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Abstract Approximate Bayesian computation (ABC) is a
popular approach to address inference problems where the
likelihood function is intractable, or expensive to calculate.
To improve over Markov chain Monte Carlo (MCMC) im-
plementations of ABC, the use of sequential Monte Carlo
(SMC) methods has recently been suggested. Most effective
SMC algorithms that are currently available for ABC have a
computational complexity that is quadratic in the number of
Monte Carlo samples (Beaumont et al., Biometrika 86:983–
990, 2009; Peters et al., Technical report, 2008; Toni et al.,
J. Roy. Soc. Interface 6:187–202, 2009) and require the care-
ful choice of simulation parameters. In this article an adap-
tive SMC algorithm is proposed which admits a computa-
tional complexity that is linear in the number of samples
and adaptively determines the simulation parameters. We
demonstrate our algorithm on a toy example and on a birth-
death-mutation model arising in epidemiology.
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1 Introduction

1.1 Background

Assume we are given a Bayesian model where π(θ) de-
notes the prior density of the parameter θ ∈ � and f (y|θ)

the likelihood of observations y ∈ D. In this context, infer-
ence relies on the resulting posterior density π(θ |y). Unfor-
tunately if the likelihood term f (y|θ) is expensive or impos-
sible to calculate, it is difficult to use standard computational
tools to sample from π(θ |y). ABC is an alternative to such
techniques that only requires being able to sample pseudo-
observations X from f (·|θ). In its most common form, ABC
draws inference from the following modified posterior den-
sity on �×D

πε(θ, x|y) = π(θ)f (x|θ)IAε,y (x)
∫
Aε,y×�

π(θ)f (x|θ)dxdθ
(1)

with ε > 0 a tolerance level, IB(·) the indicator function
of a given set B and x ∈ D corresponds to some pseudo-
observations. The set Aε,y corresponds to the set of pseudo-
observations which are close in some sense to the true ob-
servations y. It is formally defined as follows

Aε,y = {
z ∈ D : ρ(

η(z), η(y)
)
< ε

}

where η : D → S represents some summary statistics and
ρ : S × S →R

+ a distance function. A few variations over
the ABC posterior presented here have been proposed. For
example, it is possible to substitute to the indicator function
appearing in (1) a smooth kernel function. The ideas devel-
oped in this paper still apply in this context but, for ease of
presentation, we will restrict ourselves here to an indicator
function. We refer the reader to reference Marin et al. (2011)
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which provides an excellent up-to-date survey of ABC meth-
ods.

Designing efficient MCMC algorithms to sample from
πε(θ, x|y) can be difficult. This is why SMC methods have
recently become prominent in the ABC context (Beau-
mont et al. 2009; Peters et al. 2008; Sisson et al. 2007;
Toni et al. 2009). The key idea is to decompose the prob-
lem of sampling from πε(θ, x|y) into a series of simpler
sub-problems. The algorithm begins at algorithmic time 0
sampling from πε0(θ, x|y), with ε0 large, then simulating
from an increasingly constrained sequence of target distribu-
tions πεn(θ, x|y), that is εn < εn−1, at subsequent algorith-
mic time steps n ∈ {1, . . . , T }. In other words, the tolerance
level is decreased until it reaches ε. These distributions are
approximated by a large number of random samples which
are propagated over time using a combination of importance
sampling (IS) and resampling.

In the ABC context, Sisson et al. (2007) used the SMC
samplers methodology developed in Del Moral et al. (2006)
coupled with a partial rejection proposal. Some concerns
have been raised about this algorithm in Beaumont et al.
(2009). This issue is now resolved; see Sisson et al. (2009).
In Beaumont et al. (2009), Toni et al. (2009), the authors
have developed methods to improve the performance of the
algorithm in Sisson et al. (2007) which can be interpreted
as approximations to the “optimal” backward kernel in Del
Moral et al. (2006, Sect. 2.4). This leads to algorithms of
computational complexity that are quadratic in the number
of particles and still requires a careful determination of the
sequence of tolerance levels. If the tolerance levels decrease
too fast then the algorithm can perform poorly whereas if
they decrease too slowly then the algorithm will be too com-
putationally intensive.

