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Abstract. The adaptive Rothe method approaches a time-
dependent PDE as an ODE in function space. This ODE is
solvedvirtually using an adaptive state-of-the-art integrator.
Theactualrealization of each time-step requires the numerical
solution of an elliptic boundary value problem, thusperturb-
ing the virtual function space method. The admissible size of
that perturbation can be computeda priori and is prescribed
as a tolerance to an adaptive multilevel finite element code,
which provides each time-step with an individually adapted
spatial mesh. In this way, the method avoids the well-known
difficulties of the method of lines in higher space dimensions.
During the last few years the adaptive Rothe method has been
applied successfully to various problems with infinite speed
of propagation of information. The present study concerns the
adaptive Rothe method for hyperbolic equations in the model
situation of the wave equation. All steps of the construction
are given in detail and a numerical example (diffraction at a
corner) is provided for the 2D wave equation. This example
clearly indicates that the adaptive Rothe method is appropriate
for problems which can generally benefit from mesh adapta-
tion. This should be even more pronounced in the 3D case
because of the strong Huygens’ principle.

Introduction

Adaptive methods become particularly important for the effi-
cient and reliable numerical solution of time dependent PDEs
in the presence of transient phases and sharply localized phe-
nomena. There are two principal choices if one wishes to avoid
a nonuniform subdivision of the whole space-time domain,
and stays with a time-marching approach:

– Discretization in space first, known as the “method of
lines.” This creates an ordinary differential equation which
can be solved by a state-of-the-art numerical integrator.
However, the spatial mesh-points stay fixed in time, or in
the case of a moving mesh, are often subject to severe re-
straints. Thus, the method has considerable difficulties in

? The work of this author was supported in part by the U.S. De-
partment of Energy under contract DE-FG02-92ER25127.

changing the spatial mesh appropriately in higher dimen-
sions.

– Discretization in time first, known as the “Rothe method.”
Here, one first applies an adaptive time-marching scheme
to an appropriate reformulation of the problem as an ODE
in function space. Each time-step results in an elliptic
boundary value problem, which can be solved effectively
by an adaptive finite element method. By this means, an
appropriate spatial mesh is introduced for each individual
time-step.

The advantages of the latter approach were shown by the sec-
ond author in a series of papers [2–4] for linearparabolic
equations. It was demonstrated that an adaptive finite element
code such as KASKADE [1,15] could be applied successfully
as ablack box. Only a tolerancehas to be prescribed for the
elliptic solver at each time-step. This single number is cho-
sen such that a more accurate solution of the elliptic problem
would not change the time-step—at least not locally. This gen-
eral method was calledadaptive Rothe methodand numerical
experiments have confirmed its efficiency.

This approach was later extended to several equations of
importance in applications—including problems not of para-
bolic type, e.g.,

– the so-called bio-heat-transfer-equation [4]
– Schr̈odinger’s equation and Fresnel’s wave equation1 [25,

26]
– nonlinear reaction-diffusion equations [14,22]
– nonlinear ODEs in infinite dimensional sequence spaces,

as arising in polymer chemistry and statistics [28]

All these equations haveinfinite speedof propagation of in-
formation. This makes the adaptive Rothe method particularly
well suited since there is a clear cut distinction between time
and space.

Hyperbolic equations have a different character: there are
finite speeds of propagation, which blurs the distinction be-
tween time and space; the “light-cone” only provides a dis-
tinction between “time-like” and “space-like” directions. The

1 Note, that Fresnel’s equation is parabolic in the damped case and
of Schr̈odinger type in the loss-free case.
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aim of this paper is to study the adaptive Rothe method in de-
tail in a hyperbolic model case. The principal design steps of
the method and the necessary tolerance formulas for control-
ling the black box elliptic solver are presented. A numerical
example—so far for the 2D case only—clearly indicates, that
the adaptive Rothe method is appropriate for problems which
can benefit from mesh adaptation in general.

Our paper is organized as follows:
In Section 1, we reformulate the wave equation as an ODE

with an infinite-dimensional state space, i.e., as an abstract
Cauchy problem in a certain Hilbert space.

In Section 2, we discuss single-step methods which can be
applied to this abstract Cauchy problem and their approxima-
tion and conservation properties.

