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Abstract— A goal in many applications is to combine a priori
knowledge of the physical system with experimental data to
detect faults in a system at an early enough stage as to conduct
preventive maintenance. The information available beforehand
is the mathematical model of the physical system and the key
issue in the design of model-based fault detection is the effect
of model uncertainties such as severe parametric uncertainties
and unmodeled dynamics on their performance. This paper
presents the application of a nonlinear model-based adaptive
robust state fault detection that combines on-line parameter
adaptation with robust filter structures to reduce the extent of
model uncertainty to help in the improvement of the sensitivity
of the fault detection scheme to faults. Simulation results are
presented to demonstrate the superior performance of the
proposed scheme in the early and reliable detection of incipient
faults.

I. INTRODUCTION

For the design of reliable control systems, one of the
integral parts is the ability of the system to react to sudden
unexpected changes in the operating conditions like sensor
or actuator failure. Fault tolerant control systems have a
two-fold objective of identification/isolation of faults and
regulation of the system output in the presence of faults.
The interest in the design of reliable automated systems has
spurred the interest in fault detection and diagnostics (FDD)
for nonlinear systems. The action required to regulate the
system is different for each of the faults detected and this
places an importance on the detection (the presence of a
fault) and on the diagnosis (the location and extent of a
particular fault).

A comprehensive review of the different methods for fault
detection and their applicability to a given physical system
has been presented in [1]. Model-based fault detection and
diagnosis systems have found extensive use because of the
fast response to abrupt failure and the ease of implementation
of the model-based FDD systems in real-time algorithms. In
most model-based FDD schemes an idealized assumption
that the a perfect mathematical model of the system is
available is made. In practice however, this assumption can
never be completely satisfied, since an accurate mathemat-
ical model of the physical system is not usually available
because of model uncertainty coming in because of either
parametric uncertainty or uncertain nonlinearities. Hence, the
robustness of the fault detection algorithm to modeling errors
without losing sensitivity to faults is the key problem in the
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application of model based fault detection algorithms. This
trade-off between robustness and sensitivity has attracted a
lot of research attention recently [2], [3] for linear systems
and in the work in [4], [5] for nonlinear systems.

Since assuming a known structure for the model uncer-
tainty would limit the applicability of the fault detection
schemes, the researchers in[6], [7], [8], [9] designed FDD
schemes for state fault detection in which the model un-
certainty is assumed to be unstructured but bounded by
suitable constants or functions obtained using a priori system
identification. This approach lumps the model uncertainty
in the plant into an unknown term without attempting to
differentiate between the causes of uncertainty. This results in
FDD schemes that have large thresholds to ensure robustness
of the fault detection scheme corresponding to a reduction
in the sensitivity of the fault detection scheme.

In this paper, we present a model-based fault detection
scheme to detect state faults using the adaptive-robust control
philosophy. In this framework we differentiate between the
causes of model uncertainty and use different tools to attenu-
ate their effect. The following two types of uncertainties are
of major concern in the design of fault detection schemes for
uncertain nonlinear systems; parametric uncertainties (e.g.,
the unknown inertial load in the most robotic applications)
and general uncertainties coming from modeling errors (e.g.,
nonlinear friction) and uncertain nonlinearities which could
include external dynamics and unmodeled dynamics. Robust
state reconstruction schemes are combined with controlled
on-line parameter adaptation to design adaptive-robust state
reconstruction schemes. The parameter adaptation reduces
the extent of the model uncertainty leading to an improve-
ment in the sensitivity of the fault detection scheme without
a corresponding loss of robustness of the fault detection
scheme.

The paper is organized as follows: In section II the
problem is formulated presenting the nominal model of the
system being considered and the assumptions used in the
design of the fault detection scheme, the fault detection
architecture and the scheme are presented in Section III.
Section IV demonstrates the use of batched least-squares for
parameter estimation. Analytical results on the robustness
and sensitivity of the fault detection scheme are presented
in Section V, comparative simulation results on a standard
Van der Pol oscillator model are given in Section VI and
conclusions are presented in Section VII.

II. PROBLEM FORMULATION

In this section of the paper we present the system dy-
namics that are considered in the design of the state fault
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detection scheme and the assumptions made in the design.
In model-based fault detection, residual signals are used to
detect the presence of a fault. In this paper we continuously
monitor the state reconstruction error and the parameter
estimates and utilize them as residuals in the fault detection
process.

