
Research Article

An Adaptive Scheduler for Real-Time Operating Systems to
Extend WSN Nodes Lifetime

Roberto Rodriguez-Zurrunero , Ramiro Utrilla , Elena Romero, and Alvaro Araujo

B105 Electronic Systems Lab, ETSI Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30,
28040 Madrid, Spain

Correspondence should be addressed to Roberto Rodriguez-Zurrunero; r.rodriguezz@b105.upm.es

Received 25 July 2017; Revised 29 December 2017; Accepted 9 January 2018; Published 6 February 2018

Academic Editor: Giovanni Pau

Copyright © 2018 Roberto Rodriguez-Zurrunero et al. 	is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Wireless Sensor Networks (WSNs) are a growing research area as a large of number portable devices are being developed.	is fact
makes operating systems (OS) useful to homogenize the development of these devices, to reduce design times, and to provide tools
for developing complex applications. 	is work presents an operating system scheduler for resource-constraint wireless devices,
which adapts the tasks scheduling in changing environments. 	e proposed adaptive scheduler allows dynamically delaying the
execution of low priority tasks while maintaining real-time capabilities on high priority ones. 	erefore, the scheduler is useful
in nodes with rechargeable batteries, as it reduces its energy consumption when battery level is low, by delaying the least critical
tasks. 	e adaptive scheduler has been implemented and tested in real nodes, and the results show that the nodes lifetime could be
increased up to 70% in some scenarios at the expense of increasing latency of low priority tasks.

1. Introduction

An operating system (OS) is a so
ware layer that provides
hardware abstraction and allows the developer to manage
hardware resources. An OS also provides the developer stan-
dard mechanisms and services to ease and unify application
development.

	erefore, the main advantages of using an OS are the
so
ware portability over heterogeneous hardware platforms
and the ability to build application level developments regard-
less of the hardware used. OSes also provide other features
such as multithreading capabilities or memory management.
Wireless Sensor Networks (WSNs) are one of the most
OSes demanding �elds as these networks are composed by
heterogeneous nodes where e�cient hardware management
is a main issue.

On the other hand, using an OS usually implies an over-
load in memory, CPU cycles, or energy consumption. 	is
overload could be a critical issue in autonomous resource-
constraint systems such as nodes present in WSNs. For this
reason,OSes forWSNsmust ful�l some speci�c requirements
and features:

(i) energy e	ciency, so the battery of autonomous wire-
less sensor nodes could last long periods;

(ii) memory management tools, in order to develop
dynamic applications that use memory e�ciently;

(iii) real-time capabilities, as most applications require
bounded processing latencies of sensor data;

(iv) wireless protocol stack, which allows reliable and e�-
cient communications in the nodes, while consuming
low resources;

(v) adaptability to the environment, as WSN applica-
tions are heterogeneous and they usually operate in
dynamic environments.

	e scheduler is considered the core of an OS as it manages
the tasks execution and could provide real-timemanagement
capabilities to the developer. Optimizing the scheduler is
mandatory in OSes for WSNs in order to provide real-time
multithread capabilities while using the lowest resources
possible.

Our work proposes a scheduler that changes the task
scheduling depending on environment conditions, which are

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 4185650, 10 pages
https://doi.org/10.1155/2018/4185650

http://orcid.org/0000-0002-1720-665X
http://orcid.org/0000-0002-4464-0814
http://orcid.org/0000-0001-9269-5900
https://doi.org/10.1155/2018/4185650

2 Wireless Communications and Mobile Computing

treated as inputs. Energy e�ciency could be improved with
this algorithm as the scheduler adapts dynamically to the
environment when it changes. In this work, we use the device
battery level and the tasks priorities as environment inputs
in order to reduce energy consumption when the battery is
running low, while maintaining minimum latencies for high
priority tasks.

	is paper is organized as follows. Section 2 presents
the related works in the WSN OS �eld. In Section 3, the
architecture of the scheduler is described. Section 4 shows
the algorithm used for making scheduling decisions, while
Section 5 describes the implementation of the algorithm in
real nodes and the test scenario used. In Section 6, results
are presented and discussed. Finally, the paper is �nished in
Section 7 with the work conclusion.

2. Related Work

Operating systems for WSNs are a highly studied area in the
last decade since the �rst networks were deployed. Many of
them have been developed during the last years, with TinyOS
[1] and Contiki OS [2] being the most extended ones inWSN
applications.

	ese OSes �t the requirements of WSN OSes, as they
have a very small memory footprint while providing devel-
opment abstraction. 	ey also provide full network stack,
simple memory management, and some multithreading
capabilities. 	ese OSes can run well in resource-constraint
low-power microcontrollers, such as the Texas Instruments
MSP430 used in TelosB, running at 8MHz with 10 KB RAM.