In Section 3, we introduce the adaptive time-step algorithm
in Hilbert space. Note, that this algorithm isvirtual: in reality
there are perturbations by a discretization in space.

In Section 4, we derive the tolerances which have to be
prescribed to the discretization in space. They are chosen such
that the time-step is not changed noticeably and that a user
given tolerance in time is matched.

In Section 5, we finally show how the design principles are
reflected in the actual performance of the method in 2D. We
have chosen a diffraction problem, where adaptivity pays off
in the beginning because of the large “shadow regions.” We
also indicate why adaptivity will be even more important in
the 3D case, where in contrast to the 2D case the strong Huy-
gens’ principle predicts growing “shadow regions” whenever
sharply localized initial data are given.

1 The continuous problem

For the sake of simplicity we restrict ourselves to thehomo-
geneous wave equation

ytt(t, x) − c2∆y(t, x) = 0, x ∈ Ω, t ∈]0, T ]

with wave speedc > 0, homogeneous Dirichlet boundary
conditions

y(t, ·)|∂Ω = 0, t ∈]0, T ],

and initial data2

y(0, ·) = y0 ∈ H1
0 (Ω), yt(0, ·) = z0 ∈ L2(Ω).

Here,Ω ⊂ R
d denotes a bounded Lipschitz domain andT > 0

a fixed final time. We will apply semi-group theory as the tool
for establishing existence and uniqueness and—even more
important—error estimates of semi-discretizations in time. To
this end, we have to reformulate our problem accordingly.

Let L denote the selfadjoint Friedrichs representation op-
eratorL : DL ⊂ L2(Ω) → L2(Ω) of the Dirichlet form
(∇u, ∇v)L2 , i.e.,

(Lu, v)L2 = (∇u, ∇v)L2 u ∈ DL, v ∈ H1
0 (Ω),

2 All function spaces are understood to comprisecomplex-valued
functions.

cf. [21, pp. 332ff]. Fors ≥ 0, we introduce the smoothness
spacesḢ2s = DLs . Using the Poincaré-Friedrichs inequality,
we can equip the Hilbert space

H = H1
0 (Ω) × L2(Ω)

with the energy inner product of our problem, i.e.,

a(u, v) = c2(∇u1,∇v1)L2 + (u2, v2)L2 ,

u = (u1, u2), v = (v1, v2) ∈ H.

The correspondingenergy normof H is denoted as

‖u‖2
a = a(u, u) u ∈ H.

Deploying the unbounded, densely defined, and closed oper-
ator

A : DA = Ḣ2 × H1
0 (Ω) ⊂ H → H,

where

Au = (u2,−c2Lu1) u = (u1, u2) ∈ DA,

yields an equivalent formulation of the wave equation as the
following abstract, first order Cauchy problem

ut = Au, u(0) = u0 ∈ H,

with the solution and initial data

u = (y, yt), u0 = (y0, z0).

Lemma 1 The operatorA, defined as above, is skew-adjoint
with respect to the energy inner product onH.

Proof. Let u = (u1, u2), v = (v1, v2) ∈ DA be given. The
skew-symmetry ofA is best visible in the second row of the
following formula

a(Au, v) = c2(∇u2,∇v1)L2 − c2(Lu1, v2)L2

= c2 ((Lu2, v1)L2 − (u1, Lv2)L2)

= −a(u, Av)

and implies that−A∗ is an extension ofA as a densely defined
closed operator. By the maximality of the Friedrichs represen-
tationL, we conclude that in factA = −A∗.

Corollary 2 The operatorA generates aC0-groupexp(tA)
of operators which are unitary with respect to the energy norm
of H. In particular, the solution of the abstract Cauchy prob-
lem is uniquely given by

u(t) = exp(tA)u0 ∈ H.

It conserves the smoothness norm

‖Asu(t)‖a = ‖Asu0‖a, t ∈ R, (1)

for u0 ∈ DAs ands ∈ N0. Hence,DAs is an invariant sub-
space under the action of the group.

Proof. The operatorA/i is selfadjoint and Stone’s theorem
[23] implies thatA is generating aC0-group exp(tA) =
exp(itA/i) of unitary operators onH. The norm conserva-
tion follows from the fact thatA commutes with the group.

