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The short-time Fourier transform (STFT) is a classical tool, used for characterizing the time varying signals. The limitation of the
STFT is its fixed time-frequency resolution. Thus, an enhanced version of the STFT, which is based on the cross-level sampling, is
devised. It can adapt the sampling frequency and the window function length by following the input signal local characteristics.
Therefore, it provides an adaptive resolution time-frequency representation of the input signal. The computational complexity
of the proposed STFT is deduced and compared to the classical one. The results show a significant gain of the computational
efficiency and hence of the processing power.
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1. INTRODUCTION

Most of the real-life signals like speech, Doppler, seismic,
and biomedical signals are time varying in nature. The
spectral contents of these signals vary with time, which is
a direct consequence of the signal generation process [1].
The STFT is a classical tool for characterizing such signals
[2]. The limitation with the STFT is that it provides a
fixed resolution time-frequency representation of the input
signal. This fixed resolution is the reason for the creation
of the multiresolution analysis (MRA) techniques [3–5],
which provide a good frequency but a poor time resolution
for the low-frequency events and a good time but apoor
frequency resolution for the high-frequency events. This type
of analysis is well suited for most of the real-life signals
[3].

In this article, the fixed resolution dilemma is resolved
to a certain extent by revising the STFT. The motivation
behind the proposed STFT is to achieve a smart time-
frequency representation of the time varying signals. The
idea is to adapt the time-frequency resolution along with
the computational load by following the input signal local
characteristics. An efficient solution is proposed by smartly
combining the features of both uniform and nonuniform
signal processing tools.

2. PROPOSED ADAPTIVE RESOLUTION STFT

The block diagram of the proposed STFT is shown in
Figure 1. The description of different blocks is given below.

2.1. Asynchronous analog to digital converter (AADC)

According to [6], the sampling instants of a nonuniformly
sampled signal obtained with the level crossing sampling
scheme (LCSS) are defined by (1). Where tn is the current
sampling instant, tn−1 is the previous one, and dtn is the time
delay between the current and the previous sampling instants
(cf. (2)).

The LCSS drastically reduces the activity of the post
processing chain, because it only captures the relevant infor-
mation [7–9]. In this context, analog to digital converters
based on the LCSS have been developed [10–12]. The AADC
[10] is employed for digitizing x(t). An M-bit resolution
AADC has 2M − 1 quantization levels which are uniformly
disposed according to x(t) amplitude dynamics. The AADC
has a finite bandwidth. Thus, to assure a proper signal
capturing a band pass filter with pass band [ fmin; fmax] is
employedat the AADC input. Let ∆Vin and ∆x(t) be the
AADC and x(t) amplitude dynamics, respectively. In order
to avail the complete AADC resolution in the studied case,
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Figure 1: Block diagram of the proposed STFT. “—” represents the signal flow, “......” represents the control flow, and “- - - - -” represents the
parameters flow, at system different stages.

While (dtn ≤ T0/2 and N i
≤ Nref)

N i
= N i + 1;

end

Algorithm 1: Enhanced activity selection algorithm (EASA).

∆x(t) is always adapted to match ∆Vin. For an AADC, the
maximum and the minimum sampling frequencies [7] are
defined by (3) and (4), respectively. Where, Fsmax and Fsmin

are the maximum and the minimum sampling frequencies of
the AADC. fmax is the bandwidth and fmin is the fundamental
frequency of x(t):

tn = tn−1 + dtn, (1)

dtn = tn − tn−1, (2)

Fsmax = 2· fmax·
(

2M − 1
)

, (3)

Fsmin = 2· fmin·
(

2M − 1
)

. (4)