However, newmicrocontrollers, such as low-power ARM
Cortex-M ones, have increased available resources while
maintaining very low energy consumption, reaching up to
120MHz clock speed and 320KB RAM.	erefore, these new
devices allow the usage of more advanced OSes that employ
fully preemptive threads and other features such as mutexes,
semaphores, timers, or queues. Real-time operating systems
(RTOS), such as open sourced FreeRTOS, may be used for
WSNon these newmicrocontrollers. A priority scheduler or a
round-robin scheduler may be used to implement a real-time
OS. Several studies have been conducted to compare perfor-
mance of both and to decide the best situation for using each
method [3]. A round-robin scheduler shares the executing
time with all active tasks, while a priority scheduler executes
�rst higher priority tasks, reducing their latencies. Mixed
strategies could be used as FreeRTOS does, where round-
robin schedule is applied for same-priority tasks. However,
for these OSes the main drawback is RAM usage, so several
memory optimization techniques are presented by authors
[4] to reduce it. Both thread optimization and memory
allocation techniques could be useful for multithread RTOS.

Recent studies demonstrate that these real-time operating
systems are being used in WSN monitoring systems [5],
showing that a sensor network could be implemented even
with real-time constraint over a wireless channel.

Other open issues regarding OSes are also being studied
in the last years such as their steep learning curve and their
power management features. RIOT OS [6] was developed
in order to reduce the learning curve when programming

IoT applications.	is OS also provides real-time and built-in
energy capabilities and energy-e�ciency features. However,
it uses a priority scheduler that does not share execut-
ing time between same-priority tasks and does not adapt
their properties dynamically. On the other hand, improving
power management of a multitasking WSN is also proposed
by Brandolese et al. [7]. 	is management infrastructure
and optimization model improves energy saving exploiting
hibernation modes dynamically without memory retention.
However, this method could cause losing real-time capa-
bilities, as sensing tasks are grouped to improve energy
e�ciency, and they are not processed till a later time. Finally,
CerberOS [8] presents a method to facilitate third party
application design, by providing resource-secure capabilities
in the nodes, allowing sharing them for di�erent applications.

	e distributed OSes for WSN �eld are also targeted by
several researchworks in order to provide bettermanagement
features and a highly transparent interface for the network
developer [9, 10]. Load balancing of the nodes in distributed
architectures has also been studied by Zoican et al. [11].
	is work proposes a method for centralized task migration
resulting in a �nal load near the average over all nodes
of the network. 	erefore, node cooperation and context
aware methods will be critical issues for future WSN OSes
developments.

Finally, other works target dynamic recon�guration and
operation of OSes. Lorien OS [12] was proposed as a
fully component based operating system allowing e�cient
dynamic modules loading. On the other hand, an OS recon-
�guration mechanism is proposed by Gasmi et al., [13] in
order to provide e�cient middleware that solves decision-
making problems during recon�guration stage. Besides,
improving TinyOS tasks throughput while reducing energy
consumption is achieved using a dynamic priority scheduler
[14]. In this scheduler, the energy consumption is 1.14 times
lower than the original TinyOS.

All these works show the interest in dynamic recon�gu-
ration of OSes for WSNs. However, there are still open issues
getting an adaptive scheduler that modi�es its properties
dynamically on changing environments. 	e main target
of our work consists in improving WSN nodes lifetime in
dynamic battery-operated environments by adapting dynam-
ically a round-robin scheduler.

3. Scheduler Architecture

In this section, we explain an architecture for an adaptive
scheduler that could modify its behaviour in changing envi-
ronments. 	e global architecture is shown in Figure 1. 	e
main idea consists in a module which accepts some envi-
ronment inputs and makes scheduling decisions to modify
scheduler properties. Some of the scheduler properties that
could be dynamically modi�ed are the duty cycle, the tasks
priorities, and the scheduler system timer (Systick) period.

(i) 	e duty cycle is the portion the node CPU is running
with respect to total time; the rest of the time the node
is in low-power mode, also called sleep mode.

(ii) 	e tasks priorities allow managing tasks execution
and real-time capabilities, as higher priority tasks are

Wireless Communications and Mobile Computing 3

Input data

Battery level, temperature,

Next task

Systick

Decision period

Task scheduling module

Adaptive scheduler

Decision module

Duty cycle, priority, Systick

accelerometer sensing . . .

