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Abstract—Indoor navigation is a representative application of an indoor positioning system that uses a variety of equipment, including

smartphones with various sensors. Many indoor navigation systems utilize Wi-Fi signals, as well as a variety of inertial sensors, such as

a 3D accelerometer, digital compass, gyroscope, and barometer, to improve the accuracy of user location tracking. The inertial sensors

are vulnerable to changes in the surrounding environments and sensitive to users behavior, but little research has been conducted on

sensor fusion under these conditions. In this paper, we propose a dynamic sensor fusion framework (DSFF) that provides accurate

user tracking results by dynamically calibrating inertial sensor readings in a sensor fusion process. The proposed method continually

learns the errors and biases of each sensor due to the changes in user behavior patterns and surrounding environments. The learned

patterns are then dynamically applied to the user tracking process to yield accurate results. The results of experiments conducted in

both a single-story and a multi-story building confirm that DSFF provides accurate tracking results. The scalability of the DSFF will

enable it to provide more accurate tracking results with various sensors, both existing and under development.

Index Terms—Error correction, indoor navigation, sensor fusion

Ç

1 INTRODUCTION

THE recent evolution of the various sensors installed in
smartphones has enabled hybrid indoor positioning

that integrates various signals and sensor readings for
more accurate user tracking. In a hybrid indoor position-
ing system, a fundamental issue is how to combine the
various sensor data while controlling for the noise con-
tained in those data. In particular, whether to attribute
equal or differentiated reliability to each sensor for posi-
tioning is open to debate because it is difficult to distin-
guish the reliability of each sensor precisely. Moreover,
the sensor data includes errors and biases caused by the
dynamically changing environment, self-contained sen-
sor, etc., further confusing the determination of the
weight of each sensor. If the sensor error patterns affected
by this dynamic environment were properly interpreted
and the reliability of each sensor revealed, a more accu-
rate tracking result could be realized by a more sophisti-
cated fusion of multiple sensors.

Many researchers have already proposed user tracking
estimation that focuses on sensor fusion methods [1], [2], [3],
[4], [5], [6], [7], in which the sensors independently determine
the user’s position. One widely used sensor fusion methods
is the Kalman filter, which is a typical loosely coupled
method [8], [9], [10]. Obviously, there are very sophisticated

tightly-coupled [28] and deeply-coupled [29] Kalman filters
which can be applied to GNSS. The Kalman filter enables
composite user tracking relatively easily using a weighted
average of the sensor positioning result. The particle fil-
ter [11], [12], [13] and Hidden Markov Model (HMM) [14],
[15], [16] are fusion techniques on probability models. The
particle filter predicts the current position by a stochastic inte-
gration of each weighting function and motion model so that
more sophisticated fusion is possible. HMM-based fusion is a
tightly coupled fusion technique, where emission and transi-
tion probabilities are used to describe the sensor data
obtained while a user walks. The signal emission probability
is calculated based on the distribution of the RF signals of
each location, and transition probabilities are generated from
inertial sensor readings.Humanmovement in a trace has suc-
cessfully been described byHMMand its variations [17].

The studies above, however, have not properly considered
irregular sensor readings due to individual and environmen-
tal diversity, especially when handling inertial measurement
unit (IMU) sensor readings. Each person has a different
height, weight, and movement style, and all of these features
can yield different readings from IMU sensors. Environmen-
tal factors, such as the material of walls and the size of a
space, also affect sensor readings. Research has been con-
ducted on the effects of environmental [33], [43], [44] and
individual [34] diversity on sensors. However, it is not easy
to calibrate sensor readings to reflect such environmental and
user-specific factors because they are so diverse. Therefore,
individual and environmental diversity is usually ignored,
and the statistically or empirically most-likely values are
used to calibrate the sensors. These values are static in most
cases, which makes it difficult to integrate sensors into a
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fusion systemwith flexible reliability. The error pattern of the
IMU sensor varies because of the changes in user movement
patterns and their surrounding environment while tracking,
so it cannot be properly interpreted in a real-time tracking
systemwithout considering its variable reliability. If the error
pattern of the IMU sensor is not properly interpreted and cor-
rected, the noise and biases in the sensor readings are used
to derive the tracking result, and overlooking these errors
eventually lowers the tracking accuracy. Consequently,
ignoring individual and environmental diversity and real-
time changes leads to inaccurate tracking results. Therefore,
there is a need for a model that can calculate reliability more
accurately according to individual movement patterns and
changes in the surrounding environment. In addition, given
the reliability model developed, a fusion policy is needed to
accommodate dynamically changing reliabilities.

In this paper, we propose a dynamic sensor fusion frame-
work that can dynamically learn the pattern of errors, bias,
and reliability of each sensor at run-time to adapt to a user’s
tracking environment and individual movement pattern. The
proposed framework provides reliable position information
using the dynamic sensor fusion (DSF) method. The main
idea of this method is that the aggregate result of multiple
sensors ismore accurate than each result from a single sensor,
so the erroneous result of each sensor can be corrected by
referring to the aggregate result. By considering the aggre-
gate result as the correct answer, the DSF method learns the
error and bias of each sensor, and continuously adapts to
their changes. In the early stages of learning, the DSFmethod
assigns high weight to a sensor with known reliability and
low weight to a sensor that is not reliable. In the latter case,
the unknown reliability and error pattern adjusts the given
weight by learning unknown factors as time progresses.

In the proposed framework, we apply an algorithm that
adaptively determines the reliability of the latest data of each
sensor during user tracking. Because the error patterns and
biases change rapidly with the environment according to a
user’s trajectory, the DSF method needs to distinguish data
that has a greater impact on tracking results over time.
Through these procedures, the DSF method can accurately
determine the reliability and bias of each sensor so that its
signals can be combined to obtain a reliable results. In addi-
tion, the DSFmethod is adaptable to environmental changes,
environmental conditions, and the typical movement pat-
terns of an individual user.

Moreover, the DSF framework (DSFF) provides a frame-
work in which various sensors can be integrated for user
positioning. To clarify the characteristics of the positioning
approach and the sensor readings used for positioning, we
divide the location information derived from smartphone
signal chipsets and sensors into two categories: absolute posi-
tion change and relative position change. The positioning
approaches that use these types of information are general
approaches to user location estimation. Absolute positioning
is amethod that calculates an object’s location as fixed coordi-
nates. The absolute position information can be acquired
using technologies such as Wi-Fi, a magnetometer, GPS,
wireless sensor network, cellular network, Bluetooth, RFID,
and LEDs. In contrast, relative positioning is a method
that estimates the relative coordinates of present location
based on a previous location. The accelerometer, gyroscope,

magnetometer, compass, barometer, and other sensors can
present the relative position change information. The values
of these sensors are interpreted using a stochastic model, and
the interpreted result is used for learning and fusion. The
DSFF outputs the user tracking result as an alternating sto-
chastic product of absolute and relative position information
derived from various sensors. Therefore, a sensor can be inte-
grated into the DSFF by representing the sensors readings or
their distributions as a probabilistic model.

2 RELATED WORK

An HMM is a statistical Markov model that has two ele-
ments: hidden states and observable outputs. In this model,
the Markov process is hidden and only the outputs of the
Markov process are available. In an HMM-based framework
for location tracking proposed by Xing et al. [13], a graph
structure is used to store fusion models generated frommul-
tiple sensors in the offline phase, and the data collected is
fused using a multimodal particle filter when performing
tracking in the online phase. Hoang et al. employed an
HMM-based sensor fusion of Received Signal Strength Indi-
cator (RSSI) and inertial sensor information for user tracking.
They described a coarse grid of states for Wi-Fi measure-
ments that need to be taken during training and introduce
pseudo-states between the regular HMM states to reduce
quantization error [14]. Liu et al. presented a smartphone
indoor positioning engine that can be easily integrated with
a mobile Location Based System (LBS). Two algorithms
based on HMM problems, the grid-based filter and the
Viterbi algorithmwere used as the central processor for data
fusion to resolve position estimation [15]. However, the
authors did not take into consideration the constantly chang-
ing environment nor specify the parameters used for track-
ing. In other words, they used static values derived from
mathematical calculations.