1.2 Contributions and organization of the article

In this article an original adaptive SMC method for ABC is
developed. In comparison to previous work, our algorithm
has the following features. It determines, in an automatic
fashion, the sequence of tolerance levels to be used and the
parameters of proposal distributions. Additionally it has a
computational complexity that is linear in the number N of
particles compared to quadratic for the algorithms proposed
in Beaumont et al. (2009), Sisson et al. (2009), Toni et al.
(2009). However, it is worth mentioning that all the previous
SMC algorithms proposed for ABC and the one presented
here require simulating a number of pseudo-observations
proportional to N . Their computational complexity differ
only in the calculation of some importance weights: it is
quadratic for the algorithms in Beaumont et al. (2009), Sis-
son et al. (2009), Toni et al. (2009) and linear for the algo-
rithm presented here. For challenging applications, simulat-
ing pseudo-observations is very expensive and this simula-
tion step will dominate the computational cost of calculating

the importance weights for N small enough. We also note
that the authors in Beaumont et al. (2009) adapt the param-
eters of proposal densities but not the tolerance levels.

Some variations over our methodology have already ap-
peared in Grelaud (2009, Chap. 5) and in Drovandi and Pet-
tit (2011) where the adaptive schedule is determined based
on the quantiles of the empirical distribution of the distance
function associated to particles.

The rest of this article is organized as follows. In Sect. 2
we outline the SMC sampler approach of Del Moral et al.
(2006) and discuss its application in an ABC context. In
Sect. 3 an original adaptive SMC scheme for ABC is intro-
duced. In Sect. 4 the performance of this algorithm is inves-
tigated on a toy example and a real data example also con-
sidered in Tanaka et al. (2006). Finally various extensions
are explored in Sect. 5.

2 SMC samplers for ABC

2.1 SMC samplers

The SMC sampler methodology is a generic approach to ap-
proximate a sequence of probability distributions {πn}0≤n≤T

defined upon a common measurable space (E, E ) (Del
Moral et al. 2006). These distributions are approximated by
a collection of N random samples {Z(i)

n }Ni=1, termed parti-
cles. At time 0, the distribution π0 is selected such that it is
easy to approximate it using an importance distribution η0.
The particles {Z(i)

n−1}Ni=1 are then moved, from time n − 1 to
time n, by using a Markov kernel Kn(zn−1, zn) which de-
notes the probability or probability density of moving from
zn−1 to zn. As the resulting marginal distribution at time
n is typically not available, IS cannot be used directly, to
correct for the discrepancy between this distribution and the
target πn. To bypass this problem, a sequence of extended
probability distributions {π̃n}1≤n≤T are introduced on state-
spaces of increasing dimension (En+1, E ⊗n+1) admitting
{πn}1≤n≤T as marginals; see Del Moral et al. (2006) for de-
tails. More specifically, the following sequence of auxiliary
densities is introduced for 1 ≤ n ≤ T

π̃n(z0:n) = πn(zn)

n−1∏

j=0

Lj (zj+1, zj ) (2)

where we used the notation z0:n = (z0, . . . , zn). The quanti-
ties {Ln}0≤n≤T −1 are Markov kernels that act backward in
time; that is Ln(zn+1, zn) denotes the probability or proba-
bility density of moving from zn+1 to zn. These kernels are
consequently termed backward Markov kernels. It is thus
clear from (2) that {π̃n} admit {πn} as marginals for any
1 ≤ n ≤ T .

We denote by δx(·) the delta-Dirac measure located at x.
The SMC sampler algorithm proceeds as follows.
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• Step 0. Set n ← 0; for i = 1, . . . ,N, sample Z
(i)
0 ∼ η0

and compute W
(i)
0 ∝ π0(Z

(i)
0 )/η0(Z

(i)
0 ),

∑N
j=1 W

(j)

0 = 1.

• Step 1. If ESS({W(i)
n }) < NT then resample N particles

from

π̂n(dz) =
N∑

i=1

W(i)
n δ

Z
(i)
n

(dz) (3)

also denoted abusively {Z(i)
n } and set W(i)

n = 1
N

. Set n ←
n + 1, if n = T + 1 stop.