Figure 1: Adaptive scheduler architecture.

usually executed with lower latencies compared with
low priority ones.

(iii) 	e Systick is the main timer of the scheduler, so the
execution could be changed from one task to another
in every system timer interrupt.

In order to make decisions, the scheduler architecture pro-
posed uses a decision period. At the starting time of this
period a decision is made in order to change scheduler
properties. 	is decision period is a multiple of the Systick
so we use only one timer for OS kernel management. 	e
Systick period and the CPU clock frequency are constant in
our scheduler, so theCPUdoes not change its executing speed
dynamically.

	is architecture is scalable to adapt dynamically any
scheduler property although in this work wemanage only the
scheduler duty cycle. Our target consists in extending lifetime
through scheduler duty cycling control while maintaining
low latency for real-time tasks. Duty cycle represents the
time when the microcontroller is active, so it is directly
proportional with energy consumption.

Inmost schedulers, the active duty cycle is set by the tasks
load, so all energy management is expected to be done by
the programmer of each task. 	is way, a badly programmed
task that never sleeps causes the CPU always to be active, so
the duty cycle will be 100%. In the scheduler proposed, the
node active time is �xed by the duty cycling decision module
independently of the task load. A task which is in ready state
could not be executed if the �xed active time has lapsed. 	is
could cause increasing latencies for some tasks but save large
amount of energy in some situations. To avoid this e�ect for
real-time tasks the scheduler allows them to execute even if
the active time has lapsed. 	erefore, the adaptive scheduler
saves energy by delaying low priority tasks. It should be noted
that this is donewithout slowing themdown as theCPU clock
frequency does not change.

	e �owchart of the adaptive scheduler process with duty
cycling decision is shown in Figure 2.	e schedule process is
executed each Systick interrupt. First, it checks whether there
is any active task or not. If not, it goes to sleep mode until the

next Systick interrupt is triggered, so the process would start
again.

On the other hand, if there are active tasks, it checks if
the decision has lapsed. If it does, a decision must be taken
in order to set a new duty cycle for the next decision period.
	is duty cycle sets the maximum available executing time
for the tasks during this period. For example, if we set the
Systick timer to 1 time unit and the decision period to 5 time
units, we will have 2 time units as available active time if the
decision-making process sets the duty cycle to 40%.

Whether or not a decision is made, the next step consists
in checking if there is any available active time to execute tasks
during this period. If not, the system checks if there is any task
with highest priority, as we need them to be executed even
if there is not available time for this period. If there are not
highest priority tasks, the system goes to sleep mode until the
current period �nishes.

Finally, if there is any available time or there is any highest
priority task, the next task to be executed will be scheduled in
a priority-based round-robin way. 	e task will be executed
during the Systick time, and when it lapses the process will
start again.

In Figure 3 a time diagram example is presented com-
paring a priority round-robin scheduler with our adaptive
scheduler. 	ere are 3 tasks, with task 1 and task 2 being
low priority tasks, having equal priority, and task 3 being the
highest priority task. In this example, the decision period is 5
time units, while the decisions made set duty cycle to 40% for
the three �rst ones and 20% for the last decisions. 	is way,
the active time results in 2 and 1 time units, respectively. 	e
Systick timer for both schedulers are set to 1 time unit.

	e example shows the behaviour of our proposed sched-
uler.While round-robin scheduler executes all available tasks
as soon as possible, the adaptive scheduler only executes the
�xed duty cycle for each period.	is causes low priority tasks
to be delayed compared to round-robin scheduler. 	e result
over large time scheduler operation will be a lower number
of executions of these tasks which will lead to a large energy
saving. On the other hand, high priority tasks, like task 3,
execute the same way they do in a round-robin scheduler,

4 Wireless Communications and Mobile Computing

Systick ++

Decision period?

Set new duty
cycle

Available active time?

Priority round-robin
schedule

Execute next task

 Sleep node

Yes

Decision
algorithm

Read inputs

No

Yes

No

No

Yes

Active tasks?

Priority highest?
No

Yes

Systick time Systick time

Figure 2: Adaptive scheduler �owchart.

T3

T3 T3 T3

T3 T3

Systick

Systick 1

5

2

4

3

Task 1

Task 2

Task 3

Decision period

Systick

Decision period

Dc decision
40%

Dc decision
40%

Dc decision
40%

Dc decision
20%

Dc decision
20%

T1 T2 T1 T2 T2 T2 Sleep

Sleep Sleep Sleep Sleep Sleep

Round-robin scheduler

Adaptive scheduler

Time units

T1 T2 T1 T2 T2 T2

Figure 3: Time diagrams for round-robin and adaptive schedulers.