In addition to indoor positioning, HMM-based sensor
fusion methods have been studied in various fields. A cou-
pled HMMwas used by Kumar et al. to fuse various sensors
for sign language recognition [5]. Bernardin et al. fused two
sensor inputs, dataglove-measured finger angles and tactile
information, in an HMM [6]. Dong et al. developed a statisti-
cal methodology for multi-sensor equipment health diagno-
sis and prognosis utilizing a hidden semi-Markov model,
which does not provide a complete observation in the HMM
but instead provides a segment of the observations [7]. The
Kalman filter, which is a recursive Bayesian estimator, is an
algorithm that estimates the state of a linear dynamical sys-
tem. Chen et al. amalgamated a Wi-Fi-based approach and
the Pedestrian Dead Reckoning (PDR) approach with land-
marks by applying a Kalman filter [8]. Ligorio et al. used a
linear Kalman filter for fusing tri-axial gyroscope and tri-
axial accelerometer data [9]. To fuse the various sensors for
robotmovements, Rigatos et al. used extendedKalman filter-
ing [10]. For better robustness to noise, Assa et al. developed
the iterative adaptive unscented Kalman filter, which is an
extension of the iterative adaptive extended Kalman fil-
ter [18]. However, if the noise does not follow aGaussian dis-
tribution, the Kalman filter performs poorly.

When the distribution of sensor values does not appear
to be Gaussian, a particle filter, which is known to be more
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flexible than a Kalman filter, is usually applied. A particle fil-
ter is also a recursive Bayesian estimator. It samples the pos-
sible states of the target system as particles and updates
states using observations. For vehicle localization, Suhr et al.
used a particle filter to fuse a number of sensors including an
IMU, GPS, and a wheel speed sensor [11]. Meanwhile, Wu
et al. [12] developed their particle-filtering scheme fusing a
fingerprinting method and a PDR algorithm. Zhou et al. pro-
posed a battery state-of-charge estimating algorithm based
on particle filter data fusion [13]. Although the schemes are
robust to irregular noise, they are not suitable for real-time
smartphone tracking because they have a high computa-
tional cost.

3 DSFF

The methods to estimate absolute and relative position are
classified based on the information in the acquired data of
various sensors, as noted above. If the data can be collected
in an offline phase and have characteristics that appear only
at a specific location, these data can be used for absolute
positioning. In contrast, if the sensor data have characteris-
tics that change depending on the user’s motion or route,
these data can only be used for relative positioning. In the
proposed method, both absolute and relative positioning
are derived as a probabilistic sensor data fusion.

3.1 Extended Radio Map Construction

The first step in the implementation of the DSF method is to
construct an extended radio map (ERM). Typically, a radio
map is a model of network characteristics in an area of inter-
est, where the characteristics of a location are called its fin-
gerprint. Because all sensing data for positioning are stored
in the form of fingerprints in the DSFF, we expand the con-
cept of a radio map. In other words, the ERM indicates not
only radio signal fingerprints but also any kind of sensing
data fingerprints that can differentiate a location from
others. In the framework proposed in this paper, an offline
phase consists of two steps. The site survey step generates a
set of training samples for ERM construction. This step
involves laborious effort to collect training data and to
assign location labels to the measurements. An analysis of
the target area precedes the data collection activity so that
the survey may be planned. In the calibration step, the ERM
is constructed using the set of location-labeled measure-
ments. The ERM construction begins by dividing the area of
interest into location cells with the help of a floor plan. For-
mally, a three-dimensional (3D) area is modeled as a finite
location-state space L, which is a set of physical locations
with x, y and z coordinates, that is, L ¼ l1 ¼ ðx1; y1; z1Þ;f
l2 ¼ ðx2; y2; z2Þ; . . . ; ln ¼ ðxn; yn; znÞg; where the coordinates
denote the center of a location cell. The z coordinate is spe-
cifically used for floor detection in our system.

Assume that signals from k access points (APs) can be
received in the area. This will result in a one-time measure-
ment of RSSI values transmitted from the APs, which are
represented as a k-dimensional vector of RSSI values w ¼<
rssi1; rssi2; . . . ; rssik > , where k is the index of an AP, and
rssii is the RSSI value of the k th AP. The RSSI value typi-
cally ranges from �100 to 0 dBm for the IEEE 802.11 stan-
dard. Although this paper uses Wi-Fi fingerprinting as a

representative method of absolute positioning, other sen-
sors can be used in the site survey if they are suitable for
absolute positioning. In other words, if the sensor can be
pre-trained in the offline phase, we can construct an ERM
similar to the ERM that stores Wi-Fi data in a fingerprint.
When the fingerprint is added to the ERM, one-time meas-
urements of the sensor values transmitted from the devices
can be extended as

w ¼< sensor11; . . . ; sensor1i; sensor21; . . . ; sensor2j;

. . . ; sensorNk > ;
(1)

where sensor1i represents the ith signal of the nth sensor1,
sensorNk represents the kth signal value of theNth sensor.

The magnetometer is also used for absolute positioning
based on the fingerprinting method [32], [35] in DSFF. Simi-
lar to the Wi-Fi ERM data, magnetometer data can be
recorded asm ¼< inorm; iincl > , where < inorm; iincl > rep-
resent the vector of the magnetic strength norm value and
magnetic inclination at each point measured by a three-axis
magnetometer. These measurements can be combined as
Ew;m. If there is no disturbance during measurement, mag-
netic field value ranges from 25 to 65 mT outdoors whereas
they range from 0 to 100 mT indoors depending on the dis-
tance between a ferromagnetic object and the measurement
device.

3.2 Sensor Data Classification and Fusion

3.2.1 Probabilistic ERM Training

Once the ERM has been constructed, Wi-Fi and magnetome-
ter fingerprint training is completed for each geographical
coordinate of the target area. Because training data are
already labeled in the ERM, the probabilities can be calcu-
lated using the respective AP strengths and magnetometer
signal strengths measured in the online phase. To calculate
a new absolute position in real-time, we need to perform an
online measurement OE update formulated as E, such that,
pðwt ¼ OEwjLtÞ and pðmt ¼ OEmjLtÞ, at each location. To
calculate pðwtjLtÞ and ðmtjLtÞ, a Gaussian distribution is
assumed for each signal collected wt;i of AP i and mt at the
survey site. Although signal strength noticeably varies with
the distance between an AP and a location, a single RSSI
value is still not enough to represent the feature of an AP at
one location because of the uncertainty in signal propaga-
tion. The magnetic field feature has similar characteristics
because magnetic distortion is caused by surrounding ferro-
magnetic objects.

The probabilistic DSF method tries to explain this sort of
phenomena by treating RSS and magnetic field measure-
ment as the results of a random process. The aim of the
probabilistic absolute position update is to compute the con-
ditional probability pðlxjOEÞ of a location lx given a certain
online measurement OE, and find a location l� that maxi-
mizes the posterior probability for positioning. In the online
positioning phase, a posterior distribution over all the loca-
tions is computed using Bayes rule as follows:

pðlxjOEÞ ¼
pðOEjlxÞpðlxÞ

P

li2L
pðOEjliÞpðliÞ

; (2)
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where pðlx) is the prior and pðOEjlxÞ is the likelihood. The
denominator of the equation is a normalization constant
related only to the given OE and where a device may be
located. A conventional choice for the prior is a uniform dis-
tribution that assumes every location is equally likely.

The likelihood function computes the probability of
observing that measurement at a certain location. By assum-
ing independence among the signals from different APs,
the likelihood pðOEwjlxÞ is computed as follows:

pðOEwjlxÞ ¼
Y

k

i¼1

pðrssmi jlxÞ; (3)

where rssmi is the RSS value of AP i shown in measurement
m and pðrssmi jlxÞ is the likelihood of rssmi at location lx. Simi-
larly, likelihood pðOEmlxÞ is computed as follows:

pðOEmjlxÞ ¼ pðinorm; iincljlxÞ; (4)

where pðinorm; iincljlxÞ is the likelihood at location lx. The
value of OE is calculated by simply multiplying (3) and (4).

3.2.2 Probabilistic Motion Sensor Update

The results for the relative positioning are derived by fusing
step length, step detection, the direction of movement, and
pressure changewith the value ofOE. The probability densi-
ties for each of these sensor data have a different shape as
shown in Fig. 1. The conditional probability of moving dis-
tance is derived from accelerometer readings as a ring shape.
For moving direction and floor detection, the probability
densities fromgyroscope and barometer readings form trian-
gle and bar shapes, respectively. Because the probability dis-
tributions for relative position changes are distributed
differently according to data sensor types, the probability for
each of themmust be calculated independently.

In the offline phase, the location information of the dis-
tance and direction between neighboring cells is determined
after dividing the target area into several cells. For instance,
the mean value of the real-time gyroscope reading is used
to estimate user direction in the online phase. For moving
distance, all neighboring cells of a previous location have
the same probability. However, if the probability distribu-
tion is derived from the conditional probability of the mov-
ing distance and the direction simultaneously as shown in
Fig. 2, more accurate positioning results can be obtained.
Meanwhile, we use barometer signal distribution to deter-
mine the floor detection. Because atmospheric pressure
changes with altitude, it is possible to distinguish floor lev-
els using this sensor.