A. Nominal Model of the System

The nominal model of the system under consideration
using the terminology in [7], [8] is given as:

ẋ= f (x,u)+Ψ(x,u)θ+Δ(x,u,t)+B(t−Tf )g(x,u) (1)

where, x∈Rn is the state vector, u∈Rm is the input to the
system and θ∈Rp is the vector of constant but unknown
parameters. f (x,u)∈Rn and Ψ(x,u)∈Rn×p are vectors or
matrices of known smooth functions, Δ(x,u,t) represents
the lumped unknown nonlinear functions such as modeling
errors and g(x,u) is a vector that represents the change in the
system dynamics due to an unknown fault with Tf being the
time of occurrence of the fault and B(t−Tf ) is a diagonal
matrix representing the time profiles of the faults and is
written in the following form:

B(t −Tf )=diag[β1(t−Tf ), · · · ,βn(t−Tf )]

where βi represents the time profile of the fault in the i−th
state equation. The time profile is given by:

βi(t−Tf )=

{
0 if t<Tf

1−e−αi(t−Tf ) if t≥Tf
(2)

with αi>0 denoting the rate of fault evolution. In the i−th
channel of the system the effect of the fault is:

ẋi= fi(x,u)+ψi(x,u)θ+Δi(x,u,t)+βi(t−Tf )gi(x,u) (3)

where ψi(x,u) is the i−th vector corresponding to the i−th
channel in the Ψ(x,u) matrix, fi(x,u), gi(x,u) and Δi(x,u, t)
are the i−th components of the f (x,u), g(x,u) and Δ(x,u, t)
vectors respectively.

The equations in (1) and (3) represents the system dy-
namics in the presence of a state dependent fault. The major
difficulties in the design of fault detection schemes for the
system described in equations (1) and (3) are:

1. The system dynamics represented by the functions
f (x,u) and Ψ(x,u) are highly nonlinear.

2. The system has model uncertainties coming from both
uncertain parameters θ and uncertain nonlinearities
Δ(x,u, t).

It should be noted that in the nominal model in equation
(1) we consider not only the uncertainty in the parameters
but also uncertain nonlinearities represented by Δ(x,u,t). As
opposed to the fault detection schemes described in the litera-
ture [6], [7], [8], [9] the uncertainties have been differentiated
by looking at the causes of the model uncertainty. By using
controlled on-line parameter adaptation mechanisms we can
reduce the extent of uncertainty and increase the sensitivity
of the fault detection scheme.

B. Assumptions

The following practical assumptions are made in the
design of the fault detection system:

Assumption 1: The unknown but constant parameters θi

lie in a known bounded region Ωθi , i.e.,

θi∈Ωθi={θi : θimin<θi<θimax} (4)
Assumption 2: The uncertain nonlinearities Δi are

bounded, i.e.,

Δi∈ΩΔi={Δi:|Δi(x,u, t)|≤δi} (5)

where for each i=1, · · · ,n the uncertain nonlinearities are
bounded by a known constant δi.

Remark 1: In fault diagnosis literature the modeling un-
certainty is often assumed to be structured and this allows
the use of transformations to decouple faults from the model
uncertainties [10], [11], [12]. Such structural assumptions
significantly limit the applicability of the approach. Similar
to [7] in this paper the modeling uncertainty is assumed to be
unstructured but bounded to remove the above conservative-
ness. The bound on the modeling uncertainties helps in the
derivation of a suitable threshold for distinguishing between
the effect of a fault and the effect of model uncertainty.

Assumption 3: The system states and the control input to
the system remain bounded before and after the occurrence
of the fault; i.e., x(t)∈L∞ and u(t)∈L∞.

Remark 2: The above assumption is made because no
fault accommodation is considered in this paper. Therefore,
the feedback controller is such that the measured signals x(t)
and the control input u(t) remain bounded ∀ t≥0.