Wireless Communications and Mobile Computing 5

meaning no extra latency for them. In this example task 3
executes during 3 time units in both schedulers, so it is not
delayed. On the other hand, task 1 lasts 6 time units in round-
robin scheduler to complete execution, while it needs 11 time
units in our scheduler. 	is delay in executing low priority
tasks results in large energy saving as the system is in sleep
state for a longer time.

In this work, we make duty cycle decisions, so node
active time is changed dynamically. Input data used on
this model could be either environmental parameters such
as temperature, humidity, and RSSI or node parameters
like battery level, energy consumption, tasks priorities, and
execution state. 	is data could be collected each time a
decision is made or could be stored in node memory and
accessed by the decision module.

4. Duty Cycle Decision Algorithm

In this section, we present a duty cycle decision algorithm

targeted at improving nodes lifetime. We use the approach

proposed by Sirakoulis and Karafyllidis [15] which uses

Public Goods Games (PGG) as a model to make decisions in

power-aware embedded systems. 	is approach is based on

Game	eory, which is a large �eld that studies mathematical

models for making decisions in scenarios where rational

players must use a shared resource. Players will take di�erent

decisions depending on the outcome of each one. On the

PGG model, players compete for a shared resource and they

cooperate optimizing their global outcome. 	is work [15]

studies the e�ects of cooperation using a PGG applied to

embedded systems on changing environments and presents

a complete theoretical approach to these games. Besides, a

global overview to Game	eory is also presented.

As described by authors of [15], the PGG is the most

appropriate model for a scenario where there are power-

aware jobs considered as players that should compete or

cooperate for energy resources. 	erefore, PGG provides a

standardized formulation to solve the decisions proposed in

our scheduler.

In our work, we propose a variation of the standard PGG

problem in order to get a duty cycle value for each decision

period. First, we de�ne the global game parameters. 	e

players of our game are each active task for the decision

period and the shared resource is the execution time. 	e

players could cooperate investing part of their available time

in the decision cycle resulting in a global lower execution time

for all tasks. 	is way, the lifetime could be extended when

tasks decide to invest part of their time.

	e investment done by each task in a decision cycle��(� + 1) is calculated in (1), where � and � + 1 are indexes

denoting the time step and � is the index denoting the current
player (task). ��(�) is the investment done by a task in the

previous decision cycle, adding a memory component to the

algorithm, while � is a function of the reward ��(�) obtained
each round for each task.	e investment �� is limited between
0 and 1 and represents the portion of time a task invests in

order to save energy.	e function� is then bounded in order
to maintain the investment on its limits as shown in (2):

�� (� + 1) = �� (�) + � (�� (�)) , (1)

−�� ≤ � (�� (�)) ≤ 1 − ��. (2)

	e parameter �� represents the reward a task will obtain
when investing part of its executing time. It is de�ned by the
di�erence between the gain
�(�) obtained and the investment
done in the previous decision period:

�� (�) = (
� (�) − �� (�)) . (3)

	e gain
� depends on the state of the inputs de�ned for
our scheduler decision module. 	erefore, the gain changes
in every cycle depending on the input values, so it de�nes the
behaviour of the scheduler in changing environments. In our
algorithm, we use the node battery level, the tasks priority,
and a user-de�nedmultiplication factor (MF) as input values.

In order to get the desired behaviour, the gain function
is de�ned increasing with the multiplication factor and
decreasing with task priority and battery level. 	is way, for
high battery level or high task priority the gain value is low
since the task is less likely to invest its executing time. We
have de�ned the gain function in (4), where �(�) is the
multiplication factor, �� is the normalized task priority, and
(�) is the battery level. On the other hand, the parameters�, �, �, and � are �xed weights used to calibrate the behaviour
of the scheduler:

� (�) = � (�) (��� +
�

(
 (�) + �)2 + �) . (4)

It is important to note that the gain function de�nes the
behaviour of the scheduler depending on the input data.
	is function could be modi�ed in order to get a di�erent
behaviour or if we had other input data sources. 	ereby
both the function and its weights �, �, �, and � could be tuned
depending on the desired behaviour. In our work, the gain
function and its weights have been �xed to empirical values,
which leads to a reasonable behaviour, in order to increase
the gain when battery is low and the task priority is also low.