To track user movement, we calculate the probability dis-
tribution pðLtj�t; OEt�1Þ, where �t denotes the set of move-
ment measurements at time t. In a Markov-based model,
user location Lt depends only on the previous location Lt�1.
Therefore, we can represent moving distance Dt, gyroscope
measurement ut, and barometer reading Bt as follows:

pðLtj�t; OEt�1Þ ¼
X

Lt�1

pðLtjLt�1; Dt; ut; BtÞ

� pðLt�1j�t�1; Et�1Þ:

(5)

Given the moving distance, heading measurement and
barometer reading can be derived using Bayes law as
follows:

pðLtjLt�1; Dt; ut; BtÞ ¼
pðDt; ut; BtjLt; Lt�1Þ � pðLtjLt�1Þ

pðDt; ut; BtjLt�1Þ
:

(6)

Because we assume that the moving distance, heading mea-
surement, and barometer reading are independent of each
other, (6) yields

Fig. 1. Conditional probability densities for (a) accelerometer,
(b) gyroscope, and (c) barometer. (d) Probability distribution for location.

Fig. 2. Probabilistic sensor fusion for relative and absolute position
updates. The gray ring and fan-shaped zones indicate the conditional
probabilities of the moving distance and orientation, respectively. The
probability distribution when considering 2D movement is indicated by
dark blue circles.
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pðLtjLt�1; Dt; ut; BtÞ ¼

pðDtjLt; Lt�1Þ � pðutjLt; Lt�1Þ � pðBtjLt; Lt�1Þ � pðLtjLt�1Þ

pðDtÞ � pðutÞ � pðBtÞ
:

(7)

For a transition probability pðLtjLt�1Þ, a user’s movement
to an adjacent location is more likely than a movement to a
distant location. However, the moving distance Dt, gyro-
scope heading measurements ut, and barometer reading Bt

are already given reliably; we hence know which location is
more likely than the others. By inserting (5) into (7), we obtain

pðLtj�t; OEt�1Þ

¼ c �
X

Lt�1

pðDtjLt; Lt�1Þ � pðutjLt; Lt�1Þ � pðBtjLt; Lt�1Þ

� pðLt�1j�t�1; OEt�1Þ:

(8)

The constant c in (8) is determined at the end of the
motion sensor update for normalization because the sum-
mation of all possible locations has to be 1.

As visualized in Fig. 2, for instance, we assume that the
movement measurement set �t is taken when a user first
reaches the location lið¼ lt; i 2 kÞ. The gray ring and fan-
shaped zones denote the conditional probabilities of the
moving distance and orientation respectively. By multiply-
ing these conditional probabilities, we can obtain the proba-
bility distribution of �t as the dark gray area, which is the
intersection of the ring and fan-shape zones at l3 when
lt�1ð¼ l5Þ is the previous location (i.e., the center of the coor-
dinate system). Here, we specify the step length of the user
as a mean value dmean, the maximum moving distance dmax

and the standard deviation of the step length dstdev.
Similarly, the heading of the user umean and standard

deviation of the heading ustdev are set implicitly. These mean
values denote the online phase sensor readings of the user’s
device. Standard deviations are set empirically at the very
beginning. However, as the tracking of a route progresses,
these values will be changed based on online phase data. In
this case, the probability distribution when considering 2D
movement is shown in Fig. 2 as dark blue circles. Similarly,
the conditional probability of the barometer reading is also
multiplied by the probability distribution of �t when a user
is tracked in 3D space.

4 DYNAMIC ADAPTATION OF PROBABILITY

DISTRIBUTION FOR SENSOR FUSION

Generally, a probability distribution for each location is
learned through offline training for absolute positioning.
The probability of each location can be derived with rela-
tively high reliability by reflecting environmental factors.
However, for relative positioning, it is difficult to obtain an
error distribution that contains both location and environ-
mental factors. For example, a probability distribution is
obtained for themoving distance estimation after the reliabil-
ity of the method has been calculated using step detection or
a similar variable, and the static value is continuously used.
Because this approach overlooks the environmental changes
and user behavior patterns at each location, it is difficult to
obtain a result that is as reliable as absolute positioning.

The framework proposed in this paper solves this prob-
lem by continually learning and correcting the error distri-
bution of the sensors that are used for relative positioning
by assuming that the position tracking result obtained from
the fusion of multiple sensors is closer to the correct answer
than the result of a single sensor. The positioning results of
each sensor used for absolute positioning are derived using
off-line training data and then integrated to determine a sin-
gle probability through sensor fusion. This integrated abso-
lute positioning result exhibits relatively high accuracy
because it is the result of the highest probabilities for each
sensor. Therefore, at an early stage of user tracking, we
assume that this positioning result is close to the correct
answer, and use it to correct sensor error.

The error probability, which is the basis of the calcula-
tion, is corrected for each sensor by training in the online
phase. Here, we create a database called an error block (EB)
to store the errors for the error correction. Using the tracking
result of the optimal trace, the error is continuously accu-
mulated in the EB and re-learned as the environment
dynamically changes. Thus, as tracking progresses, the error
of each sensor should be corrected.

4.1 System Overview

Fig. 3 shows the error characteristics of the relative sensor
used in the DSFF, where the bias is included in the sensor
reading and produces an undesirable result. Note that,
while there are many ways to express errors in system
modeling, we used a way which is to consider fluctuation
and bias errors. To this end, variables are defined as follows:

Ri;n ¼ Ti;n þBi;n þ Fi;n; (9)

where, Ri;n is a raw value of the sensor reading, i denotes
relative sensor type, n represents time, Ti;n is the true value,
Bi;n represents bias error, and Fi;n denotes fluctuation error.
What we originally expected is that the sensor reading Ri;n

is equal to the actual value Ti;n, resulting in an accurate
result. However, in reality, it is unlikely for Ri;n and Ti;n to
coincide due to errors arising from bias, fluctuation and
other factors. DSFF aims to improve accuracy over time.
That is, if Ri;n converges to Ti;n, the desired goal is achived.

The system S is defined as a naive system inwhich the cal-
ibration algorithm of this study is not applied and the rela-
tive sensor reading value is simply input and an answer is
generated as output. If the true value Ti;n is input to the entire
system S, the ideal result Gn will be derived, but in reality,
the sensor reading Ri;n containing the error is input and the
estimated resultQn is derived. This can be expressed as

SðTi;nÞ ¼ Gn;

SðRi;nÞ ¼ Qn:
(10)

Fig. 3. Error characteristics of the relative sensor.
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The main goal of our proposed dynamic sensor fusion
technique is to make Qn as close as possible to Gn. In this
case, if filter f is used to receive the sensor reading Ri;n as an
input and output a correction value for the error, the follow-
ing filter f output may be used to correct Qn to be closer to
Gn and should be added toGn. The expression is as follows:

correction value ¼ f
X

n�1

r¼1

Ri;r

 !

: (11)

In previous studies, assuming that the estimated error of
the tracking system is obtained as Qn �Gn, the DSF obtains
the final revised error as follows:

revised estimation error ¼ S Ri;n þ f
X

n�1

r¼1

Ri;r

 ! !

�Gn:

(12)

Using this concept, we can intuitively understand the dif-
ference between correcting and not correcting inputs. The
error factor for the sensor input of the naive system S can be
simply expressed as

Ri;n � Ti;n

Ti;n

�

�

�

�

�

�

�

�

: (13)

Applying the correction algorithm filter f proposed in
this study changes this equation as follows:

Ri;n þ f
Pn�1

r¼1
Ri;r

� �

� Ti;n

Ti;n

�

�

�

�

�

�

�

�

�

�

�

�

: (14)

SinceRi;n and Ti;n of each relative sensor are not scalar val-
ues on the same dimension, this paper will not consider how
to calculate these values from the actual value because the
calculation depends on the desirable error model for each
sensor. As time progresses in the algorithm, since the bias
error will be the same in each period for which the environ-
mental factor is homogeneous, the correction value, which is
the output of f , will converge to the negative value of the
bias value. This can be expressed as follows:

lim
n!1

f
X

n�1

r¼1

Ri;r

 !

¼ �Bi;n: (15)

We can re-arrange (14) from (15), then all the bias errors
are corrected and only the fluctuation error remains. This
process is summarized in (16) and is shown in Fig. 4.

Ri;n þ f
Pn�1

r¼1
�Ti;n

Ti;n

�

�

�

�

�

�

�

�

�

�

¼
Ri;n �Bi;n � Ti;n

Ti;n

�

�

�

�

�

�

�

�

¼
Fi;n

Ti;n

�

�

�

�

�

�

�

�

: (16)

The proposed framework aims to find the right values
through online learning, even if the initial probability distri-
bution of error for a particular sensor is not known exactly.
Therefore, we assume that the most common Gaussian dis-
tribution is the distribution of a particular sensor. In other
words, we did not process the probability distribution of
each sensor, so the probability distribution of the sensors
we used in our experiments is the same as that which is typ-
ically applied in other studies [30], [31], [32].