III. FAULT DETECTION ARCHITECTURE USING

ADAPTIVE ROBUST STATE RECONSTRUCTION SCHEME

The proposed fault detection scheme is used to detect
additive and multiplicative state faults reliably and early
enough for preventive maintenance. The fault detection
scheme consists of three components: the state reconstruction
observer that reconstructs the states, the parameter estimation
scheme that estimates the parameters to reduce the extent of
model uncertainty and the evaluation scheme that monitors
the state reconstruction error and the parameter estimates to
detect the presence of any off-nominal system behavior. The
overall block diagram of the fault detection scheme and the
flow of information in the system is shown in Figure 1. In
this section we will describe the three components of the
fault detection scheme.

A. Adaptive Robust State Reconstruction Scheme

From (3), it can be observed that the dynamics of the
i−th channel of the system in the absence of a fault (i.e.,
gi(x,u)=0) are affected by uncertainty in the parameters
(θ ) and that due to the presence of unmodeled dynamics
represented by (Δi). Therefore, the i−th state is reconstructed
as:

˙̂xi= fi(x,u)+ψi(x,u)θ̂+hi(x)(xi − x̂i) (6)

where, hi is a nonlinear gain used for the reconstructing
the i−th state and θ̂ is the estimate of the parameters
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Fig. 1. State fault detection scheme using ARSR observers.

using the parameter estimation scheme as described in the
next subsection and x̂i is the reconstructed state. Hence, the
dynamics of the state reconstruction error x̃i=xi−x̂i using
equations (3) and (6) is given as:

˙̃xi=−hix̃i+ψi(x,u)θ̃+Δi(x,u,t)+βi(t−Tf )gi(x,u) (7)

where θ̃ is the parameter estimation error.

B. Parameter Estimation Scheme

In this paper, controlled on-line parameter adaptation is
utilized in order to account for the presence of parametric
uncertainty. The parameter estimation in this paper is done in
order to reduce the extent of model uncertainty as opposed to
model-based fault detection schemes presented in literature
[6], [8] where parameter adaptation is utilized after the fault
has been detected to reconstruct the fault and aid in fault
diagnosis.

Controlled on-line parameter adaptation is utilized to re-
duce the extent of the model uncertainty which improves
the sensitivity of the fault detection scheme without loss of
robustness. In this paper the parameters are estimated only
when the regressor vector is rich enough and the parameter
estimation scheme used is described in this section. Using
the dynamics of the system in equation (1), we design the
following filters:

Ω̇T =AΩT +Ψ(x,u) (8)

Ω̇0=A(Ω0+x)− f (x,u) (9)

where A is an exponentially stable matrix. Define z=x +Ω0

which is calculable, then from (1) and (9)

ż=Az+Ψ(x,u)θ+Δ(x,u,t)+B(t−Tf )g(x,u) (10)

Let ε=x+Ω0−ΩT θ=z−ΩT θ . From (10), (8) the dynamics
of ε is:

ε̇=Aε+Δ(x,u,t)+B(t−Tf )g(x,u) (11)

which has a stable dynamics in the absence of unmodeled
dynamics (i.e., Δ=0) and in the absence of faults in the sys-
tem (i.e., g(x,u)=0). The static model used for the estimation
of the unknown parameter vector (θ ) is:

z=ΩT θ+ε (12)

where, ε represents the combined effect of the unmodeled
dynamics and the presence of faults in the system. The
parameters are only updated when the regressor is rich
enough as follows. Let R(kT )=

∫ kT
(k−1)T Ω(τ)ΩT (τ)dτ where

T is the time window over which the regressor is monitored
to estimate its richness and k=1,2, · · · is an integer. The
parameter estimate will be updated every T seconds and the
parameter update law is given as:

θ̂ (kT )=

{
R(kT )−1 ∫ kT

(k−1)T Ω(τ)z(τ)dτ if R(kT )≥α(kT )I

θ̂ ((k−1)T ) otherwise
(13)

where, α(kT )>0 is a positive number, and

θ̂ (t)=θ̂((k−1)T ), ∀ t∈[(k−1)T,kT ) (14)

In matrix terminology A≥αI implies that the λmin(A)≥α .
The design variable α quantifies the richness of the signal.

Hence, the adaptive robust state reconstruction scheme
consists of the state reconstruction observer in equation (6)
and the parameter estimation scheme given by equation (13).