Finally, the reward function �(��(�)) is de�ned in (5).
Its maximum and minimum values are �MAX and −�MAX,
respectively, that must meet the bounds set in (2). So, using
the �MAX value of (6) we can make sure the bounds are
never exceeded.	e reward function is linear between�1 and�2, which are �xed user-de�ned limits, and constant beyond
these bounds. 	is function and the memory component of
(1)make the scheduler response to changes slower, so the duty
cycle will not change abruptly even if input values do:

� (�� (�))

=
{{{{{{{{{

�MAX �� (�) ≥ �2
2�MAX�2 − �1 (�� (�) − �2) + �MAX �1 ≤ �� (�) < �2
−�MAX �� (�) ≤ �1,

(5)

�MAX = �� (�) (1 − �� (�)) . (6)

6 Wireless Communications and Mobile Computing

Once the PGG has been formulated, the algorithm steps are
presented in order to get the duty cycle of each period:

(1) Check the number of active tasks.

(2) For each active task,

(i) calculate reward value ��(�) from previous gain
and investment values (3);

(ii) calculate reward function value �(��(�)) (5);
(iii) obtain the inversion of this cycle for this task��(� + 1) (1);
(iv) compute the gain value of this cycle
�(�) (4),

which will be used in the next cycle.

(3) Calculate the arithmetic mean investment over all
active tasks (7).

(4) Obtain the period duty cycle from the mean invest-
ment (8):

�mean (� + 1) = ∑
�tasks
� �� (� + 1)�tasks , (7)

�� (� + 1) = 1 − �mean (� + 1) . (8)

	e duty cycle calculated has values between 0 and 1 as the
investment has. 	e greater the investment made by all tasks
is, the shorter the duty cycle of this period is. 	erefore,
by using this decision module in our adaptive scheduler
architecture, the duty cycle is reduced when tasks decide to
cooperate investing part of their time. 	is allows extending
lifetime at the price of delaying low priority tasks that have
decided to reduce their executing time.

5. Materials and Methods

	e adaptive scheduler and the duty cycle decision algorithm
proposed have been implemented in the YetiMoteWSN node
developed in the B105 Electronic Systems Lab which is shown
in Figure 4. It is a custom-designed node composed by a
high-performance low-power STM32L4 [16]microcontroller.
	e node runs up to 80MHz with high memory capabilities
(512 KB Flash, 128 KB RAM) and supports several low-power
modes. In our test scenario, the microcontroller has 48MHz
system clock frequency. 	e node also has 2 accelerometers,
a temperature sensor, an air quality sensor, a power manage-
ment module, and 3 radio interfaces for 433MHz, 868MHz,
and 2.45GHz bands. A full version of FreeRTOS operating
system is implemented on these nodes, which uses a priority-
based round-robin scheduler. 	e tests performed are run
on FreeRTOS scheduler in order to compare results with our
adaptive scheduler.

	e test scenario consists of 16 periodic tasks running a
�xed time of 60 seconds for each test. 	e tasks periods are
all di�erent as well as their executing time in order to get the
most realistic scenario possible when the tasks do not execute
synchronously. In our tests, three scenarios have been de�ned
depending on average task load. 	e task load is de�ned as
the sum of the tasks active times divided by the total test

Figure 4: YetiMote WSN node used for testing the adaptive
scheduler.

time.	erefore, the tests have been performed using low task
load (5%),medium task load (10%), and high task load (25%).
Although 25% may not seem as a high executing load for
most systems, in an energy constrained WSN scenario this
task load is considered very high.

	e input values used in our adaptive scheduler are the
battery level
(�), the normalized task priority ��, and the
user-de�ned multiplication factor �(�). 	e battery level is
limited to 0 when battery is discharged and 1 when it is
fully charged.	e scheduler implemented has 6 di�erent task
priorities, from 1 to 6, so the normalized task priority �� is the
quotient of the task priority and the total number of priorities.
We have set the maximum task priority to 6 and the lowest
task priority to 1. In all the scenarios 3 tasks are de�ned as high
priority tasks, with priority levels 5 and 6, and the remaining
13 tasks have random priority values from 1 to 4. Finally, the
multiplication factor allows the user to tune the scheduler
behaviour dynamically, and it could have any positive value.

	e adaptive scheduler parameters have been set to �xed
values for all tests as well as the duty cycle decision algorithm
parameters. 	e decision period value is 10ms, while the
Systick time value is 250 �s. On the other hand, gain function
(4) parameters are � = 0.5, � = 3.5, � = −2.5, and � = 0.7,
while reward function (5)bounds are �1 = −0.6 and �2 = 1.2.
	ese values were empirically obtained a
er numerous tests
in order to get a speci�c scheduler behaviour. Di�erent values
could be used to tune the scheduler if other behaviour is
desired.

