and calculate the corresponding prediction error 

(including all previously selected variables) using the test data. The left panel of Figure 7 

shows the training data p-values (mean ± SD) for the newly entered predictor at each step, 

over the 50 random splits, and the right panel shows the corresponding prediction errors 

(mean ± SD). Forward stepwise ART detects one very highly significant mutation, but no 

more, as confirmed by the test set error plot, and this result is roughly consistent with the 

findings of Lockhart et al. (2014). Standard forward stepwise regression picks out at least 10 

mutations, but there is no improvement in test set error after the first predictor enters the 

model; moreover, the test error almost exactly coincides with ART.

5 Discussion

In this paper we have developed an adaptive resampling test (ART) for detecting the 

existence of a significant predictor, Xk0, from among predictors X1, . . . , Xp. The procedure 

is designed to adjust to the non-regular limiting behavior of the estimated marginal 

regression coefficient  of the selected predictor. This is done by using a thresholded 

version of the bootstrap that adapts to the non-regularity: if there is at least one significant 

predictor, it reduces to a centered percentile bootstrap, otherwise it mimics the local (non-

uniform) asymptotic behavior of . We have shown that in simulation studies, ART 

performs favorably compared with standard methods such as Bonferroni, but also compared 

with more sophisticated methods such as Higher Criticism. The advantage of ART may stem 

from it being designed to take into account correlations between predictors, while also 

avoiding distributional assumptions (the nonparametric bootstrap steps in ART are 

essentially distribution free). We have restricted attention to linear models, but our approach 
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has much wider applicability (e.g., generalized linear models, quantile regression, and 

censored time-to-event outcomes), and these will be studied in future papers.

Although our simulation results suggest that ART is useful and remarkably stable in “large 

p, small n” settings, the asymptotic theory that we have used to calibrate ART relies on 

assuming a fixed p, with n tending to infinity. In view of the conservative nature of the 

Bonferroni procedure in high-dimensional settings, there is a pressing need for more 

powerful tests in this area. In future work it would be of interest to develop the asymptotic 

theory of ART for the case of p growing with n, although this would be very challenging. As 

far as we know, formal testing procedures that provably control FWER and adjust to non-

regularity under diverging p are not yet available, except for Higher Criticism in the case that 

the predictors are nearly uncorrelated, as established by Ingster et al. (2010) and Arias-

Castro et al. (2011). In the only other instance we know of, under the strong assumption that 

X1, . . . , Xp, Y are iid N(0, 1), results of Cai and Jiang (2012) can be used to find the weak 

limit of  and thus devise an asymptotically correct 

calibration: if p = pn → ∞ at sub-exponential rate, log(p)/n → 0, then  and 

 where . In the super-exponential case, 

log(p)/n → ∞, then  and there is a similar weak limit.

Another interesting direction for future work would be to study the forward stepwise version 

of ART discussed in Section 3. Modifications to ART when applied stepwise in this way 

would be needed to adjust for the implicit dependence among the new outcomes. By 

repeating such a procedure until no more significant predictors are detected, the aim would 

be to correctly identify all active predictors.
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Appendix: Proofs

Proof of Theorem 1

For k = 1, . . . , p, let . Then 

 and . It is easy to verify 

that ,

(6)

where Pn is the distribution of (Y, X), and the mean residual squared error
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(7)

The result then follows immediately from the following two lemmas. The first lemma 

verifies the oracle property for marginal regression under the assumption that there is at least 

one active predictor; the proof is included for completeness. The second lemma gives the 

(non-regular) asymptotic behavior of  when there are no active predictors.

Lemma 1

If all conditions in Theorem 1 hold and β0 ≠ 0, then  and 

, where Zk0 is defined in Theorem 1.

Proof—Denote R ̂ ≡ (R̂1, . . . ,R̂p)T. When β0 ≠ 0, Var(XT β0) > 0. By the SLLN

Since  and Corr2(Xk, XTβ0) is 

maximized at k = k0, it follows immediately that .

Next, denote X̂ = Xk̂
n and Xn = Xkn. Since  and Y = 

α0 + XTβn + ε, we have

where the second equality uses  and kn → k0 as n → ∞, and the third equality 

follows from the LLN and Cov(ε, Xk0) = 0. Similarly, . The 

proof is completed using Slutsky's lemma and the CLT.

Lemma 2

If all conditions in Theorem 1 hold and β0 = 0, then 

.

Proof—Since (Z1(0), . . . , Zp(0))T is a normal random vector and |Corr(Xj, Xk)| < 1 for j ≠ 

k, it is easy to see that
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(8)

So K is unique a.s.

Denote . Note that when β0 = 0, . By the CLT and Slutsky's 

lemma, we see from (6) that

From (7), we have

where ☉ denotes the elementwise (Hadamard) product, so, by the continuous mapping 

theorem and Slutsky's lemma,

Define h(t) = (1arg maxktk=1, . . . , 1arg maxktk=p)T, where . Note that h is 

continuous at t if arg maxk tk is unique. Thus, using (8) and since 

, the result follows by applying the continuous mapping 

theorem to the above display.

Lemma 3

Let Z be a p-dimensional random vector and  a function such that f(z, ·) is 

continuous for every , and f(Z, b)j ≠ f(Z, b)k a.s. for all j ≠ k and . Then K(b) 

≡ arg maxk=1...,p f(Z, b)k is unique a.s. Also, if bl → b0, then K(bl) = K(b0) for l sufficiently 

large a.s.

The proof is omitted. An immediate consequence of this lemma is the continuity of the 

limiting distribution in Theorem 1 as a function of b0; this is seen by setting 

 for k = 1, . . . , p, and using (8).
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Proof of Theorem 2

The notation  and  means that  and k̂
n are based on n iid observations taken from . 