• Step 2. For i = 1, . . . ,N, sample Z
(i)
n ∼ Kn(Z

(i)
n−1, ·),

compute

W(i)
n ∝ W

(i)
n−1

πn(Z
(i)
n )Ln−1(Z

(i)
n ,Z

(i)
n−1)

πn−1(Z
(i)
n−1)Kn(Z

(i)
n−1,Z

(i)
n )

(4)

and return to Step 1.

In this algorithm, the ESS denotes the so-called Effective
Sample Size (Liu 2001, pp. 35–36) given at time n by

ESS
({

W(i)
n

}) =
(

N∑

i=1

(
W(i)

n

)2

)−1

. (5)

The ESS criterion takes values between 1 and N and its
interpretation is that inference based on the N weighted
samples is approximately equivalent to inference based on
ESS({W(i)

n }) perfect samples from πn. It allows us to assess
the accuracy of the estimator and triggers a resampling step,
implemented using the systematic resampling scheme (Kita-
gawa 1996), whenever its value is below a threshold NT . Al-
though the ESS is not a perfect measure, it does provide an
idea of the behaviour of the algorithm; see Chopin (2002)
for a discussion of its limitations and Beskos et al. (2011)
for a theoretical study of the behaviour of this measure in
high-dimensional settings.

2.2 Algorithm settings for ABC

In the context of ABC, we are interested in sampling from
the sequence of target distributions {πεn(θ |y)} such that
ε0 > ε1 > · · · > εT = ε where πεn(θ |y) is given by the
marginal in θ of πεn(θ, x|y) in (1). As πεn(θ |y) is un-
known, even up to a normalizing constant, SMC samplers
techniques cannot be applied directly. Therefore, it is nec-
essary to sample from the sequence of target distributions
πn(z) = πεn(θ, x|y). It should be noted that it is also possi-
ble to use SMC to sample from the sequence of targets

πεn(θ, x1:M |y) ∝
(

1

M

M∑

k=1

IAεn,y (xk)

)(
M∏

k=1

f (xk|θ)

)

π(θ)

(6)

for any integer M ∈ N (Andrieu et al. 2008). This se-
quence admits the same marginal in θ for any M . Although
it is more expensive to sample from πεn(θ, x1:M |y) than
πεn(θ, x|y) when M > 1, this has important advantages as
discussed in Sect. 3.2 and illustrated in Sect. 4.

The performance of SMC samplers depends heavily upon
the selection of an appropriate sequence {εn}, the transition
kernels {Kn} and the auxiliary backward transition kernels
{Ln}. Assume {εn} is fixed for the time being. Once Kn has
been selected, it is established in Del Moral et al. (2006,
Proposition 1) that the optimal choice for Ln−1 in terms of
minimizing the variance of the incremental weight (4) con-
ditional upon W

(i)
n−1 is given by

L
opt
n−1

(
z, z′) = πn−1(z

′)Kn(z
′, z)

∫
πn−1(u)Kn(u, z)du

(7)

which leads to

W(i)
n ∝ W

(i)
n−1

πn(Z
(i)
n )

∫
πn−1(zn−1)Kn(zn−1,Z

(i)
n )dzn−1

. (8)

In the ABC context, it is unfortunately impossible to com-
pute the denominator of L

opt
n−1 and the associated weight (8)

analytically. A solution proposed in Del Moral et al. (2006,
Sect. 2.4) consists of approximating (8) numerically using
the SMC approximation π̂n−1(dz) of πn−1(dz) which leads
to

W(i)
n ∝ W

(i)
n−1

πn(Z
(i)
n )

∑N
j=1 W

(j)

n−1Kn(Z
(j)

n−1,Z
(i)
n )

. (9)

This is the approach followed in Beaumont et al. (2009),
Toni et al. (2009), Sisson et al. (2009). The cost of comput-
ing each incremental weight is O(N) for each particle so the
overall computational complexity is O(N2).