C. Residual Evaluation Scheme

In this paper, the state reconstruction error and the pa-
rameter estimates are continuously monitored and used as
the residual signals to detect faults. To decide wether a fault
has occurred or not we monitor the residual signals for off-
nominal behavior. For the i−th channel:

rxi=

{
fault if |x̃i(t)| ≥ x̃0

i (t), i=1, · · · ,n
fault-free otherwise

(15)

where, x̃0
i (t) is a suitable threshold on the state reconstruction

error x̃i(t) that will be specified in the next section. The
presence of model uncertainties leads to a non-zero error
even in the absence of a fault. The proper choice of the
threshold x̃0

i (t) would prevent any false alarms while still
being able to detect small/incipient faults.

In addition to the state reconstruction error (x̃i), in the
paper we utilize the parameter estimates as residuals to
help detect incipient faults in systems as well. The residual
evaluation scheme based on the parameter estimates is given
as:

rθ =

{
fault-free if θ̂ (t)∈Cθ (t)

fault otherwise
(16)

where, Cθ is a known region of the parameter estimate
space which will be specified later. It is an indication of the
presence of off-nominal system behavior when the parameter
estimates are outside this region.

IV. PARAMETER ESTIMATION USING BATCHED LEAST

SQUARES

In this paper we utilize on-line parameter adaptation using
the batched least-squares approach as described in equation
(13). The model used for the estimation of the unknown
parameter vector θ is given by (12), where the dynamics of
the modeling error is given by (11). In the absence of faults
and uncertain nonlinearities (i.e., Δ=0 and g(x,u)=0) for the
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parameter estimation error to converge to zero (θ̃→0), the
matrix R(kT ) must be positive definite [13].

Using the parameter estimation scheme in equation (13),
and the model used for estimating θ in equation (12) the
parameter estimation error is given by:

θ̃(t)=R(kT )−1
∫ kT

(k−1)T
Ω(τ)ε(τ)dτ, ∀ t∈[kT,(k+1)T ) (17)

where the dynamics of ε are as described in equation (11).
In the absence of faults in the system (g(x,u)=0) but

in the presence of bounded uncertain nonlinearities as in
assumption (2), the dynamics of ε are:

ε̇=Aε+Δ(x,u,t) (18)

which has bounded solutions with the proper choice of the
Hurwitz matrix A.

Lemma 1: With the system of filters given in equations
(8) and (9) and the proper choice of the Hurwitz matrix A
the model mismatch is bounded i.e.,

|ε(t)|≤
2

νA
|δ | (19)

Looking at the bounded solutions of the estimation error in
equation (19), when the parameters are adapted only when
the regressor is rich enough, then the parameter estimation
error is bounded and this is given by the following result:

Theorem 1: In the absence of faults in the system and
if the parameters are adapted using the model in (12) and
the adaptation scheme described in (13), then the parameter
estimation error is bounded and the bound on the parameter
estimation error is given by:

|θ̃ (t)|≤θ̃max(kT ), ∀ t∈[kT,(k+1)T ) (20)

where,
θ̃max(0)=|θmax−θmin| (21)

and

θ̃max(kT )=

{
2|δ |

α(kT )νA

∫ kT
(k−1)T |Ω(τ)|dτ if R(kT )≥α(kT )I

θ̃max((k−1)T ) otherwise
(22)

with k=1,2, · · · .

V. PERFORMANCE RESULTS

The equations (6), (13), (15) and (16) describe the fault
detection scheme that consists of the residual generation
scheme and the residual evaluation scheme to detect faults
in the system. In this section we present results on the
robustness and sensitivity of the proposed scheme.

A. Robustness

In order to detect faults in the i−th channel we monitor
the reconstruction error x̃i and therefore the threshold for
the error x̃0

i has to be so chosen such that in the absence of
faults:

|x̃i(t)|≤x̃0
i (t) (23)

i.e., the reconstruction error should be less than the selected
threshold for all possible values of the model uncertainty. In

order to show that the proposed scheme is robust to model
uncertainty, the state reconstruction error in the absence of
faults gi(x,u)=0 satisfies ∀ t∈[(k−1)T,kT ):

x̃i(t)=e−hi(t−(k−1)T )x̃i((k−1)T )

+

∫ t

(k−1)T
e−hi(t−τ)[ψi(x,u)θ̃+Δi(x,u,τ)]dτ (24)