The special cases = 0 of formula (1) is just an abstract re-
formulation of the well known conservation of energy of the
wave equation [20, p. 139].
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2 Semi-discretization in time

We consider single-step methods which are given by a rational
approximationR of the exponential function withconsistency
orderp ∈ N,

|R(z) − exp(z)| = O(|z|p+1), z → 0.

We assume throughout that the rational function isA-stable3,
i.e.,

<z ≤ 0 ⇒ |R(z)| ≤ 1.

The single-step method approximating the abstract Cauchy
problem is now given by the time-marching scheme

un+1 = R(τA)un,

whereτ denotes the time-step. In a seminal paper, Brenner
and Thoḿee have shown [11, Theorem 4] that the following
error estimate holds.

Theorem 3 Let R be anA-stable rational approximation of
orderp of the exponential function. Then, the estimate

‖un − u(t)‖a ≤ Cts−β(s)τβ(s)‖Asu0‖a, u ∈ DAs (2)

holds uniformly fort = nτ , whereβ(s) = sp/(p + 1) and
s ∈ N is restricted to(p + 1)/2 < s ≤ p + 1.

Later on we will use the implicit Euler scheme

RE(z) =
1

1 − z
,

which is of orderp = 1, yielding the single-step solutionuE
n ,

and the Crank-Nicolson scheme

RCN(z) =
1 + z/2
1 − z/2

,

which is of orderp = 2, yielding the single-step solutionuCN
n .

Lemma 4 If the regularity of the initial datau0 = (y0, z0) of
the wave equation is given byy0 ∈ Ḣ2 andz0 ∈ Ḣ2, then the
error estimates

‖uE
n − u(t)‖a ≤ Ctτ, ‖uCN

n − u(t)‖a ≤ Ct2/3τ4/3,

hold for all t = nτ . Imposing the higher regularityy0 ∈ Ḣ4

andz0 ∈ Ḣ2 yields the error estimates

‖uE
n − u(t)‖a ≤ Ctτ, ‖uCN

n − u(t)‖a ≤ Ctτ2,

for all t = nτ .

3 Since the spectrum of a skew-adjoint operator is purely imagi-
nary,A-stability might appear unnecessarily restrictive. One would
rather expect the assumption ofI-stability, i.e., |R(ix)| ≤ 1 for all
x ∈ R. However, it was shown in [27] that aj-stageI-stable Runge-
Kutta method of orderp ≥ 2j − 1 is A-stable. Thus, there is no
restriction for all practical reasons. Furthermore, no generalization
of Theorem 3 is known forI-stable methods which are notA-stable.

Proof. We note that

A2u0 = −c2(Ly0, Lz0), A3u0 = −c2(Lz0,−c2L2y0),
u0 = (y0, z0),

and therefore

u0 ∈ DA2 ⇔ y0 ∈ Ḣ2, z0 ∈ Ḣ2,

u0 ∈ DA3 ⇔ y0 ∈ Ḣ4, z0 ∈ Ḣ2.

We can now use Theorem 3.
Since the norm conservation (1), in particular fors = 0,

is an important feature of the continuous model it is natural
to consider single-step methods which are energy conserving,
i.e., for whichR(τA) is aunitaryoperator with respect to the
energy norm. A useful criterion is provided by the following
Lemma.

Lemma 5 If a rational approximationR of the exponential
function with real coefficients fulfills

R(z)R(−z) = 1 ∀z ∈ C

and has no poles in the left half-plane, thenR is anA-stable
approximation of the exponential function andR(τA) is uni-
tary with respect to the energy inner product, i.e.,

R(τA)R(τA)∗ = I.

Proof. Applying any operational calculus for unbounded op-
erators, e.g., the Dunford-Taylor calculus [16], and using the
skew-adjointnessA∗ = −A yields

I = R(τA)R(−τA) = R(τA)R(τA∗)

as a consequence ofR(z)R(−z) = 1. It remains to show that
R(τA∗) = R(τA)∗. This, surprisingly, requires some work.

Using thatR(z)R(−z) = 1 and the maximum principle
one can show theA-stability of R, cf. [13, Lemma 6.20].
Hence, by a result of Brenner and Thomée [11, p. 685], there
exists a bounded measureµ onR+ such thatR is the Laplace-
Stieltjes transform ofµ,

R(z) =
∫ ∞

0
ezλdµ(λ), <z ≤ 0.