We propose an alternative approach where we use an
MCMC kernel of invariant distribution πn for Kn as rec-
ommended in Del Moral et al. (2006). This allows us to use
for the backward Markov kernel an approximation of the op-
timal backward kernel (7) given by the reversal kernel

Ln−1
(
z, z′) = πn(z

′)Kn(z
′, z)

πn(z)
. (10)

Note that this choice of backward kernels was implicitly
made in Chopin (2002), Gilks and Berzuini (2001) and ex-
plicitly in related algorithms Neal (2001) where no resam-
pling step is used. Selecting Kn as an MCMC kernel of in-
variant density πn and Ln−1 as the reversal backward kernel
(4) leads to a weight update (4)

W(i)
n ∝ W

(i)
n−1

πn(Z
(i)
n−1)

πn−1(Z
(i)
n−1)

∝ W
(i)
n−1

∑M
k=1 IAεn,y (X

(i)
k,n−1)

∑M
k=1 IAεn−1,y (X

(i)
k,n−1)

.

(11)
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The cost of computing each incremental weight is O(1)

for each particle so the overall computational complexity is
O(N). Although the variance of the weight (11) is necessar-
ily higher than the variance of the weight (8), these variances
will be fairly similar in scenarios where πn(z) does not differ
significantly from πn−1(z); that is if the difference εn−1 −εn

is not too large.
In this very specific case, it is clear that if M = 1,

η0 = π0 then (11) yields either W
(i)
n ∝ 1 or W

(i)
n = 0 and

thus ESS({W(i)
n }) is directly proportional to the number of

“alive” particles at time n − 1, that is to the number of par-
ticles with strictly positive weights W

(i)
n . It is also worth

noticing that in this case W
(i)
n is independent of {Z(i)

n }. This
allows us to swap the order of the sampling and resampling
steps; see Del Moral et al. (2006, Remark 1, p. 418). We
will also exploit this property in the next section to obtain
an adaptive method to determine the tolerance levels.

As εn < εn−1, it is typically the case that there is a
non-null proportion of particles that have zero weights.
This emphasizes the importance of selecting an appropri-
ate sequence of tolerance levels. Indeed, if this sequence
decreases too slowly then, with high probability, W

(i)
n =

W
(i)
n−1 and the algorithm will move too slowly towards the

target πε(θ, x1:M |y). Conversely, if the {εn} decrease too
quickly, then with high probability, all the weights {W(i)

n }
can equal zero; hence the SMC sampler approximation
would have collapsed. To prevent such a collapse, the al-
gorithms in Peters et al. (2008) and Sisson et al. (2007)
targeting πεn(θ, x|y) generate particles Z

(i)
n = (θ

(i)
n ,X

(i)
n )

in regions such that ρ(η(X
(i)
n ), η(y)) < εn. The kernel Kn

they use is not an MCMC kernel of invariant distribution
πεn(θ, x|y) and this makes the selection of an associated
backward kernel, to ensure that the variance of W

(i)
n remains

reasonable, more difficult.

3 An adaptive SMC sampler for ABC

In this section, a simple adaptive SMC algorithm is pro-
posed which: relies on MCMC kernels to move the parti-
cles around the space; admits a computational complexity
that is linear in N ; automatically determines the sequence
of tolerance levels so as to prevent the collapse of the SMC
approximation.

3.1 An adaptive schedule for tolerance levels

Our method for selecting the tolerance levels {εn} adap-
tively is based on the key remark that the expression
(11) for the weights {W(i)

n } does not depend on {Z(i)
n } =

{(θ(i)
n ,X

(i)
1:M,n)}; see Del Moral et al. (2006, Sect. 3.5) for a

detailed discussion. We aim to control the ESS over itera-
tions by selecting the tolerance level εn such that

ESS
({

W(i)
n

}
, εn

) = αESS
({

W
(i)
n−1

}
, εn−1

)
(12)

for α ∈ (0,1) where W
(i)
n given in (11) depends on εn. We

have emphasized here notationally that the ESS at time n

is a function of εn. As ESS({W(i)
n }, εn) is not a continuous

function of εn for a finite number N of particles, it is typi-
cally impossible to find a value of εn which exactly solves
(12) but bisection can be used to find an approximate so-
lution. This construction prevents the collapse of the SMC
approximation. The parameter α is a “quality” index for the
resulting SMC approximation of the target. If α ≈ 1 then we
will move slowly towards the target but the SMC approxi-
mation will be very good. However, if α ≈ 0 then we can
move very quickly towards the target but the resulting SMC
approximation will be unreliable.