2.2. Enhanced activity selection algorithm (EASA) and
window selector

The relevant parts of the nonuniformly sampled signal
obtained with the AADC are selected—corresponds to the
variable length rectangular window—by the EASA. The
EASA is defined as shown in Algorithm 1. T0 = 1/ fmin

is the fundamental period of x(t). T0 and dtn detect parts
of the nonuniformly sampled signal with activity. The
condition on dtn is chosen in order to satisfy the Nyquist
criterion for fmin, when sampling x(t) nonuniformly with
the AADC [13]. N i represents the number of nonuniform
samples lie in the ith selected window, which lie on the
jth active part of the nonuniformly sampled signal. Where,
i and j both belong to the set of natural numbers N∗.
Nref represents the upper bound on N i. The choice of Nref

depends on x(t) characteristics and on system parameters.
The above described loop repeats for each selected window,
which occurs during the observation length of x(t). Every
time before repeating the loop, i is incremented and N i is
initialized to zero.

The EASA displays interesting features with the LCSS,
which are not available in the classical case. It selects only the

active parts of the nonuniformly sampled signal, obtained
with the AADC. Moreover, it correlates the length of the
selected window with the signal local characteristics.

The window selector implements the condition given by
expression (5). Jointly, the EASA and the window selector
provide an efficient spectral leakage reduction in the case of
transient signals [13]. Indeed, spectral leakage occurs due
to the signal truncation problem. Usually an appropriate
smoothening (cosine) window function is employed to
reduce the signal truncation. For the proposed case, as long
as the condition 5 is true, the leakage problem is resolved
by avoiding the signal truncation. As no signal truncation
occurs so no cosine window is required. In this case the
window decision Di

= 1, which makes the switch state 1
(cf. (Figure 1)). Otherwise, an appropriate cosine window is
employed to reduce the signal truncation problem. In this
case Di

= 0, which makes the switch state 0. In expression
5, ti1 represents the 1st sampling instant of the ith selected
window and ti−1

end represents the last sampling instant of the
(i− 1)th selected window.

For proper spectral representation, the condition given
by expression (6) should be satisfied [13]. Where, Li is the
length in seconds of the ith selected window. In order to
satisfy this condition for the worst case, which occurs for
Fsmax, Nref is calculated for an appropriate reference window
length Lref. Where, Lref satisfies the condition Lref ≥ T0. The
process is given by (7) as follows:

if

(

N i
≤ Nref and

(

Tdi = ti1 − ti−1
end

)

>
T0

2

)

, (5)

Li ≥ T0, (6)

Nref = Lref·Fsmax. (7)

The lower and the upper bounds on Lref are posed, respec-
tively, by T0 and the system resources (the maximum sample
frame which the system can process at once). For Nref (cf.
(7)), the condition 6 holds for all selected windows except
for the case when the actual length of the jth activity is less
than T0.

2.3. Adaptive sampling rate

The AADC sampling frequency is correlated to x(t) local
variations [7, 13]. Let Fsi represent the AADC sampling
frequency for the ith selected window. Fsi can be calculated
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by using (8). Where, t maxi and t mini are the final and
the initial times of the ith selected window. The upper and
the lower bounds on Fsi are posed by Fsmax and Fsmin,
respectively:

Li = t maxi − t mini.

Fsi =
N i

Li
.

(8)

The selected data obtained with the EASA can be used
directly for further nonuniform digital processing [8, 14].
However in the studied case, the selected data is resampled
uniformly. It enables to take advantage of both nonuniform
and uniform signal processing tools [7, 13]. Due to this
resampling there will be an additional error. Nevertheless,
prior to this transformation, one can take advantage of the
inherent oversampling of the relevant signal parts in the sys-
tem [7]. Hence, it adds to the accuracy of the post resampling
process [11]. The nearest neighbour resampling interpola-
tion (NNRI) is employed for data resampling. The reasons of
inclination towards NNRI are discussed in [13, 15].

A reference sampling frequency Fref is chosen, such as
itremains greater than and closest to the FNyq = 2· fmax.

Depending upon the values of Fref and Fsi, the resampling
frequency Frsi (cf. (Figure 1)) can be adapted for the ith
selected window. For the case, Fsi > Fref, Frs

i is chosen as:
Frsi = Fref. It is done in order to resample the selected data,
lie in the ith selected window closer to the Nyquist frequency.
It avoids the unnecessary interpolations during the data
resampling process and so reduces the computational load
of the proposed technique.