Now, the fact thatR has real coefficients immediately implies
that µ is real-valued. Applying the Hille-Phillips functional
calculus [19], we get

R(τA∗) =
∫ ∞

0
exp(τλA∗)dµ(λ) =

∫ ∞

0
exp(τλA)∗dµ(λ)

=
(∫ ∞

0
exp(τλA)dµ(λ)

)∗
= R(τA)∗.

The second equality follows from Stone’s theorem and the
third equality holds sinceµ is real-valued. Note, that all inte-
grals represent bounded linear operators onH.
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The Crank-Nicolson scheme satisfies the assumption of
Lemma 5 which implies the well-known conservation of en-
ergy of the corresponding semi-discretization in time. Note,
thatRCN(τA) being unitary also follows from observing that
−RCN(τA) is the Cayley transform of the selfadjoint operator
τA/2i, cf. [24, Theorem 13.19].

Corollary 6 Let u0 ∈ DAs , s ∈ N0 be given. The semi-
discretization in time given by the Crank-Nicolson scheme
conserves the corresponding smoothness norm,

‖AsuCN
n ‖a = ‖Asu0‖a, n = 1, 2, . . . .

In particular, DAs is an invariant subspace under the action
of the Crank-Nicolson scheme.

Proof. The fact that the operatorRCN(τA) is unitary proves
the cases = 0. The other cases follow from the commutativity
AR(τA) = R(τA)A.

Note, that this result immediately extends to all implicit
Runge-Kutta methods based on Gauss-Legendre quadrature
[13,18].

3 The Hilbert space algorithm

The backbone of the adaptive Rothe method is the application
of ODE-techniques [13,17,18] to the abstract Cauchy prob-
lem. Modern integrators for ODEs adapt the time-step in such
a way that it is as large as possible while the local error esti-
mate matches a user prescribed toleranceTOL. To this end, a
simple feedback control loop is used which can be described
by just explaining the first step of a single-step method.

For a given initial valueu0 ∈ DA2 , and a step size guess
τ0, two approximations ofdifferentaccuracy are computed,
e.g.,

uE
1 = RE(τ0A)u0, uCN

1 = RCN(τ0A)u0.

If τ0 is small enough, we may assume by referring to Lemma
4 that

ε = ‖uE
1 − uCN

1 ‖a ≈ ‖uE
1 − exp(τ0A)u0‖a.

A reasonable new time-stepτnew, which tries to push the error
ε near to but belowTOL, would thus be given by

τnew = σ

√
TOL

ε
τ0,

whereσ < 1 is a safety factor. Note, that this formula takes the
asymptotic behavior of the implicit Euler method forτ → 0
into account. However, using arguments fromcontrol theory
one can show, that this proposal is a robust device even if the
asymptotics is seriously perturbed, cf. [13]. Now, we distin-
guish two cases:

– ε > TOL. We repeat the step with the sameu0, but replace
the time-stepτ0 by τnew.

– ε ≤ TOL. We setu1 = uCN
1 ∈ DA2 andτ1 = τnew and

progress as in the first step.

The choiceu1 = uCN
1 is made for two reasons: First,uCN

1 is
more accurate thanuE

1 and second, it conserves energy which
is crucial.

4 Perturbations by finite element solution

The actual approximation of the Crank-Nicolson and of the
implicit Euler step using linear finite elements yields pertur-
bations which we denote by

ûCN
1 = uCN

1 + δCN, ûE
1 = uE

1 + δE.

The idea of the adaptive Rothe method, as introduced by
Bornemann [3], is to control the perturbationsδCN and δE
by an adaptive finite element method in such a way that the
time-step sequence is not influenced in an essential way. We
set

ε̂ = ‖ûCN
1 − ûE

1 ‖a, Θ = ‖δCN‖a + ‖δE‖a,

and take thecomputablenew time-step

τ̂new = σ

√
TOL

ε̂
τ0

instead of thevirtual τnew. Using the trivial estimate

ε̂ − Θ ≤ ε ≤ ε̂ + Θ,

we notice that the constraint

Θ ≤ ε̂/4 (3)

guarantees

0.89 τ̂new ≤ τnew ≤ 1.16 τ̂new,

which seems to be a tolerable range in practice. We realize the
condition (3) by using error estimators

‖δCN‖a ≈ [δCN], ‖δE‖a ≈ [δE].