Each test measures the energy consumption and each
one lasts 60 seconds. 	erefore, di�erent battery level or
multiplication factor values are �xed for each test so we
can evaluate energy saving on di�erent input conditions.
	e energy consumption is obtained counting the time the
microcontroller is in sleep mode during the test time. For
that reason, we need to suppose 30mW average power
consumption when microcontroller is running and zero
milliwatts when it is sleeping.

Wireless Communications and Mobile Computing 7

MF 0.5

MF 1

MF 2

MF 4

Round-robin

0

50

100

150

200

250

300

350

400

450

500

E
n

er
g

y
co

n
su

m
p

ti
o

n
 (

m
J)

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11

Battery level

High task load: energy consumption (60 s)

Figure 5: High task load test: energy consumption.

	e tasks latencies are also measured in order to evaluate
how much the tasks execution is delayed in the proposed
scheduler. We have measured the maximum and average
latencies reached over all tasks during a test as well as the
maximum and average latencies reached only by highest
priority tasks, which should not be delayed in our adaptive
scheduler.

For these tests, we use a modi�ed version of FreeR-
TOS with most OS functionalities—in addition to the
scheduler—such as memory management, tasks manage-
ment, tasks communications, device drivers, and wireless
stack. 	e tests are performed using the default FreeRTOS
priority round-robin scheduler and using our adaptive sched-
uler in order to compare the performance of both.

6. Results and Discussion

For each of the three proposed scenarios, with di�erent task
load, tests have been performed varying the battery level from
1 to 0, with a step of 0.05.	erefore, up to 20 tests are executed
for each scenario with di�erent battery level values. Besides,
the tests have been carried out with di�erent multiplication
factor values: 0.5, 1, 2, and 4. 	e priority round-robin
scheduler has also been tested in order to compare the results
with our scheduler.

First, we discuss the high task load scenario results.
In Figure 5, the energy consumption is presented for this
scenario over di�erent battery levels andmultiplication factor
values. It can be seen that energy consumption is reduced
when battery is discharging. 	at allows saving energy in
low battery charge situations. 	e e�ect of the multiplication
factor can also be noticed, represented in the �gures as
MF. Di�erent MF values maintain the global behaviour.
However, the scheduler starts saving energy at di�erent
battery level depending on MF. 	is way, the multiplication
factor input may be used from user level to dynamically tune
the scheduler behaviour.

High task load: avg latency

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 la
te

n
cy

 (
m

s)

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11

Battery level

MF 0.5

MF 1

MF 2

MF 4

Round-robin

Figure 6: High task load test: average latency.

High task load: highest priority maximum latency

0

5

10

15

20

25

30

35

H
ig

h
es

t
p

ri
o

ri
ty

 m
ax

im
u

m
 la

te
n

cy
 (

m
s)

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11

Battery level

MF 0.5

MF 1

MF 2

MF 4

Round-robin

Figure 7: High task load test: maximum latency achieved by highest
priority tasks.

Moreover, Figure 6 represents the average latency over all
tasks and it can be seen that latencies are highly increased
when battery level is low. However, Figure 7 shows that
for highest priority tasks the maximum latencies are not
increased as they have almost the same values as they do in
the round-robin scheduler.

From now on, we will present the results only for
multiplication factor 1, as this factor just tunes the scheduler
behaviour maintaining the same functionality. For medium
task load and low task load the results are quite similar, but
moving the average energy consumption and task latencies
to lower levels.

	e results for medium task load are presented in Figures
8 and 9.	e energy consumption is reduced when the battery
level runs low and the task latencies are increased. 	e same
behaviour can be seen in Figures 10 and 11 when the task
load is low but displaced to lower values. 	erefore, the
results show that the scheduler behaviour is the same for
di�erent tasks sets, making the scheduler suitable for various
applications with di�erent tasks loads.

8 Wireless Communications and Mobile Computing

MF 1
Round-robin

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11

Battery level

0

50

100

150

200

250

E
n

er
g

y
co

n
su

m
p

ti
o

n
 (

m
J)

Medium task load: energy consumption (60 s)

Figure 8: Medium task load test: energy consumption.

Medium task load: avg latency

MF 1
Round-robin

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11

Battery level

0

5

10

15

20

25

30

35

40

A
vg

 la
te

n
cy

 (
m

s)

Figure 9: Medium task load test: average latency.

	e latencies for highest priority tasks stand in the same
level as in the round-robin scheduler, so real-time jobs could
be performed with our scheduler even at low battery levels.