It would be possible to precisely define all the error
distribution of each sensor in every building to clearly
understand the probability distribution of the error distri-
bution. This would enhance the accuracy of results if the
sensor values are set at the beginning. However, our on-
line learning-based error correction technique is not tar-
geted at defining the initial error distribution accurately,
However, the aim is,to improve the accuracy of the
defined distribution by learning about the error distribu-
tion dynamically while tracking. In other words, we set
the initial error distribution to Gaussian, and then focus
on testing to improve the accuracy over time.

4.1.1 Assumption of the Multiple Sensor Result

As stated above, we assume that the result of multiple sensors
is closer to the correct answer than the results of a single sen-
sor. In Fig. 5, (a) and (b) show the probability distributions
when absolute positioning based on probability is performed.
To this end, we assume that the probability of location L1 is
0.8, the probability of L2 is 0.7, and the probability of L3 is 0.8
in Fig. 5a.We also assume that the probability of locationL1 is
0.7, the probability of L2 is 0.7, and the probability of L3 is 0.6
in Fig. 5b. In Fig. 5a, L1 and L3 have the same probability of
0.8, and in Fig. 5b the probability of L1 and L2 is equal to 0.7.
There is ambiguity when we look at them separately because
two different locations have the same probability.

This example aims to explain the assumptions underly-
ing the use of multiple sensor results. However, when we
consider the probability of the actual positioning results, it

Fig. 4. Bias error correction procedure. Fig. 5. Probability density of (a) absolute sensor 1, (b) absolute sensor 2,
(c) relative sensor 1, (d) relative sensor 2, (e) relative sensor 3; Depiction
of (f) map matching and (g) aggregate result.
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is often similar to 10 decimal places, and any changes are
seen only after 10 decimal places. If we multiply the proba-
bilities from the absolute sensors, the probability L1 is 0.56,
L2 is 0.49, and L3 is 0.48. Now, we have ascertained that a
single location L1 has the highest probability, simply by
multiplication. No complex calculations are necessary. At
the same time, we have confirmed the possibility that the
accuracy of the defined probability distribution is enhanced
when probabilities from multiple sensors are multiplied,
than when a single sensor is used.

Using the same method, we can derive the probability of
an accurate positioning by calculating the probability distri-
bution for the relative sensors depicted in Figs. 5c, 5d and 5e
using (8). Likewise, the probabilities of the additional sensors
are multiplied, and the ambiguity disappears. (Note that,
because we are describing the concept of multiple sensor
results here, we do not consider cases where the error of a
single sensor is large. This will be discussed in Section 4.8). If
we proceed to map matching using the indoor layout as
shown in Fig. 5f for a single probability as derived with this
method, we can obtain a more accurate final positioning
result as shown in Fig. 5g.

4.1.2 Extension of the DSFF to Other Sensors

DSFF is scalable and new data can be easily fused when
new sensors are added to the system. Whether we use the
sensors described in Section 1 or other kinds of sensors, we
can fuse the values measured by them for absolute position-
ing by stochastic derivations. Moreover, it is possible to cal-
culate the conditional probability according to the type of
sensor or systematically calculate the movement probability
through map matching. Assuming these sensors are added
to the DSFF and used for tracking, we can obtain their prob-
ability distributions as follows.

Because the GPS’s Android API provides standard devia-
tions with latitude and longitude coordinates, we can obtain
the reliability of the derived coordinates P ðGPSjLocÞ. Blue-
tooth signal distribution can be trained in advance when the
ERM is constructed. The signals collected in the online phase
can be used to derive the probability of the location
P ðBLEjLocÞ. Locality sensitive hashing [21] can be used to
perform image matching for indoor positioning using the
probabilistic nearest neighbor search method to calculate
P ðIMGjLocÞ.

Wi-Fimodules are often used for absolute positioning, but
they can also be used to detect relative position change using
signal variation P ðWiFidiff jLocÞ [22]. Because we use the
indoor layout of a building in DSFF, map matching can also
be used to calculate the product of the probability. For exam-
ple, we can set the probability of movement to zero when a
wall exists in a movement space or set it to 0.25 at a corridor
intersection. Assuming that DSFF tracking is implemented
at the intersection, we can derive a probability-based result
from the following equation:

P ðWiFi;BLE; . . . jLocÞ

¼
1

4
� P ðWiFijLocÞ � P ðBLEjLocÞ

� ðGPSjLocÞ � ðIMGjLocÞ

� ðPDRjLocÞ; . . . :

(17)

In (17), each sensor is independently used to obtain posi-
tional probability. Even if error correction is performed for
each sensor, the independent final probability value of each
sensor is used for tracking estimation. This encapsulates the
probability calculation for each sensor. This means that
even if a new sensor is added, the tracking result can be
derived by simply multiplying the independent probabili-
ties for each sensor.

4.1.3 EB-Applied Relative Sensor Probability

Distribution

To calculate the transition probability of relative sensors,
i.e., pðrelative sensorjLt; Lt�1Þ, we can derive

P ðS0 ¼ xÞ ¼

Z

k

P S ¼ kð Þ � P EB ¼ x� kð Þdk; (18)

where S0 denotes the EB-applied sensor signal distribution
of each sensor and k represents the sensor reading. Since
the distribution of the EB is discrete, it can be re-written as
follows:

P ðS0 ¼ xÞ ¼
X

n

Z x�ðn�0:5Þw

x�ðnþ0:5Þw

P ðS ¼ kÞ � P ðEB ¼ nwÞdk;

(19)

where w denotes the width of the EB.

4.2 Dynamic Error Correction for User Direction

The gyroscope is used as a relative positioning method to
detect user orientation. Here, the original location is inversely
estimated using the gyro effect generated by the rotation of
the object and the current direction is inversely calculated.
The magnetometer and gyroscope are widely used to deter-
mine the direction of a user. The magnetometer uses the azi-
muth to determine the absolute angle between magnetic
north and the moving direction. Because the magnetometer
calculates direction with respect to the direction of gravity
obtained by the accelerometer and the value of the magnetic
field, if ferromagnetic materials that can influence the mag-
netic field exist in the environment, the measurement error
increases. Accordingly, we use the gyroscope sensor to esti-
mate user movement direction. This sensor represents rela-
tive angular velocity and is negligibly influenced by external
noise. However, gyroscope data are not sufficient for obtain-
ing accurate direction information because errors accumulate
as a result of gyro drift.

Fig. 6 illustrates the process of the dynamic error correc-
tion focusing on user direction estimation. Suppose a user’s
movement has been tracked for times T0 to T3. In Fig. 6a, ’
represents the direction of the tracking result, u denotes the
reading value of the gyroscope, and D’ is the difference
between ’ and u. As shown in Fig. 6, the tracking result
’T1;T2;T3 and the inertial sensor reading uT0;T1;T2 at each time
are not the same. Thismismatch should be treated as an error
of the inertial sensors and corrected for in the calculation of
the next moving probabilities. When a mismatch occurs, the
error distribution is changed by storing the EB, as shown,
from T1 to T3. After storing the EB, the heading probability
distribution is changed depending on its distribution.
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At time T0, an initial location is determined from the cal-
culation of Et, and the EB is initialized for recording the
error of the inertial sensors. In Fig. 6a, the EB forms a nor-
mal distribution with an initial value under the assumption
that the sensor reading is correct. Initially, the EB is formed
with a smooth curve, but this can be converted to the shape
of a block with the same area, as shown in Fig. 6b.

At time T1, as shown in Fig. 6b, the EB is accumulated at
the value corresponding to D’T0. By contrast, the opposite
value weight of the EB becomes higher in the heading
probability distribution. When normalizing the heading
probability distribution, the weight of the other heading
probability, which is set to the initial value, decreases. In
other words, the weight of the new heading bias value rela-
tive to the initial error distribution can be adjusted by the
ratio of the area of the EB to the area of the initial error
distribution.

At time T2, as shown in Fig. 6c, the EB accumulates to the
right of the EB values generated at time T1 because D’T1 is
larger than D’T0. This EB construction causes the heading
probability distribution to expand to the left; the weight of
the correction value rises and the weight of the initial value
decreases, as in T1. At time T3, the EB is generated at the
same position because D’T2 has the same value as D’T1. As
shown in Fig. 6d, the initial value of the heading probability
distribution decreases, the weight of the corrected value
increases, and a high peak is formed toward the corrected
value. Learning the EBs in this way and applying the correc-
tion values to the heading probability distribution corrects
the heading bias due to the effect of assigning higher weights
to the correction values.