Here and in what follows, we use square brackets for denoting
an estimator of some error quantity. The final error control in
each step is given by splitting the tolerance in an appropriate
way,

[δCN], [δE] ≤ (1 − ρ) TOL /2,

4(1 − ρ) TOL ≤ ε̂ ≤ ρ TOL .
(4)

Note, that the first two are conditions on the finite element
solution whereas the third is a condition on the time-step. We
have to requireρ ≥ 0.8 and in practice we use

ρ∗ = 5/6 = 0.83333 . . . ,

which means that the spatial problems have to be solved ten
times as accurately as the time-marching loop:(1−ρ∗)TOL/2
= 0.1 ρ∗ TOL. This also helps to assure energy conservation
since the finite element solution doesnot exactlyconserve en-
ergy but keeps it nearly constant within the given range of
accuracy.

Adaptive finite element codes such as KASKADE [15,
8] do usually not provide the error estimators[δCN] and[δE]
directly. One has to relate them to the energy norm of the
elliptic problem under consideration. This will be worked out
next.
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Fig. 1. Left: Relative errorε(t) vs. time for differ-
ent tolerancesTOL (Example 1).Right: Number of
nodal points vs. time for different tolerancesTOL
(Example 1).

We analyze the Crank-Nicolson and the implicit Euler step
and recall that there are two componentsu = (y, z) since we
have reformulated the wave equation as a first order system.
Let uj = (yj , zj), ûj = (ŷj , ẑj), andδ = (η, ζ). The su-
perscripts CN and E will only be used when a distinction is
necessary and not clear from the context.

The Crank-Nicolson step is given by(
I +

τ2c2

4
L

)
y1 =

(
I − τ2c2

4
L

)
y0 + τz0,

z1 =
2
τ

(y1 − y0) − z0.

The first equation is solved by a finite element method and
yields an approximation for which we control the errorη in the
energy norm of the elliptic operatorI + τ2c2L/4. Therefore,
an adaptive finite element method provides the error estimator

[η]2 ≈ ‖η‖2
L2 +

τ2c2

4
|η|2H1 .

The second equation yieldŝz1 after a projection or interpo-
lation of y0 and z0. We may assume that the projection or
interpolation errors are considerably smaller than2[η]/τ and
obtain

‖ζ‖2
L2 ≈ 4

τ2 ‖η‖2
L2 .

Altogether, we get that

‖δ‖2
a = c2|η|2H1 + ‖ζ‖2

L2 ≈ 4
τ2 [η]2,

which makes it natural to define the error estimator

[δCN] =
2
τ

[ηCN].

Likewise, the implicit Euler step reads as

(
I + τ2c2L

)
y1 = y0 + τz0,

z1 =
1
τ

(y1 − y0).

Arguing as above, we obtain the estimator

[η]2 ≈ ‖η‖2
L2 + τ2c2|η|2H1 , ‖ζ‖2

L2 ≈ 1
τ2 ‖η‖2

L2

and get

‖δ‖2
a = c2|η|2H1 + ‖ζ‖2

L2 ≈ 1
τ2 [η]2.

Therefore, it is natural to define

[δE] =
1
τ

[ηE].

Hence, the error criterion (4) will beimplementedin the form

[ηCN] ≤ τ(1 − ρ) TOL /4, [ηE] ≤ τ(1 − ρ) TOL /2. (5)

5 Numerical examples

The method introduced above has been implemented in the
2D case using the program KASKADE 3.0 as the black box
solver of the elliptic problems. KASKADE 3.0 dates back to
work of Deuflhard, Leinen, and Yserentant [15] and was later
improved by Bornemann, Erdmann, and Kornhuber [7,8]. Its
present implementation at the Konrad-Zuse-Zentrum Berlin
is due to Beck, Erdmann, and Roitzsch [1]. It features all the
properties which are needed for the adaptive Rothe method
and offers two fast multilevel solvers for elliptic problems of
the type

(I + τ2L)u = f.