For the case, Fsi ≤ Fref, Frs
i is chosen as: Frsi = Fsi.

In this case, it appears that the data lie in the ith selected
window may be resampled at a frequency which is less than
FNyq and so it can cause aliasing. Since, the sampling rate
of the AADC varies according to the slope of x(t) [10]. A
high-frequency signal part has a high slope and the AADC
samples it at a higher rate and vice versa. Hence, a signal part
with only low-frequency components can be sampled by the
AADC at a subNyquist frequency of x(t). But still this signal
part is locally oversampled in time with respect to its local
bandwidth [7]. Hence, there is no danger of aliasing. This
statement is further illustrated with the results summarized
in Table 1.

2.4. Adaptive resolution analysis

The STFT of a sampled signal xn is determined by computing
the discrete Fourier transform (DFT) of an N samples
segment centred on τ, which describes the spectral contents
of xn around the instant τ. Where N is defined as: N = L·Fs.
Here, L is the effective length in seconds of the window
function wn and Fs is the sampling frequency. The STFT can
be expressed mathematically by (9). In Equation (9), f is the
frequency index, which is normalized with respect to Fs.

L controls the STFT time and frequency resolution [2].
In the classical case, the input signal is sampled at a fixed
sampling frequency Fs, regardless of its local variations.
Thus, a fixed L results into a fixed N . In this case, the time

resolution ∆t and the frequency resolution ∆ f of the STFT
can be defined by (10) and (11), respectively. Equation (11)
shows that for a fixed Fs, ∆ f can be increased by increasing
N . But increasing N requires to increase L which will reduce
∆t (cf. (10)). Thus, a larger L provides a better ∆ f but a poor
∆t, and vice versa. This conflict between ∆ f and ∆t is the
reason for the creation of the MRA techniques [3–5].

The proposed STFT is a smart alternative of the MRA
techniques. It performs adaptive time-frequency resolution
analysis, which is not attainable with the classical STFT. It
is achieved by adapting the Frsi, Li, and Nr i according to
the local variations of x(t). Nr i is the number of resampled
data points that lie in the ith selected window. Thus, the
time resolution ∆ti and the frequency resolution ∆ f i of the
proposed STFT can be specific for the ith selected window
and are defined by (12) and (13), respectively. Because of
this adaptive resolution, the proposed STFT will be named
as the adaptive resolution STFT, (ARSTFT) throughout the
following parts of this article. The adaptation of Frsi, Li, and
Nr i also adds to the computational gain of the ARSTFT,
compared to the classical one. It is achieved firstly by
avoiding the unnecessary samples to process and secondly
by avoiding the use of the cosine window function as far as
the condition 5 is true. The ARSTFT is defined by (14). In
(14), τ i and f i are the central time and the frequency index
of the ith selected window, respectively. f i is normalized with
respect to Frsi. n is the index of the resampled data points
lie in the ith selected window. The notation wi

n represents
that the window function length Li and shape (rectangle or
cosine) can be adapted for the ith selected window:

X[τ, f ] =
τ+L/2
∑

n=τ−L/2

[xn·wn−τ]·e− j·2π· f ·n. (9)

∆t = L. (10)

∆ f =
Fs

N
. (11)

∆ti = Li. (12)

∆ f i =
Frsi

Nr i
. (13)

X[τ i, f i]=
τ i+Nr i/2
∑

n=τ i−Nr i/2

[{

Re sample(xn, tn)
}

·wi
n−τ i

]

·e− j·2π· f i·n.