In this context, it might also appear sensible to determine
the tolerance schedule by solving approximately for εn at
time n

PA
({

W(i)
n

}
, εn

) = αPA
({

W
(i)
n−1

}
, εn−1

)

where PA, the proportion of alive particles, is given by

PA
({

W(i)
n

}
, εn

) =
∑N

i=1 I(0,∞)(W
(i)
n )

N
. (13)

This criterion is equal to ESS/N when M = 1 and η0 = π0

and, for M > 1, it has the attractive property that it is neces-
sarily an increasing function of εn contrary to the ESS. The
PA criterion might appear as a sensible measure of “qual-
ity” of our SMC approximation. However, for large values
of M , this intuition is ill-founded and the PA criterion should
not be used for determining the tolerance levels and/or trig-
ger the resampling steps. Indeed, for the PA to be large,
we only need to have a large proportion of particles hav-
ing at least one components of X1:M in Aεn,y . Clearly if M

is reasonably large, this will happen with high probability.
We can formalize precisely this intuition by looking at the
asymptotic form of the PA criterion. As N → ∞, it is easy
to check that limN→∞ PA({W(i)

n }, εn) = PA∗ almost surely
where, for any M ≥ 1, we have

PA∗ =1 − (
1 − πεn−1(Aεn,y × �)

)M
.

Hence we obtain

lim
M→∞ PA∗ = 1

whenever πεn−1(Aεn,y × �) > 0. This demonstrates that the
PA should not be used as a criterion to assess the quality of
the particle approximation as it converges to 1 geometrically
fast as M increases for any εn < εn−1.
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3.2 Adaptive MCMC kernels

At each time our algorithm applies an MCMC kernel
Kn((θ, x1:M), (θ ′, x′

1:M)) of invariant density πεn(θ, x1:M |y).
A slightly modified version of the ABC-MCMC scheme of
Majoram et al. (2003) can be used to achieve this. Given
Z = (θ,X1:M), with

∑M
k=1 IAεn,y (Xk) ≥ 1, then (θ∗,X∗

1:M)

are generated according to a proposal

qn

(
θ, θ∗)

M∏

k=1

f
(
x∗
k |θ∗).

This candidate is accepted with acceptance probability given
by the Metropolis-Hastings (MH) ratio

1 ∧ πεn(θ
∗,X∗

1:M |y)

πεn(θ,X1:M |y)

qn(θ
∗, θ)

qn(θ, θ∗)

M∏

k=1

f (Xk|θ)

f (X∗
k |θ∗)

= 1 ∧
∑M

k=1 IAεn,y (X
∗
k )

∑M
k=1 IAεn,y (Xk)

qn(θ
∗, θ)

qn(θ, θ∗)
π(θ∗)
π(θ)

.

This expression outlines the benefit of sampling M vari-
ables. We reduce the variance of the MH acceptance ratio
as M increases. In the limiting case, i.e. M → ∞, we have
1
M

∑M
k=1 IAεn,y (Xk) → ∫

f (x|θ)IAεn,y (x)dx and our algo-
rithm is similar to a “marginal” MCMC algorithm where X

has been integrated out; see Andrieu et al. (2008) for further
discussion.

In this framework, we can adaptively determine the pa-
rameters of the proposal qn(θ, θ∗) based on the previous ap-
proximation of the target πn−1. Contrary to adaptive MCMC
methods (Andrieu and Johanes 2008), no stringent condi-
tion is required to ensure the validity of the algorithm as the
MCMC kernel is only used to build a sensible importance
distribution. As in Beaumont et al. (2009), the variance of
θ under πεn−1(θ |y) can be approximated at time n − 1 us-
ing the SMC approximation and used to determine the vari-
ance of the proposal density of the MCMC algorithm at time
n, i.e. through a normal random walk proposal. Many other
possible adaptation schemes are also possible. For example,
when using random walk MH, in Sect. 4.2, the proposal vari-
ances of the MCMC kernels were adaptively computed at
every time step of the SMC using a stochastic approximation
like scheme based on expected acceptance probabilities; see
Andrieu and Johanes (2008).

3.3 An adaptive SMC method

To summarize, our adaptive SMC method for ABC pro-
ceeds as follows. We use ε0 = ∞ so that W

(i)
0 = 1

N
and

ESS({W(i)
0 }, ε0) = N.