Both have multigrid complexityO(N), whereN is the number
of nodal points. This complexity bound holdsuniformlyin the
time-stepτ . One fast solver is aτ -dependent modification of
the BPX method [10] developed by Bornemann [4]; the other is
the cascadic multilevel method developed by Deuflhard [12]
and studied by Bornemann, Deuflhard, and Krause [5,6,9].
The mass matrix is stabilized by lumping for very small time-
steps.

5.1 Hyperbolic transport

We will discuss an essentially one-dimensional transport prob-
lem, which is suited to address such topics as stability and
robustness of the adaptive strategy and accumulation of er-
rors. With respect to the latter, one might expect a behavior of
the adaptive Rothe method much less favorable as compared
to parabolic problems because there is no damping in hyper-
bolic problems. However, we will show a performance which
is decisively better than this expectation.
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We consider the 2D homogeneous wave equation with
wave speedc = 1 on the domainΩ =]0, 3[×]0, 0.25[, choos-
ing initial data and boundary values such that the solution is
given by the following transported Gaussian

y(t, x1, x2) = 0.1 exp
(−400 · (0.125 + t − x1)2

)
.

This way, we take homogeneous Neumann boundary con-
ditions on the boundary pieces parallel to thex1-axis, and
for t ∈ [0, 2.75], as a good approximation within the accu-
racy range to be chosen, Dirichlet boundary conditions on
those boundary pieces parallel to thex2-axis. We have per-
formed runs for the tolerancesTOL = 0.1, TOL = 0.05, and
TOL = 0.025 until that timet at which a100% relative error
ε(t) was accumulated,

ε(t) = max
s∈[0,t]

‖ynumerical(s) − y(s)‖a

‖y(s)‖a
.

As shown in Fig. 1, in a double logarithmic plot ofε(t) vs. t
we get equally spaced parallel lines,

ε(t) ∝ TOL ·tβ , β ≈ 0.9. (6)

Here, the adaptive strategy realizes nearly constant time steps,
independently of the actually accumulated error. Thus, since
error in time is only controlled in keeping itlocally constant,
there is no influence of the toleratedoverallerrors on the per-
formance of the adaptive strategy. Moreover, the observed near
linear increase of the error in time is in perfect accordance with
the theoretical result of Lemma 4.

Also, the deviation from energy conservation increases
like Eq. (6). However, the constants are much smaller: for
TOL = 0.025 there is a0.3% deviation from energy conser-
vation att = 0.1 (13 time-steps, solution error4.6%) and a
5.6% one att = 2.75 (342 time-steps, solution error83%).

The number of nodal points increases only slightly with
time, mainly due to small high frequency errors introduced
by the adaptive meshing in space. However, comparable in
size to this increase there is a fluctuation which is caused by
geometric effects of the triangulation, see Fig. 1.

Altogether, this example shows that the adaptive strategy
is a stable and robust device which, first, is not affected by
accumulation of errors in time, and second, accumulates errors
in a predictable way—even for long term computations.

5.2 Diffraction at a corner

Given the L-shaped domain

Ω = {(x1, x2) : 0.5 < x1 < 1 and0 < x2 ≤ 0.5}
∪ {(x1, x2) : 0 < x1 < 1 and0.5 < x2 < 1}

with boundary segmentsΓ1 = {x ∈ ∂Ω : x2 = 1} and
Γ2 = ∂Ω\Γ1, we consider the wave equation with wave speed
c = 1, homogeneous Dirichlet boundary conditions onΓ1
and homogeneous Neumann boundary conditions onΓ2. The
initial values are

z0 = 0,

y0(x) =

{−ω · sin(2πkx2/S) for x2 ∈ [0, S],

0 for x2 ∈ [S, 1].

x1

x2

P

1

S

1

Fig. 2. Geometry of the initial data (Example 2)

Table 1.Performance data for Example 2

# step time θtime θspace ‖ûCN
n ‖a τ τnew/τ # nodal points

1 0.014 0.81 0.16 0.48 0.014 1.96 3876
15 0.194 0.74 0.15 0.47 0.013 1.00 11884
30 0.394 0.77 0.17 0.47 0.014 1.00 12166
45 0.593 0.74 0.15 0.46 0.013 1.01 22227

These initial data are depicted in Fig. 2. They resemble a
monochromatic plane wave propagating in thex2 direction
which is diffracted at the pointP into the shadow region of ge-
ometrical optics. Even though these initial data are slightly less
regular as required by the theory above, the adaptive strategy
leads to stable results, resembling the efficiency and asymp-
totic behavior of more regular data. We suggest that this can be
understood by considering the adaptive algorithm as a stable
feedback control device. Using such an argument, Bornemann
and Deuflhard [13, pp. 178ff.] have been able to explain why
step-size control for ordinary differential equations still works
if there appears a sudden decrease of regularity.