The first term in the above equation represents the effect
of the initial state reconstruction error and the second term
represents the combined effect of the unmodeled dynamics
and the parametric uncertainty. Since, we can always choose
the initial condition x̃i(0)=0, the state reconstruction error at
the end of each parameter updating instance satisfies:

x̃i(kT )=Σk
j=1e( j−k)hiT

∫ jT

( j−1)T
e−hi( jT−τ)[ψi(x,u)θ̃

+Δi(x,u,τ)]dτ (25)

Since the function ψi(x,u) in equation (1) is continuous over
a bounded interval [(k−1)T,kT ) in addition to assumption
(3) we have that the function is bounded i.e.,

|ψi(x,u)|≤Pi(x,u) (26)

where Pi(x,u) is a function that upper bounds the regressor
function. Looking at the state reconstruction error in the
absence of a fault (24), the parameter estimation error in
equation (20) from the results in Theorem (1), the robustness
of the proposed fault detection scheme is given by the
following result.

Theorem 2: Consider the proposed nonlinear adaptive ro-
bust fault detection scheme described by equations (6), (13),
(15) and (16). If the threshold for the state fault detection
scheme x̃0

i (t) is chosen such that ∀ t∈[(k−1)T,kT ):

x̃0
i (t)=e−hi(t−(k−1)T )Γi((k−1)T )+

δi

hi
[1−e−hi(t−(k−1)T )]

+θ̃max((k−1)T )
∫ t

(k−1)T
e−hi(t−τ)Pi(x,u)dτ (27)

where,

Γi(kT )=Σk
j=1e( j−k)hiT [

δi

hi
[1−e−hiT ]

+θ̃max(( j−1)T )
∫ jT

( j−1)T
e−hi( jT−τ)Pi(x,u)dτ] (28)

then the proposed fault detection scheme is robust to model
uncertainty and avoids false alarms.

B. Sensitivity

Sensitivity of a fault detection scheme is the ability to
detect the presence of faults at an early enough stage for pre-
ventive maintenance. In this section we demonstrate that the
use of parameter adaptation reduces the uncertainty thereby
making the proposed scheme more sensitive to incipient
failure without loss of robustness.

In this section we demonstrate that a proper choice of the
parameter adaptation design parameter α(kT )>0 in equation
(13) would lead to a fault detection scheme that is more
sensitive by reducing the extent of the model uncertainty.
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Let us consider a fault detection scheme in which fixed
parameters are used without on-line parameter adaptation.
Let μ0 be the threshold used to detect faults in such a fault
detection scheme. In such schemes, fixed parameters θ̂ (0)
are used for θ and the parameter estimation error satisfies
θ̃≤|θmax−θmin|=θ̃max(0). Hence, in schemes without on-
line adaptation, the threshold for robustness satisfies (27)
∀ t∈[(k−1)T,kT ):

μ0(t)=e−hi(t−(k−1)T )Γi((k−1)T )+
δi

hi
[1− e−hi(t−(k−1)T)]

+θ̃max(0)
∫ t

(k−1)T
e−hi(t−τ)Pi(x,u)dτ (29)

where,

Γi(kT )=Σk
j=1e( j−k)hiT [

δi

hi
[1− e−hiT ]

+θ̃max(0)

∫ jT

( j−1)T
e−hi( jT−τ)Pi(x,u)dτ] (30)

Looking at the equation (29) we give the following result
which gives the required design parameter α(kT ) for im-
provement of sensitivity of the fault detection scheme when
on-line parameter adaptation is utilized:

Theorem 3: If the parameter adaptation process in the
state fault detection scheme is conducted as in equation (13)
with the design parameter α(kT ) chosen such that:

α(kT )≥
2|δ |

|θmax−θmin|νA

∫ kT

(k−1)T
|Ω(τ)|dτ (31)

then, the threshold for detecting faults in the i−th channel
if on-line parameter adaptation is implemented is such that
x̃0

i ≤μ0 i.e., the state fault detection system with on-line
parameter adaptation is more sensitive.

Hence, the use of on-line parameter adaptation reduces
the extent of model uncertainty and helps make the fault
detection scheme more sensitive without a corresponding loss
of robustness.

VI. SIMULATION RESULTS ON A VAN DER POL

OSCILLATOR

In this section of the paper, we present results on the
detection of state faults using simulation results on a Van der
Pol oscillator. A spring-mass-damper system with a nonlinear
spring and a flow induced vibration system are examples of
physical systems whose dynamics can be represented using
the Van der Pol oscillation model.