In the EB graph, the y-axis represents the value of the EB
and the x-axis is the value of the error that appears at every
step. In the heading probability distribution graph, the
y-axis represents the probability and the x-axis represents
the angle in degrees. For the direction of movement, the rel-
ative angular velocity is obtained in rad/s from the gyro-
scope. To convert radians into degrees, we integrate using
radj ¼

Pj
i¼1

ðgyroi � ðtimei � timei�1ÞÞ and find the direction
of movement using uj ¼ radj � 180=p.

4.3 Dynamic Error Correction for Moving Distance

Step detection and step length estimation are the basic ele-
ments used to calculate the relative movement distance of a
user. To detect a user’s steps, we use the norm value of the
three-axis accelerometer, and calculate steps based on a com-
bination of peak detection and the Fourier transform. The
acceleration values obtained for each pedestrian create a
waveform with a certain period. The peak detection detects
the local maxima of the waveform, which are treated as the
steps of the pedestrian.

Peak detection alone has a low recognition rate for steps
because there are many local maxima in the acceleration
waveform of a pedestrian. Therefore, the frequency compo-
nents of the waveform are obtained using the Fourier trans-
form and analyzed to estimate whether or not the user is
walking. When the transformed data have a large value at a
specific frequency, this is defined as the walking frequency.
To estimate the number of steps, this frequency component
is multiplied by the pedestrians total moving time.

A delay occurs when the Fourier transform method is
used to estimate steps because the walking frequency of the
pedestrian does not appear until a certain amount of accel-
eration data has been collected. We use a combination
method for relative moving distance, but other step detec-
tion algorithms, e.g., zero crossings [19], could be used.

For step length calculation, we use a nonlinear model
that represents a relation between acceleration magnitude
and step length [20]. The expression is as follows:

SLk ¼ # �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amaxðtÞ � aminðtÞ
4
p

; (20)

where SLk represent the kth step length and amaxðtÞ and
aminðtÞ are respectively the maximum and minimum values
of the acceleration reading at time t. Coefficient # is the ratio
of the estimated and real distance,which needs to be adjusted
for different subjects as follows:

# ¼
dreal

destimated
: (21)

This approach is easy to implement because of its sim-
plicity, which dynamically calculates the step length during
walking. Hence, we adopt this method for the step length
estimation of the DSFF.

The relative position of the user is determined from the
displacement direction, step detection, and step length as
follows:

Coort ¼ Coort�1 þ SL
sinðutÞ
cosðutÞ

� �

; (22)

where ut denotes a corrected heading angle or sensor read-
ing, Coort is the ðxt; ytÞ coordinate at time t, Coort�1 is the
ðxt�1; yt�1Þ coordinate at time t� 1, and SLt represents step
length. As with the heading EB, the distance EB also gener-
ates the EB based on the tracking result of the optimal trace.
When tracking results and IMU sensor readings are not syn-
chronized, it does this by dividing by the detected step
count in the moving distance of successive tracking results.
Consequently, the difference in distance is applied to each
step and stored as a probability distribution of errors for the
distance EB. The distance error correction employs the same

Fig. 6. EB generation for heading error compensation.
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concepts and procedures as heading error correction: the
x-axis of the EB represents the state in which the tracking
result is longer than SLk, and the y-axis of the EB represents
the opposite case. The weight of the distance bias value can
also be adjusted based on the ratio of the EB area, just as in
the heading error correction.

4.4 Dynamic Error Correction for Floor Detection

To track users’ movement between floors, we use a smart-
phone-embedded barometric pressure sensor that detects
pressure change according to altitude. The barometric pres-
sure sensor can be utilized for distinguishing user location
in terms of height in a multi-story building. As is generally
known, the atmospheric pressure decreases as the altitude
increases. The altitude can be calculated using these charac-
teristics and sea level pressure with scale factors [23].

However, the pressure value changes according to the
weather or other environmental factors when checked on a
daily basis at the same location. If theweather fluctuates sud-
denly, there may be a larger error. Because of these irregular
changes, barometer data is not appropriate for training in the
offline phase. It is more helpful to measure the pressure at
the point of providing the navigation service and utilize it
for movement between floors. Using the barometric formula
[24], we can calculate user location in terms of altitude corre-
sponding to barometric pressure changes using

p ¼ p0 � exp �
g �M �H

R � T

� 	

; (23)

where p denotes the reference barometric pressure at a cer-
tain altitude H, p0 is the mean sea level pressure, g is the
gravitational acceleration, M is the molar mass of dry air, R
is the universal gas constant of air, and T is the temperature.
These scale factors can be obtained from the weather infor-
mation provided by a weather station or from [25]. We rear-
range (23) to obtain altitude as follows:

H ¼ �
R � T

g �M
� ln

p

p0

� 	

: (24)

If we calculate p using the height information of the build-
ing in (23), it will differ from the barometer reading. This
difference then becomes the bias of the barometer, which dif-
fers for each device. Although some studies have initially
compensated for this bias by calibrating the barometer read-
ing [26], the bias compensation value which is initially set is
employed as a static value, which is not consistent with the
objective pursued by the DSFF. The International System
unit for pressure is the pascal (Pa), but we use hectopascal
(hPa) units for the DSFF. In general, hPa or millibar units are
used for atmospheric pressure.

The current floor is estimated using (24) as follows:

FL ¼
Hc �H0

D
; (25)

where FL is the estimated floor level, H0 denotes the first
floor height of the building, Hc denotes the present height
of the user location, and D represents inter-floor height of
the building.

Fig. 7a shows the error correction process by applying the
EB to the barometer reading. In Fig. 7a,B represents barome-
ter reading, ’ denotes the tracking result, andD’ is the differ-
ence between ’ and u. The barometer EB is formed using the
vertical moving distance of the tracking result and the
change in pressure. After obtaining the approximate floor
level at the beginning of the positioning from (25), the track-
ing result D’T0 is obtained using the difference between BT0

and the tracking result ’T1. In this case, the EB is generated
using the EB probability distribution corresponding to D’T0

as shown in Fig. 7b, and the shape of the probability distribu-
tion of the barometer value is modified to reflect the EB gen-
erated. In the same way, ’T1 and ’T2 are calculated, and
D’T0;T1;T2 values are formed by dividing both sides as shown
in Figs. 7c and 7d. As the EB is generated, the initial weights
of the pressure value probability distribution decrease, and
the barometric biases generated by the EB have a higher
weight. In this way, even if the barometer readings are differ-
ent because of the offset of each device, the initial floor level
and EB can be used to calibrate for the offset, and error cor-
rection can be used to correct the bias of the barometer
readings.

4.5 Error Correction Convergence in DSFF

It is assumed that the initial error block is a discretized normal
distribution EB, where the probability space is �2:5s; 2:5s½ �,
as depicted in Fig. 8 and, in this example, the width of each
error block is set to s, but it can be changed depending on the
user’s preference. Further, it is assumed that EB is the initial
error block distribution of orientation following Zð0; 3Þ and
that there is a certain orientation bias b, following B ¼ Zðmb;
sb ¼ 3Þ. An error block is then generated at around �30
degrees per each step. Let h be the height of the error block
accumulated at each step. The probability density of each
error block is hs.

The error correction effect can be examined based on the
magnitude of P ðEB ¼ �mbÞ. If the probability distribution
of EB satisfies

P ð�mb � 2:5sb � EB � �mb þ 2:5sbÞ 	 0:95; (26)

Fig. 7. EB correction of the barometer reading.
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EB is considered to have converged enough to have the
error correction effect. Let EBk be EB at kth step. Suppose
P ðEB0 ¼ �mbÞ ¼ 0. Then

P ðEB1 ¼ �mbÞ ¼ P
s

2

� �

2mb

s


 �

� B �
s

2

� �

2mb

s
þ 2


 �� 	

�
hs

1þ hs
þ P ðEB0 ¼ �mbÞ

� 	

þ P
s

2

� �

2mb

s


 �

� B

��

�
s

2

� �

2mb

s
þ 2


 �	c	

� P ðEB0 ¼ �m0Þ ¼ KC;

(27)
where

K ¼ P
s

2

� �

2mb

s


 �

� B �
s

2

� �

2mb

s
þ 2


 �� 	

and

C ¼
hs

1þ hs
;

(28)

K is the probability that b is in the 2s range, and C is the
amount of accumulated error block normalized by 1þ hs

P ðEB2 ¼ �mbÞ

¼ K
P ðEB1 ¼ �mbÞ

1þ cs
þ C

� 	

þ ð1�KÞ
P ðEB1 ¼ �mbÞ

1þ hs

¼
K2C

1þ hs
þKC þ

KC �K2C

1þ hs

¼ KC 1þ
1

1þ hs

� 	

;

P ðEB3 ¼ �mbÞ

¼ KC 1þ
1

1þ hs
þ

1

ð1þ hsÞ2

 !