(14)

3. ILLUSTRATIVE EXAMPLE

In order to illustrate the ARSTFT an input signal x(t), shown
on the left part of Figure 2 is employed. Its total duration is
30 seconds and it consists of three active parts. Each activity
is a sinusoid of 0.9 v amplitude and of 50, 200, and 500 Hz
frequency, respectively. The time length of each activity is
5, 0.5, and 1.6 seconds, respectively. x(t) is band limited
between 50 to 500 Hz and it is sampled by employing a 3-
bit resolution AADC. Thus, Fsmax and Fsmin become 7 kHz
and 0.7 kHz, respectively (3), (4). Fref = 1.25 kHz and ∆Vin =

1.8 v are chosen. The selected data obtained with the EASA is
shown on the right part of Figure 2. By following the criteria
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Figure 2: Input signal (left) and selected signal (right).

Table 1: Summary of parameters of the selected windows.

Selected window
Li Fsi N i Fref Frsi Nr i

(Sec) (kHz) (Smp) (kHz) (kHz) (Smp)

1st 4.99 0.7 3500 1.25 0.7 3500

2nd 0.49 2.8 1400 1.25 1.25 625

3rd 0.58 7.0 4096 1.25 1.25 731

4th 0.58 7.0 4096 1.25 1.25 731

5th 0.43 7.0 3005 1.25 1.25 536

Table 2: Time and frequency resolution of the selected windows.

Window 1st 2nd 3rd 4th 5th

∆ti(Sec) 4.99 0.49 0.58 0.58 0.43

∆ f i(Hz) 0.2 2.0 1.71 1.71 2.33

given in Section 2, Nref = 4096 is chosen, which leads to 5
selected windows. First, two selected windows correspond
to the first two activities and the remaining corresponds to
the third activity. The last three selected windows are not
distinguishable on the right part of Figure 2, because they lie
consecutively on the third activity. The parameters of each
selected window are summarized in Table 1.

Table 1 exhibits the interesting features of the ARSTFT.
Fsi represents the sampling frequency adaptation by follow-
ing the local variations of x(t). It is achieved due to the
smart features of the AADC and the EASA. N i shows that
the relevant signal parts are locally oversampled in time
with respect to their local bandwidths [7]. Frsi shows the
adaptation of the resampling frequency for each selected
window. It further adds to the computational gain of the
ARSTFT, by avoiding the unnecessary interpolations during
the resampling process. Nr i shows how the adaptation of
Frsi avoids the processing of unnecessary samples during the
spectral computation. Li exhibits the EASA dynamic feature,
which is to correlate the window function length with the
local variations of x(t). Adaptation of Li, Frsi andNr i leads to
the adaptive time-frequency resolution, which is clear from
the values of ∆ti and ∆ f i in Table 2.

Table 2 demonstrates that ARSTFT adapts its time-
frequency resolution by following the local variations of x(t).
It provides a good time but a poor frequency resolution for
the high frequency parts of x(t), and vice versa. It is the type
of analysis, well suited for most of the real-life signals [3]. The
spectrum of each selected window is computed and plotted
with respect to τi on Figure 3. Figure 3 shows the fundamen-
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Figure 3: The ARSTFT of the selected windows.

tal and the periodic spectrum peaks of each selected window.
In this case, the spectrum periodic frequency for the ith
selected window f ip is equal to Frsi. It shows the adaptation

of Frsi, which can be visualized from Figure 3.
The ARSTFT also adapts the window shape (rectangle or

cosine) for the ith selected window. The condition 5 remains
true for the first two selected windows, which sets Di

= 1. As
no signal truncation occurs so no cosine window is required
in this case. On the other hand, the number of samples for
the fourth activity is 11200. Therefore, Nref = 4096 leads to
the three selected windows for the time span of the fourth
activity. The condition 5 becomes false in this case, which sets
Di
= 0. As signal truncation occurs so suitable length cosine

(Hanning) windows are employed to reduce this effect.
In the classical case, if Fs = Fref is chosen, in order

to satisfy the Nyquist sampling criterion for x(t). Then the
whole signal will be sampled at 1.25 kHz, regardless of its
local variations. It will produce unnecessary samples than
required. Moreover, the windowing process is not able to
select only the active parts of the sampled signal. In addition,
L remains static and is not able to adapt with the signal
local variations. Thus, it causes the system to process needless
samples and so causes an increased computational activity
than the proposed case. For classical case, fixed N = 4096 will
produce nine fixed L = 3.3 second windows, for the total x(t)
time span of 30 seconds. It will lead to fix ∆t = 3.3 seconds
and ∆ f = 0.31Hz for all nine windows (cf. (10) and (11) .