This system is utilized because results are available in the
literature [6], [9] which apply various robust fault detection
schemes to it. This enables us to compare the results of our
proposed scheme to the results in the literature.The Van der
Pol equation is given by:

ÿ+2ωξ (μy2−1)ẏ+ω2y=u+β (t−Tf ) f (y)+Δx (32)

where, ω , ξ and μ are positive constants, β is the time profile
of the fault, f is the change in system dynamics due to a fault
and Δx represents the unmodeled dynamics of the system due
to the higher order terms that have been ignored in obtaining

the system dynamics of the Van der Pol oscillator. It is to be
noted that in this paper the uncertainty in the model comes
in not only because of parametric uncertainty but also due to
the unmodeled dynamics. The use of parametric adaptation
reduces the model uncertainty which increases the sensitivity
of the fault detection scheme without loss of robustness.

Utilizing x1=y and x2=ẏ as the state variables we get the
state-space equations of the system as:

ẋ1=x2

ẋ2=u−2ωξ (μx2
1−1)x2−ω2x1+Δx+β (t−Tf ) f (x1) (33)

In this simulation study we use not only a 10% uncertainty
in the value of ξ but also uncertainty coming in due to
the presence of unmodeled dynamics because of neglected
higher order dynamics represented by Δx. The following
parameters are used in the simulation studies: ω=0.9, ξ=0.6
and μ=0.95. The parametric uncertainty is assumed to occur
due to a 10% uncertainty in θ=ξ and due to the presence
of unmodeled dynamics Δx which is bounded by a known
constant δ=0.1. Two faults are considered in this paper the
first f1(x1)=1.4+0.4cos(x1) which occurs at time Tf =30
seconds and evolving at a rate of α=0.2. The second
fault has a smaller magnitude of fault to demonstrate the
improvement in the sensitivity of the scheme due to the use
of parameter adaptation and is given by f2(x1)=0.45cos(x1).
In Figure 2 we present the simulation results due to the
presence of the first fault function f1(x1) with and without
parameter adaptation in the state reconstruction scheme. In
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Fig. 2. Fault detection with f1(x1) affecting the system.

order to further demonstrate the ability of the fault detection
scheme to detect small faults early enough for preventive
maintenance a smaller fault given by f2(x1)=0.45cos(x1)
which occurs at time Tf =30 seconds and evolves at a rate
of α=0.2 is simulated and the results of the schemes with
and without adaptation are given in Figure 3. In addition to
being able to detect additive state faults, since the parameter
estimates are also monitored, multiplicative (parametric)
faults can also be reliable detected.In order to validate that
the proposed scheme can reliably detect multiplicative faults,
a fault is introduced that affects the damping ratio (ξ )
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Fig. 3. Fault detection with f2(x1) affecting the system.

by increasing its value. This is a common occurrence in
systems with fluid contaminants that change the value of the
damping ratio. The fault function that is simulated is such
that f3(ξ )=ξ0+0.01t where ξ0 = 0.54. The fault function is
simulated such that the fault starts at Tf =30 seconds and
follows a ramp like increase in the value of ξ . In Figure 4
and Figure 5 we present the state reconstruction error without
parameter adaptation, the reconstruction error with parameter
adaptation and the estimates of the parameters. It can be seen
that the parameter estimation scheme and the adaptive robust
state reconstruction scheme are able to detect the off-nominal
behavior of the parameter estimate well ahead of the non-
adaptive scheme.
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Fig. 4. Fault detection with f3(ξ ) affecting the system parameters.

VII. CONCLUSIONS

In this paper we present an adaptive robust framework for
model-based state fault detection. An adaptive robust state
reconstruction (ARSR) scheme is designed to reconstruct the
state. The ARSR utilizes robust filter structures to attenuate
the effect of unmodeled dynamics and combines this with
on-line parameter adaptation to reduce the extent of model
uncertainty to improve the sensitivity of the fault detection
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Fig. 5. Parameter estimates with f3(ξ ) affecting the system.

scheme without a corresponding loss of robustness. Com-
parative simulation results are presented to demonstrate the
improved performance of the proposed scheme to help in the
early detection of incipient faults.
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