;

.

.

.

(29)

From (29), we can derive

P ðEBk ¼ �mbÞ

¼ KC 1þ
1

1þ hs
þ

1

ð1þ hsÞ2
þ � � � þ

1

ð1þ hsÞk

 !

¼ KC
1� 1

1þhs

� �n

1� 1

1þhs

:

(30)

Then

P ðEBk ¼ �mb þ sÞ ¼ P ðEBk ¼ �mb � sÞ

¼ K0C
1� 1

1þhs

� �n

1� 1

1þhs

;

P ðEBk ¼ �mb þ 2sÞ ¼ P ðEBk ¼ �mb � 2sÞ

¼ K00C
1� 1

1þhs

� �n

1� 1

1þhs

;

(31)

where

K0 ¼ P
s

2

� �

2mb

s
þ 2


 �

� B �
s

2

� �

2mb

s
þ 4


 �� 	

;

K00 ¼ P
s

2

� �

2mb

s
þ 4


 �

� B �
s

2

� �

2mb

s
þ 6


 �� 	

:

(32)

Therefore, it holds that

P ð�mb � 2:5sb � EBk � �mb þ 2:5sbÞ

¼ P ðEBK ¼ �mbÞ þ 2P ðEBK ¼ �mb þ sÞ

þ 2P ðEBk ¼ �mb þ 2sÞ

¼ CðK þK0 þK00Þ
1� 1

1þhs

� �n

1� 1

1þhs

:

(33)

Fig. 9 shows error correction convergence with respect to
different values of h, the height of each error block. To show
the error correction convergence of the heading as an exam-
ple, we use the collected data of the Section 5.2. The width of
each error block is fixed as s. For all cases, the probability of
bias increases over time. The error correction effect appears
faster as the size of the error block increases. Even with the
slowest error block height of 0.1, a bias of 0.95 probability or
more appears in the 13th step in Fig. 9. This corresponds to
the results in Fig. 13.

4.6 DSFF

Our probabilistic fusion method searches out the most prob-
able location l, given online measurement OE by calculating
the posterior priority P ðljOEÞ for all locations. The proposed
DSFF compensates for sensor data errors by analyzing the

Fig. 8. Initial distribution of error block.
Fig. 9. Error correction convergence with different h values.
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error in accumulated sensor data over time as it searches for
the optimal trace using the HMM. The HMM is a suitable
model for sequential indoor positioning data because it can
handle the temporal nature of the data and deduce the
desired information from the information. The HMM-based
positioning algorithm operates by determining the hidden
structure of user traces that fits into the building’s inner lay-
out. In general, an HMM estimates a current state at each
time point by utilizing observations, HMM properties, and
parameters. Although the current state is hidden at each
time point, it can be estimated by observations together with
the previous state. Indoor localization systems employ
HMM by replacing states with locations and observations
with onlinemeasurements.

The proposed DSFF uses a k-best Viterbi tracking algo-
rithm [36], [37] in the HMM framework. Viterbi tracking is
an interpretation framework that efficiently computes posi-
tion changes using the HMM, which allows historical and
dynamic user movement trajectories to be tracked stochasti-
cally. Probabilistic Viterbi tracking is performed using abso-
lute and relative positioning. The optimal trace is found by
calculating the user position with the highest probability. In
other words, the optimal trace is the trace with the highest
probability and minimal errors in the various sensor data.

4.7 Environmental Adaptation of the DSF

To determinewhich data of the corrected probability distribu-
tion should be considered for Viterbi tracking, we usedmodi-
fied exponential smoothing (ES), which weights the most
recent data while still using all data. When using the EB for
tracking, if we use the entire history, it is less reliable because
the EB considers the average environment of the entire trajec-
tory rather than considering the most recent information
about a constantly changing environment. Conversely, if we
only consider recent error distributions, the amount of data is
insufficient for error correction, and the tracking accuracy
may be low. Therefore, we use a modified ES which we call
the aging method to consider the entire history of the EB, but
to give a higherweight to themore recent data.

ES is an algorithm for predicting future data from exist-
ing data, which gives a higher weight to recent data and

applies past historical data to exponential weighting to pre-
dict the data average. Because the proposed DSFF does not
need to predict the future, only the part that weights the
tracking history is used. It is calculated as follows:

EBaging ¼ aEBn þ að1� aÞEBn�1 þ að1� aÞ2EBn�2

þ � � � þ að1� aÞn�1EBn�m;
(34)

where N is the number of EBs, EBn is an observed EB value
at time n, and a is an ES coefficient, which is set 0.2. In gen-
eral, the ES coefficient is small for a time series with large
irregular fluctuations and large for a time series with small
irregular fluctuations. A value of 0.2 was chosen by compar-
ing the residual sum of squares between the actual observa-
tions and predicted values to obtain the smallest prediction
error.

4.8 Effectiveness of Outliers

In the previous sections, we assumed that more sensory
data enhances positioning accuracy. At this point, we can
consider if only accurate data is present, then extreme sen-
sor noise and outliers may damage the system. This consid-
eration applies to the general fusion method. However, a
single sensor which exhibits a large error is not significantly
affects to the tracking result of the system because the
remaining sensors complement this one sensor in most
fusion methods. In other words, if we use sensor fusion, the
probability of obtaining inaccurate results is much lower
compared to when we use only one sensor. This is because
the directionality of each sensor error pattern varies. The
error of each sensor is influenced by the inherent nature of
the sensor, and the environment that affects each sensor
also varies. For these reasons, the sensor errors vary in size
and orientation in 2D spaces. For example, in typical fusion,
when sensor A shows an error of �5 m on the x-axis and
sensor B with an error of +3 m, the sensor fusion result can
be �1 m as these two sensors can complement each other.
The proposed method can be more robust in a situation
where one sensor shows a large error. DSFF continuously
learns the error pattern for each sensor and performs sensor
fusion with a real-time correction value depending on this
pattern. In other words, if sensor A frequently shows minus
error on the x axis, it will calibrate the negative sensor read-
ing closer to zero.

The sensor reading si;n at the nth stage is subjected to an
error correction process and estimates the corrected probabi-
listic distribution q1;n; q2;n; ; qi;n as the output in Fig. 10. If an
extremely large error Z occurs in a single sensor (i.e.,
Zi > 2si), the sensor reading si;n(=oi;n) becomes si;n ¼ oi;n þ
Z and there will be no outlier in case of the Z ¼ 0. Here, Z
denotes the difference between the outlier value and the m

value of the distribution of the respective sensor. These out-
puts act as input of the DSF along with the probability distri-
bution of absolute sensors, resulting in a corrected resultQn.
In this case,Qn � qi;n denotes the error of the single sensor at
the nth stage, and the error block for each sensor at the next
stage is updated through this error. When an outlier occurs
in a single sensor, the effect of this single sensor on the result
at the nth stage is proportional to Zi=si. At this time, the
degree to which the overall result is affected by this sensor

Fig. 10. DSF flow-chart on occurrence of outliers.
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can be represented by M ¼ ðZi
si
Þ � ð

Q

s

si
Þ, and the corrected

result value can be expressed as follows:

Q0
n ¼ Qn þM: (35)

If the outlier is not included, the effect of the final result at
the nth stage on the single-sensor error block update at the
nþ 1th stage is as follows:

EBi;nþ1 ¼ ð1� aÞEBi;n þ aðQn � qi;nÞ: (36)

If the outlier is included

EB0
i;nþ1

¼ ð1� aÞEBi;n þ aðQ0
n � qi;nÞ: (37)

On summarizing the effects of including outliers, we can
derive (38) from (35) and (37)

EB0
i;nþ1

¼ ð1� aÞEB0
i;n þ aðQ0

n � qi;n þMÞ

¼ ð1� aÞEB0
i;n þ aðQ0

n � qi;nÞ þ aM:
(38)

Therefore, deriving from (36) and (38) to (39) shows that
when the final result is affected byM due to a single- sensor
outlier at the nth stage, the influence of the error block on
each single sensor at the nþ 1th stage is proportional to a

andM as follows:

EB0
i;nþ1

¼ EBi;nþ1 þ aM: (39)

However, the DSF may fail if the sensor outlier continues
to appear as an extreme error that deviates from the existing
pattern. If outliers occur continuously and (38) repeats

repeatedly, M accumulates and Q0
n continuously worsens.

In addition, if EBs are accumulated randomly and continu-
ously, the probabilistic distribution of the sensors can form
an even distribution, and this situation is the same as when
the error is included but not error-corrected.