4. COMPUTATIONAL COMPLEXITY

This section compares the computational complexity of the
ARSTFT with the classical STFT. The complexity evaluation
is made by considering the number of operations executed to
perform the algorithm.

In the classical case, Fs is fixed. In this case, a time invari-
ant, fixed L, cosine window function is employed to window
the sampled data. If N is the number of samples lie in the
window then the windowing operation will perform N mul-
tiplications between wn and xn (cf. (9)). The spectrum of the
windowed data is obtained by computing its DFT. A complex
term is involved in the DFT computation. The DFT complex-
ity is calculated by taking the real and the imaginary parts

separately. The DFT performs 2·(N)2 additions and 2·(N)2

multiplications, thus operations count becomes 4·(N)2 for
N output frequencies. The combined computational com-
plexity C1 of the STFT is given by (15). Where, A is the total
number of windows occurs for the observation length of x(t).
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Table 3: Summary of the computational gain.

Time (seconds) 1st activity 2nd activity 3rd activity

Gain = C1/C2 2.77 43.43 12.46

For the proposed ARSTFT, Fsi, Frsi, and wi
n are not fixed

and are adapted according to the local variations of x(t).
The EASA performs 2·N i comparisons and N i increments
for the ith selected window (cf. (Section 2)). The choice
of Frsi and window shape requires three comparisons. The
selected signal is resampled before computing its DFT. The
NNRI is employed for the resampling purpose. The NNRI
only requires a comparison operation for each resampled
observation. Therefore, the resampler performs Nr i compar-
isons. If Di

= 0, then a cosine window function is applied
on the resampled data, which performs Nr i multiplications
(cf. (Figure 1)). The DFT performs 4·(Nr i)2 operations
for the ith selected window. The combine computational
complexity C2 of the ARSTFT is given by (16). Where i =
1, 2, . . . ,K represents the index of the selected window. α is a
multiplying factor, its value is 1 for Di

= 0 and 0 for Di
= 1.

The computational gain of the ARSTFT over the classical
one is calculated by employing the results of the illustrative
example. The results are summarized in Table 3.

C1 = A·
{

N + 4·(N)2}. (15)

C2 = K·3 +
K
∑

i=1

3·N i + α·Nr i + Nr i + 4·(Nr i)2. (16)

Table 3 shows the computational gain of the ARSTFT
over the STFT for each x(t) activity. It shows that the
ARSTFT leads to a significant reduction of the total number
of operations as compared to the classical one. This reduction
in operations is achieved by adapting Fsi, Frsi, and wi

n

according to the local variations of x(t).

5. CONCLUSIONS

A new tool for the adaptive resolution time-frequency
analysis is proposed. The ARSTFT is especially well suited
for the low activity sporadic signals like electrocardiogram,
phonocardiogram, seismic signals, and so forth. It is shown
that Fsi and Li adapt by following the x(t) local variations.
Criteria to choose the appropriate Fref and Nref are developed.
A complete methodology of adapting Frsi and wi

n for the ith
selected window has been demonstrated.

The ARSTFT outperforms the STFT. The advantages of
the ARSTFT over the STFT are the adaptive time-frequency
resolution and the computational gain. These smart features
of the ARSTFT are achieved due to the joint benefits of the
AADC, the EASA, and the resampling as they enable to adapt
Fsi, Frsi, N i, Nr i, and wi

n by exploiting the local variations of
x(t). The employment of fast algorithms in place of the DFT
for the spectrum computation is in progress, it will further
add up to the computational efficiency of the ARSTFT. More-
over, the performance comparison of the ARSTFT with other
MRA techniques, in terms of computational complexity and
quality, opens the way to new research prospective.
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