We also measure the overhead introduced by our sched-
uler in order to compare it to the overhead of a round-
robin scheduler. In the tests performed the round-robin
scheduler expends 58milliseconds in the scheduling routines
over 60-second tests. 	is time supposes 0.098% of the time
which is despicable over the total time. On the other hand,
our adaptive scheduler takes 83.4ms during the scheduling
routines and duty cycle decision algorithm.	atmeans 0.14%
of total time, which could be still considered despicable.

Finally, we obtain the expected lifetime of a node running
our scheduler supposing it is powered by a 3000mAh battery.
Figure 12 shows the battery discharge rate of the round-robin
scheduler compared with our proposed one for the three test
scenarios and with a multiplication factor value of 1.

In this case the lifetime is extended from 48 days to 82
days, which means up to 71% increment. 	e lifetime is also
obtained for medium and low task loads, which leads to
57% and 21% improvement, respectively.	at means that our
scheduler performs better with a higher task load.

MF 1

Round-robin

0

10

20

30

40

50

60

70

80

90

E
n

er
g

y
co

n
su

m
p

ti
o

n
 (

m
J)

1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.10.9

Battery level

Low task load: energy consumption (60 s)

Figure 10: Low task load: energy consumption.

Low task load: avg latency

MF 1

Round-robin

0

2

4

6

8

10

12

14

A
vg

 la
te

n
cy

 (
m

s)

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11

Battery level

Figure 11: Low task load: average latency.

Adaptive low task load

Adaptive medium task load

Adaptive high task load
Round-robin low task load

Round-robin medium task load

Round-robin high task load

0

0.2

0.4

0.6

0.8

1

1.2

B
at

te
ry

 le
ve

l

Node lifetime (3000 mAh)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
00

Days

Figure 12: Node lifetime for test scenarios.

Wireless Communications and Mobile Computing 9

As the results obtained show, this scheduler could be
highly suitable for battery-operated scenarios with energy
harvesting sources. For example, if the nodes have solar
panels as energy source, the battery is expected to be full
during daylight hours, so the scheduler will run similar to
a priority round-robin scheduler and low priority tasks will
not be delayed. However, during night hours, the battery
level will decay and the scheduler will start saving energy
by delaying low priority tasks. 	is way, we could prevent
the node running out of battery in cloudy days or in winter
station when the night lasts longer than the day.

7. Conclusion

In this paper, we have proposed an adaptive scheduler
architecturewhichmakes possible change the task scheduling
dynamically depending on the environment conditions. 	is
could be very useful for WSN applications where changing
environments are common. Speci�cally, we have targeted our
scheduling algorithm at improving nodes lifetime, while it
could be used for other optimization techniques in future
works.	eproposed scheduler changes dynamically its active
duty cycle depending on battery level and tasks priorities.
	is leads to a large energy saving when battery charge is
low and normal operation when battery is charged. For this
duty cycle decisions, a PGG based algorithm is used and it is
integrated in our scheduler architecture.

	e scheduler proposed delays low priority tasks to
achieve lower energy consumption, so they are executed with
a higher period during low battery level states, which gives
large energy saving.However, this latency does not a�ect high
priority tasks as they are executed in all conditions, evenwhen
battery level is low.

Finally, the adaptive scheduler presented has been imple-
mented and tested in real WSN nodes. 	e results show
higher latencies when using our scheduler compared to a
round-robin for low priority tasks. On the other hand, large
energy saving is achieved and we can increase nodes lifetime
up to 71% depending on the scenario.

	e OS scheduler proposed is useful in many WSN
scenarios to prevent nodes running out of battery by delaying
noncritical tasks, while keeping high priority tasks running.
	is could lead to controlled degradation mechanisms for
network nodes as they could maintain just critical function-
ality before the nodes run out of battery.

Conflicts of Interest

	e authors declare that there are no con�icts of interest
regarding the publication of this paper.

Acknowledgments

	is work was partially funded by the Spanish Ministry of
Economy andCompetitiveness, under RETOSCOLABORA-
CION program (Reference Grants SONRISAS: RTC-2015-
3601-3, All-in-One: RTC-2016-5479-4 and EASYSAFE RTC-
2015-3893-4), and the Spanish Ministry of Industry, Energy,

and Tourism through the Strategic Action on Economy and
Digital Society (AEESD) under DEPERITA: TSI-100503-
2015-39 and SENSORIZA: TSI-100505-2016-10 projects.