5 EVALUATION

5.1 Experiment Setup and ERM Construction

The experiments were conducted in medium-scale office
buildings, N1 and KI, at the Korea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, Korea.We evaluated
the performance of the DSFF by dividing the target site into a
2D space and a 3D space with floor movement. Fig. 11a
depicts the experimental area in the N1 building, which
includes three floors, and Fig. 11b shows the experimental
open space in the KI building. The specifications of the
testbed and their ERM constructions are listed in Table 1.

Test bed N1, which consists of corridors and rooms, is a
typical configuration of an office building. The tracking accu-
racy test uses Wi-Fi and a magnetometer for absolute posi-
tioning and a gyroscope, accelerometer, and barometer for
relative positioning. To construct the ERM for the target
area, HMM cells of the building shown in Fig. 11 were sepa-
rated into 1m intervals and training data were collected
using a point-by-point collectionmethod. A total of 1,000 fin-
gerprints were collected for 20 Wi-Fi data per cell. In the
ERM construction, a fingerprint for each cell was stored after
calculating the average measurement, and a total of 500
fingerprints were used in theN1 building.

Fig. 11. Experimental area at KAIST, Korea: (a) Testbed N1: Seventh floor of the N1 building and (b) testbed KI: Open space of a lobby.

TABLE 1
Experimental Setup

Testbed Area Total length of
corridors (m)

#APs detected
(used)

Data collection

Training data Test data

# traces # measurements Wi-Fi + Mag. # traces # measurements

N1 (80 � 32 )m2 � 3floors 196 196 (50) 4 10,000 + 250,000 40 7,200
KI (18 � 36)m2 � 1floor 83 206 (all) 1 523 + 8,442 1 621

LEE ET AL.: AN ADAPTIVE SENSOR FUSION FRAMEWORK FOR PEDESTRIAN INDOOR NAVIGATION IN DYNAMIC ENVIRONMENTS 331



A total of 196 APs were detected, but 50 APs were used so
that a Wi-Fi positioning accuracy of 3.5 m 
 4 m was
obtained. In general, APs are selected to improve perfor-
mance through dimensional reduction. However, in this
experiment, AP selection was performed to more clearly
evaluate the effect of DSFF when tracking. About 500 values
of magnetometer data were collected in each cell so that the
total number of data is 250,000. To construct the ERM for the
magnetometer, the norm values of the x, y, and z axes were
assigned to the magnet intensity and the averages were used
along with the inclination values. The average values of Wi-
Fi and magnetic field in each HMM cell of the target site
were stored as training data along with the location coordi-
nates during the construction of the ERM. Because DSFF
uses probability-based positioning, the signal distribution of
the collected training data was analyzed and used in the
online phase. For accuracy tests, the test point coordinates
were registered in the test data and the accuracy was calcu-
lated using the difference in distances between the ground
truth and test point. All simulation codes for the evaluation
were implemented in Java and run on a 3.30 GHz Intel Core
i5-6600 CPUwith 16 GB ofmemory.

5.2 Tracking Accuracy Test

We compared the tracking accuracy achieved by the DSFF
with that of a model built in a supervised manner using the
ground truth location labels. The average error distances
were measured according to the time sequences of the test
data. Test data for the Wi-Fi, magnetometer, accelerometer,
gyroscope and barometer along with learning data were col-
lected in the N1 building for the tracking accuracy test. Test
data were collected for 40 test paths, and about 180 finger-
prints were included in each test path. A total of 7,200 finger-
prints were used for the test data. In the experiments, the
absolute sensor accuracy is in all cases compared to the
ground truth. Therefore, there is still an error in all cases
even in case of HMM+. The real truth is calculated from the
ground truth, and the criterion of correction we mentioned
in this paper is calculated using the aggregate result of pro-
posed method. Consecutive position is a consecutive state of
HMM. Tracking is performed by continuously calculating
the state at t by multiplying the emission probability and
transition probability at t-1. The heading computing of the
consecutive position can be derived using coordinates
between states, and indoor layout with the probabilities.

In this section, we consider the case of tracking DSFF
while correcting only heading data, correcting only step

data, correcting heading and step data at the same time,
and performing no correction. These variations are denoted
by DSF and HMM, as per the experimental condition. The
abbreviations and mean distance error for the methods in
this experiment are summarized in Table 2. The accuracy is
compared by evaluating the cases in which where there is
no error in the heading data, no error in the step data, and
no error in either the heading or step data. The latter case is
denoted by HMM+, as per the experimental condition.
(Note that the purpose of the experiment is to evaluate how
the proposed DSF method is employed in the DSFF so that
the sensor values of the HMM are corrected and thus,
become similar to the values of the HMM+, which has no
relative sensor errors.).

Fig. 12 presents the tracking accuracy with respect to the
distance data. The tracking accuracy of the HMM converges
at 3.1 m, DSF converges at 2.92 m, and HMM+ converges
at 2.85 m. DSF achieves an improvement in accuracy of
6.45 percent compared with HMM. Although the accuracy is
further improved by HMM+, the difference in accuracy
betweenHMM+andHMM is only about 0.4m.

Fig. 13 presents the tracking accuracy with respect to the
heading data. In contrast to the results for distance, HMM
converges at 3.1 m, DSF converges at 2.4 m, and HMM+ con-
verges at 2m in Fig. 13. ComparedwithHMM,DSF converges
with a 22.5 percent improvement in accuracy. Comparing
HMM+of Fig. 12 andHMM+of Fig. 13, HMM+ in Fig. 13 con-
verges with an 0.8 m improvement. DSF of Fig. 12 and DSF of
Fig. 13 also show a similar pattern whereby DSF in Fig. 13
converges to an 0.5 m improvement in accuracy.

Because the probability distribution of distance forms a
ring shape, as shown in Fig. 1, all HMM cells to which the
user can move from a candidate point have the same proba-
bility. Therefore, the tracking accuracy of the distance data
is lower than that of the heading data. For the heading data,
HMM cells with the same probability are limited to the dis-
tribution of a fan shape. Consequently, even if the travel dis-
tance is not accurately calculated, the traveling direction has
a relatively high influence on the tracking result.

DSF in Fig. 12 and DSF in Fig. 13 have similar accuracy to
HMM before sequences 40 and 20, respectively. Although
the EB is generated for the sensor bias and applied to the

TABLE 2
Summary of Experiment Methods and Results in 2D Space

Notation Condition Mean Err.
Dist. (m)

HMM Tracking without DSF 3.19

HMM+

Tracking with accurate distance data in Fig. 12 3.00
Tracking with accurate heading data in Fig. 13 2.25
Tracking with accurate heading and distance
data in Fig. 14

2.07

DSF

DSF adaptation to distance data in Fig. 12 3.08
DSF adaptation to heading data in Fig. 13 2.70
DSF adaptation to both heading and distance
data in Fig. 14

2.52

Fig. 12. Comparison of distance-dependent tracking.
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probability distribution, it does not substantially improve
the accuracy as compared to HMM. However, the accuracy
is improved after sequence 40 for DSF in Fig. 12 and
sequence 20 for DSF in Fig. 13. This means that the effect of
error correction begins to appear near these sequences (40
and 20, respectively), andwe can see that accuracy continues
to improve up to sequence 140 and 100, respectively, where
the improvement appears to reach its maximum. In the case
of DSF in Fig. 12, the improvement in accuracy with respect
to DSF in Fig. 13 is less than 0.2 m. This is because the devia-
tion in the step length is not large, even if error correction is
applied. By contrast, the accuracy is highly improved from
sequence 20 in the case of DSF in Fig. 13 because the weight
is accumulated in the value obtained by applying EB to the
heading distribution. A comparison of the results in Figs. 12
and 13 shows that the accuracy improves and degrades inter-
mittently because the methods shown in Fig. 12 correct the
distance error but not the heading error. This indicates that
the bias of the heading data degrades the tracking result rela-
tively strongly.

Fig. 14 shows the tracking accuracy of the simultaneous
correction of step and heading sensor data. DSF converges at
2.2 m and HMM+ converges at 1.8 m. Here, DSF improved

accuracy by about 29 percent with respect to HMM. The
accuracy begins to improve as DSF moves past sequence 20,
which is similar to the results for DSF in Fig. 13. Fig. 15 shows
how the heading errors are corrected in the test trace, where
“ANSWER DEG” denotes HMM+, “INPUT DEG” denotes
HMM, and “REVISED DEG” denotes DSF. Compared to
HMM, all values of HMM are biased to positive values, indi-
cating that gyro drift is occurring. On the other hand, DSF is
not corrected in the early stage, but the correction rapidly
occurs at a certain time point. The points at which the accu-
racy improves are similar to those in Fig. 14. Although it is
not completely error-corrected, the DSF values are corrected
to a value similar to the correct answer as a whole, compared
to those of HMM, and the accuracy is improved, as shown in
Fig. 14, through error correction. Even in HMM(+), where
there is no relative sensor error in the sensor data, HMM+ in
Fig. 14 is improved by 35.71 and 10 percent compared to
HMM+ in Fig. 12 andHMM+ in Fig. 13, respectively. The rel-
atively low improvement rate of HMM+ in Fig. 13 with
respect to HMM+ in Fig. 12 confirms that the moving direc-
tion of a pedestrian has a higher effect on the tracking result.
In this regard, if the conditional probability of the moving
direction and the moving distance is applied, the accuracy of
DSF as well as that of HMM+ in Fig. 14 improves.