The parameters of our example are given by

k = 2, S = 0.4, ω = 0.05, TOL = 0.15.

We computed 45 time-steps. Figs. 3 and 4 show the solution
and triangulation for time-step # 20, # 30, and # 40.

Table 1 provides some relevant information every 15th
step. Here, we define the ratios

θspace =
4[ηCN]
τ TOL

, θtime =
ε̂

TOL
.

Because of the error criteria (4) and (5) we have4(1 − ρ∗) =
0.67 · · · ≤ θtime ≤ ρ∗ = 0.83 . . . andθspace ≤ (1 − ρ∗) =
0.17 . . . . Small values ofθtime and θspace indicate that the
method computes unnecessarily accurate solutions which
means a loss in efficiency. Note, however, how close the com-
puted values ofθtime and θspace are to their upper bounds.

The time-step has beenautomaticallychosen to be one
tenth of a period of the monochromatic wave. This seems quite
reasonable given the prescribed15% accuracy. Note, that since
the solution propagates into the shadow region the number of
nodal points has to increase steadily with time. The observed
4% loss of energy is due to the fact that the triangulations are
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Fig. 3. Solution and triangulation for time-step # 20,t = 0.27, (Example 2). Notice that the upper boundary of the initial perturbation was
located atx2 = 0.4. Thecolor-codingis chosen as follows: the green of the upper left corner belongs to zero, the maximum negative value is
dark blue, the maximum positive value dark red. In between, the colors are distributed as in the spectrum of visible light.

Fig. 4.Solution for time-step # 30,t = 0.39, and # 40,t = 0.54, (Example 2). Again, notice that the upper boundary of the initial perturbation
was located atx2 = 0.4. Color-coding as in Fig. 3.

changing at each time-step and the finite element projection
does not exactly conserve energy. However, this error is well
below the prescribed space error tolerance.

In the “lighted region” the algorithm chooses a nearly uni-
form mesh-size ofh ≈ τ/2. At time-step 45 this region fills
up the whole domain, which explains that the number of nodal
points is roughly given byN ≈ 3h−2/4 ≈ 20000. Thus, if
one measures the work of the method by the number of degrees
of freedom, it corresponds to the work of an explicit method
with uniform time-space grid and a CFL-number of roughly
2.

As has to be expected, adaptivity offers no benefit at the
end of the computation. However, during the earlier stages up
to 6 times as many nodal points would be required using a
uniform mesh. A 3D problem would benefit from adaptivity
at all timesbecause of the strong Huygens’ principle. We will
return to that point in our conclusion.

6 Conclusion

We have shown that the adaptive Rothe method is a successful
adaptive device for problems with finite propagation speed. It
requires only a simple outer loop to take advantage of an adap-
tive finite element code such as KASKADE [1,7,8,15]. The
method is reliable and robust if the finite element solutions are
accurate enough. The necessary accuracy is given by simple

formulas. The numerical examples presented nicely reflect the
design principles discussed.

However, there is one major drawback of the black box use
of the finite element code. The energy of the wave equation
cannot be conserved exactly. Therefore one should think about
simplemodifications of the finite element module which would
strictly guarantee energy conservation, not only within the
accuracy of the elliptic solver.

The diffraction example shows that adaptivity can pay off
for the wave equation, however, it does so only in the “shadow
regions.” In the 2D case the “lighted region” tends to spread
out everywhere thus producing nearly uniform triangulations
after some time. However, in 3D due to the strong Huygens’
principle [20, p. 131] “shadow regions” are created after that
a sharp signal has passed by. This generates large areas where
coarse triangulations are a benefit in efficiency. Note, that we
presented the algorithm for any spatial dimension. We there-
fore believe that our algorithm will be of particular interest in
the 3D case.
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