References

[1] P. Levis, S. Madden, J. Polastre et al., “TinyOS: an operating sys-
tem for sensor networks,” in Journal of Ambient Intelligence and
Smart Environments, pp. 115–148, Springer, Berlin, Germany,
2005.

[2] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—a lightweight
and �exible operating system for tiny networked sensors,” in
Proceedings of the 29th IEEE Annual International Conference
on Local ComputerNetworks (LCN ’04), pp. 455–462,November
2004.

[3] M. Chovanec and P. Šaraf́ın, “Real-time schedule for mobile
robotics and WSN aplications,” in Proceedings of the Federated
Conference on Computer Science and Information Systems,
FedCSIS 2015, pp. 1199–1202, Poland, September 2015.

[4] X. Liu, K. M. Hou, C. De Vaulx, H. Zhu, and J. Liu, “Memory
optimization techniques for multithreaded operating system
on wireless sensor nodes,” in Proceedings of the 2014 2nd
IEEE International Conference on Progress in Informatics and
Computing, PIC 2014, pp. 503–508, China, May 2014.

[5] S. P. Patil and S. C. Patil, “A real time sensor data monitoring
system for wireless sensor network,” in Proceedings of the 2015
IEEE International Conference on Information Processing, ICIP
2015, pp. 525–528, India, December 2015.

[6] O. Hahm, E. Baccelli, H. Petersen, M. Wählisch, and T. C.
Schmidt, “Demonstration abstract: Simply RIOT - Teaching
and experimental research in the Internet of 	ings,” in Pro-
ceedings of the 13th IEEE/ACM International Conference on
Information Processing in Sensor Networks, IPSN 2014, pp. 329-
330, Germany, April 2014.

[7] C. Brandolese, W. Fornaciari, and L. Rucco, “Power manage-
ment support to optimal duty-cycling in stateful multitasking
wsn,” in Proceedings of the 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications,
TrustCom 2013, pp. 1123–1132, Australia, July 2013.

[8] S. Akkermans, W. Daniels, G. S. Ramachandran, B. Crispo, and
D. Hughes, “CerberOS: a resource-secure OS for sharing IoT
devices,” in EWSN 2017, 2017.

[9] A. Sleman and R. Moeller, “SOA distributed operating system
formanaging embedded devices in home and building automa-
tion,” IEEE Transactions on Consumer Electronics, vol. 57, no. 2,
pp. 945–952, 2011.

[10] B. Pasztor andP.Hui, “OSone: a distributed operating system for
energy e�cient sensor network,” in Proceedings of the 2013 25th
International Teletra	c Congress, ITC 2013, China, September
2013.

[11] S. Zoican, R. Zoican, andD.Galatchi, “Improved load balancing
and scheduling performance in embedded systems with task
migration,” in Proceedings of the 12th International Conference
on Telecommunications in Modern Satellite, Cable and Broad-
casting Services, TELSIKS 2015, pp. 354–357, Serbia, October
2015.

[12] B. Porter andG. Coulson, “Lorien: A pure dynamic component-
based operating system for wireless sensor networks,” in Pro-
ceedings of the MidSens’09 - 4th International Workshop on
Middleware Tools, Services and Run-Time Support for Sensor
Networks, Co-located with the 10th ACM/IFIP/USENIX Interna-
tional Middleware Conference, pp. 7–12, USA, December 2009.

10 Wireless Communications and Mobile Computing

[13] M. Gasmi, O. Mosbahi, M. Khalgui, L. Gomes, and Z. Li, “R-
Node: New Pipelined Approach for an E�ective Recon�gurable
Wireless SensorNode,” IEEE Transactions on Systems,Man, and
Cybernetics: Systems, pp. 1–14.

[14] Z. Jing, X. Leng, H. Fan, and C. Yi, “TQS-DP: A lightweight and
active mechanism for fast scheduling based on WSN operating
system TinyOS,” in Proceedings of the 27th Chinese Control and
Decision Conference, CCDC 2015, pp. 1470–1475, China, May
2015.

[15] G. C. Sirakoulis and I. G. Karafyllidis, “Cooperation in a power-
aware embedded-system changing environment: public goods
games with variable multiplication factors,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 42, no. 3, pp.
596–603, 2012.

[16] STMicroelectronics, http://www.st.com/en/microcontrollers/
stm32l476re.html.

http://www.st.com/en/microcontrollers/stm32l476re.html
http://www.st.com/en/microcontrollers/stm32l476re.html

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