The bootstrapped process  in the statement of the theorem is defined by re-expressing 

(4), along with K̄(b) and , in terms of Pn and  operating on functions of (X, Y), then 

replacing Pn by  and  by  throughout. In the case of  in which ε is not observed, 

we also replace ε by , resulting in

(9)

where  is the bootstrapped empirical process. As is conventional in 

empirical process theory, ,  and Pn are assumed to operate only on functions that are 

defined on (X, Y), explaining why  can be separated in the above display.

Let EM denote expectation conditional on the data, and let PM be the corresponding 

probability measure. We will show that  and 

 conditionally (on the data) in probability. This together with 

Lemmas 4 and 5 below implies the result.

For k = 1, . . . , p, the bootstrapped marginal regression coefficient  satisfies

(10)

When β0 = 0, by Lemma 2 and the condition that λn → ∞ as n → ∞, we have 

in probability. When β0 ≠ 0, it is easy to verify that , which is positive 

under the condition that k0 is unique. Thus

tends to zero in probability when β0 ≠ 0, where the convergence follows from Lemma 1, 

Lemma 4 (below) and the condition that . Hence
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tends to zero in probability. This implies that  and 

conditionally in probability. Since 1|Tn|≤λn converges to 1β0=0 in probability, the result 

follows from Slutsky's lemma.

Lemma 4

If the conditions in Theorem 1 hold and β0 ≠ 0, then  conditionally (on the data) 

a.s. and  conditionally (on the data) in probability.

Proof—It follows from (10), the SLLN and Slutsky's lemma that, when β0 ≠ 0,

and  a.s. for k = 1, . . . , p. Denote the bootstrap mean squared error

where  and . Then we can write

since the denominator plays no role. By Slutsky's lemma

a.s. for k = 1, . . . , p, so we obtain

where the convergence follows from the condition that k0 is unique when β0 ≠ 0.

Recall that , where X̂ ≡ Xk̂
n. Note that . By the definition of , 

we have
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(11)

The last term in (11) is opM (1) a.s. because the first and last terms within the square bracket 

cancel asymptotically, similarly for the second and third terms, due to  and k̂
n → 

k0 a.s. We next show that the first term in (11) converges in distribution to Zk0 (β0) 

conditionally (on the data) in probability. By Lemma 1, it is easy to verify that 

 and . Denote 

. Then the first term can be decomposed as

(12)

The first term in (12) is oPM (1) a.s. since . The second term in (12) can be written 

as

which is oPM (1) in probability by bootstrap consistency of the sample mean [see, e.g., 

Theorem 23.4 of van der Vaart (1998)], and the fact that X̂ = Xk0 for n sufficiently large a.s. 

Bootstrap consistency of the sample mean also gives that the third term in (12) converges in 

distribution to Zk0(β0) conditionally (on the data) in probability.

Similarly, the second and third terms in (11) and  can be 

shown to be oPM (1) in probability. The result then follows from Slutsky's lemma.

Lemma 5

If all conditions in Theorem 1 hold and β0 = 0, then  converges to the same limiting 

distribution as  conditionally (on the data) in probability.

Proof—Define ,  and M′(b) to be p-vectors with kth components given by 

,
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respectively. Let  be a p × p matrix with the (j, k)-th component given by

Also, let  and D′(b) be p-vectors of zeros, apart from a 1 in the entry that maximizes 

 and M′(b), respectively. Then

Similarly, define ,  and  (without indexing by n) to be processes of the same 

form as ,  and , except with  replaced by Zk(0), and the sample 

variances/covariances replaced by their population versions.

Referring to the notation in (4), it is clear that when β0 = 0,

Moreover, the second equality in the above display also holds for the bootstrap version. 

Writing the bootstrapped version of  in (9) as

and using arguments similar to those in the proof Lemma 4 for handling (12), we have 

 conditionally (on the data) in probability. As a result, 

 conditionally (on the data) in 

probability, where  is the sample version of D′(b), and  and  are the 

bootstrap versions of  and , respectively. Finally, using similar arguments to 

those at the end of the proof of Lemma 2, along with the continuous mapping theorem, we 

conclude that

conditionally (on the data) in probability.
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Figure 1. 
Empirical rejection rates based on 1,000 samples generated from models i), ii) and iii) as the 

dimension ranges from p = 10 to p = 200, for n = 100 (top row) and n = 200 (bottom row), 

and ρ = 0.8.
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Figure 2. 
Empirical rejection rates as in Figure 1 except with lower correlation between predictors: ρ = 

0.5.
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Figure 3. 
Empirical rejection rates as in Figure 1 except for independent predictors.
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Figure 4. 
Asymptotic type I error and power of ART (box plots) compared with Bonferroni (circles) as 

a function of the local parameter b0, for p = 10 and 50, ρ = 0.5, calculated using steps 1–3 in 

Section 4.2.
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Figure 5. 
Asymptotic type I error and power of ART compared with Bonferroni for p = 1,000 and ρ = 

0.5, where ART is implemented using a fixed threshold λn specified by a = 2, 4, 5, 8, and 

each box plot is based on 20 independent replications with n = 10,000.
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Figure 6. 

Gene expression example. Left panel: histogram of  showing that the two-

sided CPB p-value is 3.2%. Right panel: histogram of  showing that the two-sided ART p-

value is 17.2%.
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Figure 7. 
HIV drug resistance example. Left panel: training set p-values (mean ± SD) over 50 random 

splits of the data for forward stepwise ART (solid line), standard forward stepwise 

regression (dash-dot line) and the 0.05 alpha level (dotted). Right panel: test set error for the 

corresponding models (including all previously selected variables); the two lines are almost 

indistinguishable.
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