5.3 Floor Detection Evaluation

The test path for the floor detection experiment moves
between three levels in the N1 building, and the test data
was collected four times between the highest level and the
lowest level. In the floor detection test, the plane detection
space was set to about 30 percent, and the floor detection
space was set to about 70 percent of the whole test space, so
that the effect of the barometer on the floor classification can
be clearly seen in the DSFF. A total of 800 test data were
used, including about 80 fingerprints per 10 test paths.

Fig. 16 compares the cases in which the accuracy varies
depending on the barometer data. In the figure, HMM con-
verges at 3.4 m, DSF converges at 3.1 m, and HMM+ con-
verges at 2.8 m. Compared to the case of tracking without

Fig. 13. Comparison of heading-dependent tracking.

Fig. 14. Comparison of a distance- and heading-dependent tracking.

Fig. 15. This figure shows the influence of the heading error correction.
Here, “ANSWER DEG” denotes HMM+, “INPUT DEG” denotes HMM,
and “REVISED DEG” denotes DSF.

LEE ET AL.: AN ADAPTIVE SENSOR FUSION FRAMEWORK FOR PEDESTRIAN INDOOR NAVIGATION IN DYNAMIC ENVIRONMENTS 333



error compensation, DSF improves accuracy by 6.45 per-
cent. Also, although there was an improvement, the differ-
ence in accuracy between HMM+ and HMM was not
substantial (about 0.4 m). Fig. 17 shows the result of tracking
using heading, distance, and pressure data, and the average
accuracy of each case is shown in Table 3. In Figs. 16 and 17,
HMM+ converges at 2.8 and 1.7 m, respectively. This indi-
cates that even if the altitude value is fused correctly using
DSF, the tracking accuracy is not substantially improved
unless the direction and distance values are correct. This is
because the probability distribution of barometric pressure
only varies over the z coordinate, and the x and y coordi-
nates depend on the positioning results of the other sensors.

By contrast, DSF improves accuracy from sequence 10 in
Fig. 16. In the case of the floor displacement test, it is possible
to perform relatively accurate calculations with absolute
positioning using (25). Hence, if error correction is applied to
the probability distribution of the barometer data, the
improvement may be relatively faster than for other sensors.
As shown in Fig. 17, the rapid accuracy improvement occurs
near sequence 20 of DSF. Similar to Figs. 13 and 14, this phe-
nomenon is due to the heading error correction.

5.4 Tracking Accuracy Test for Open Space

The open space experiment was conducted in the first floor
of the KI building, to evaluate the tracking accuracy of the
DSFF and HMM. The performance was measured for a ran-
dom walk path in the 18 � 36 m lobby of the KI building,
where the average error distance is 4.34 m whenWi-Fi alone
is used for positioning. Moreover, the accuracy is not greatly
improved even if the IMU sensor is used.

Fig. 18 shows the random walk path using blue points,
and the red points show the estimated points. Fig. 18a shows
HMM tracking and Fig. 18b shows DSF using distance and
heading data tracking. The mean errors for these methods
are 4.73 and 4.29 m, respectively. In this space, it is difficult
to improve the accuracy using the IMU sensors when error
correction is not performed. Even if error correction is per-
formed, the accuracy is not dramatically improved. None-
theless, Fig. 18 shows that DSF can also affect the user
tracking accuracy, even in an open space. As shown in
Fig. 18a, the estimated points are scattered without any pat-
tern in the black solid circle. In Fig. 18b, the estimated points
at the lower part of the solid circle are spread out to the left
and right, and the estimated points are approximately linear
in the upper part. Although they differ from the ground
truth, the estimated points more closely follow the actual
moving patternwhenDSF is used.

In the dotted circle in Fig. 18a, the heading is shifted con-
tinuously to the right because of the accumulated error, but

Fig. 16. Comparison of a barometer-dependent tracking.

Fig. 17. Comparison of a distance-, heading- and barometer-dependent
tracking.

TABLE 3
Summary of Experiment Methods and Results in 3D Space

Notation Condition Mean Err.
Dist. (m)

HMM Tracking without DSF 3.48

HMM+ Tracking with accurate barometer
data in Fig. 16

2.95

Tracking with accurate data for all
sensors in Fig. 17

1.99

DSF DSF adaptation to barometer data in Fig. 16 3.23
DSF adaptation to all sensor data in Fig. 17 2.45

Fig. 18. Comparison of tracking (a) without and (b) with DSF in an open
space. Blue and red points indicate the ground truth and estimated points,
respectively.
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the DSF results are closer to the ground truth in Fig. 18b. In
otherwords, even if it is difficult to expect a good positioning
result due to a decrease in positioning accuracywhen using a
radio signal in an open space, accuracy can be improved by
performing error correction using an aggregated result.

6 DISCUSSION

The main purpose of the framework proposed in this paper
is to compensate for the degradation of tracking accuracy by
providing a fusion mode that can be used as a universal
fusion system. This aim was accomplished by developing a
real-time error-learning model and adaptive fusion frame-
work. The proposed error-learning model suggests that it is
possible to correct the errors of sensor data by reflecting the
characteristics of a continuously changing environment in
real time. In contrast, other fusion methods require compli-
cated calculations and unfamiliar fusion models. The pro-
posed framework is more robust when fusing new sensors in
indoor positioning. We have developed a framework that
can provide a navigation service without complicated calcu-
lations or processing by easily and simply combining new
sensors using a probability-based fusion model. In other
words, the framework developed in this study enables a
navigation service to be used more accurately in various
environments.

The experiments conducted under a changing environ-
ment revealed that the proposed DSFF can provide a precise
fusion model without a static or empirical setting. In an
office building, the tracking accuracy was improved by at
least 3.45 percent and up to 28.95 percent in the 2D space
during tracking. In the floor displacement experiment, the
tracking accuracy was improved by at least 7.18 percent
and up to 29.59 percent. These results imply that an indoor
navigation service would be possible through dynamic sen-
sor fusion, even under the continuously changing indoor
environments that exist in most spaces of a building.

In contrast, in an open space, using a diverging signal as
a characteristic for a specific location in indoor positioning
using Wi-Fi remains difficult. As with HMM-based posi-
tioning, the proposed method also performs poorly if an
indoor layout is not used. Although these limitations exist,
we have confirmed that the proposed method can be cali-
brated along the ground truth in the open space. This indi-
cates that the proposed method can provide guidance to
positioning studies in open space in the future. Moreover,
there is a trade-off between the amount of data accumulated
and the agility of the error correction adaptation, as men-
tioned in Section 4.7. Although ES applies temporal signifi-
cance to Viterbi tracking data, additional research is needed
to determine the importance of data over time and thus,
optimize the DSFF developed here.

7 CONCLUSION

This paper presents a dynamic sensor fusion framework to
combine various sensors and provides a fusion model for
fusion-based indoor navigation services. Although it is not
possible to fully remove the error and bias characteristics of
each sensor, it has been confirmed that a few sensors such
as Wi-Fi and magnetometer can compensate for the errors

or biases of various other sensors by complementing their
functionality. Although the characteristics of each sensor
are different because of the variety of sensors and vendors,
the proposed method enable the fusion of sensor data in
real time. The proposed fusion system will become a critical
technique for accurate user tracking. We are considering
integrating the proposed system into the KAIST Indoor
Locating System (KAILOS) [27], and providing the sensor
fusion framework and maintenance service to the public.

Meanwhile, reducing site survey effort has long been an
issue in indoor positioning. The data used for offline training
can cause different signal measurements, even at the same
location, due to the addition or removal of infrastructure
over time. In the dynamic sensor fusionmethod, which is rel-
atively dependent on the accuracy of absolute sensor data
being trained offline, this problem becomes even more criti-
cal. To reduce this effort, methods of crowdsourcing [38],
automatic updating of training data [39], [40], and user feed-
back [41] have been studied. Another typical solution for
reducing site survey effort is to use additional sensors to cap-
ture signal changes [42]. Future research could focus on find-
ing a suitable method for reducing site survey effort and a
more sophisticated method for aging that works well with
the proposed fusion framework.
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