• Step 0. Set n = 0; for i = 1, . . . ,N, sample θ
(i)
0 ∼ π(·)

and X
(i)
k,0 ∼ f (·|θ(i)

0 ) where k = 1, . . . ,M.

• Step 1. Set n ← n + 1, if εn−1 = ε stop, otherwise de-
termine εn by solving ESS({W(i)

n }, εn) = αESS({W(i)
n−1},

εn−1) where

W(i)
n ∝ W

(i)
n−1

∑M
k=1 IAεn,y (X

(i)
k,n−1)

∑M
k=1 IAεn−1,y (X

(i)
k,n−1)

. (14)

If εn < ε then set εn ← ε.
• Step 2. If ESS({W(i)

n }) < NT then resample N particles
from

π̂εn

(
d(θ, x1:M)|y) =

N∑

i=1

W(i)
n δ

(θ
(i)
n−1,X

(i)
1:M,n−1)

(
d(θ, x1:M)

)

(15)

also denoted abusively {θ(i)
n−1,X

(i)
1:M,n−1} and set

W
(i)
n ← 1

N
.

• Step 3. For i = 1, . . . ,N, sample (θ
(i)
n ,X

(i)
1:M,n) ∼

Kn((θ
(i)
n−1,X

(i)
1:M,n−1), ·) if W

(i)
n > 0 and return to Step 1.

Note that in this context, πεn(θ, x1:M |y) can be approxi-
mated by both the weighted measures associated to
{W(i)

n , (θ
(i)
n−1,X

(i)
1:M,n−1)} as in (15) or using {W(i)

n , (θ
(i)
n ,

X
(i)
1:M,n)}. The approximations from all the target distribu-

tions may be combined to obtain lower variance estimates
as discussed in Gramacy et al. (2010).

3.4 Cautionary remarks

Whilst our adaptive procedure can help to move particles
towards the high posterior probability regions of the param-
eter space for reasonably large values of ε, we do not claim
it can solve all the computational problems associated to
ABC. It will perform poorly whenever the Monte Carlo es-
timates of

∫
f (x|θ)IAε,y (x)dx implicitly computed by the

algorithm have a large relative variance; that is when ε is
small and/or the distribution f (x|θ) is diffuse. Indeed in this
case the MCMC kernel used to explore the space will mix
very poorly and this will result in potentially high variance
SMC estimates. In our opinion, one of the key benefits of
the methodology proposed here is that it allows us to deter-
mine on-the-fly the sequence of tolerance levels {εn} and to
identify through the ESS whenever the tolerance level has
reached too low a value. When the tolerance levels deter-
mined adaptively start decreasing very slowly, it is indica-
tive of the fact that our algorithm cannot move efficiently
the particles around the space anymore and in a sense deter-
mines the value of ε we should adopt in practice. In our ap-
plication to epidemiology presented in Sect. 4.2, we use the
following heuristic: we stop the algorithm when the MCMC
drop below 1.5% and this determines the value of ε.
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4 Application

The code for the examples are available at http://www2.
imperial.ac.uk/~aj2/abc_new1.zip.

4.1 A toy example

4.1.1 Target and implementation details

We begin with the toy example introduced in Beaumont et
al. (2009), Sisson et al. (2007). The model is of the form

θ ∼ U[−10,10],

f (x|θ) = 0.5φ(x; θ,1) + 0.5φ(x; θ,1/100)

where U[a,b] denotes the uniform distribution on the interval
[a, b] and φ(u;m,σ 2) the one-dimensional normal density
of mean m and variance σ 2, evaluated at u. The posterior
distribution associated to the observation y = 0 (recall ob-
served data is y, pseudo data is x) is

π(θ |y) ∝ (
φ(θ;0,1) + φ(θ;0,1/100)

)
I[−10,10](θ).

An ABC strategy is used to estimate π(θ |y), with η(x) = x

and ρ(x, y) = |x − y| = |x| (i.e. the L1 distance). In this
case, using (1), we obtain

πε(θ |y) ∝ (
�(ε − θ) − �

(−(ε + θ)
) + �

(
10(ε − θ)

)

− �
(−10(ε + θ)

))
I[−10,10](θ)

where �(u) is the cumulative distribution function of the
standard normal (Beaumont et al. 2009). For ε = 0.025, it
is shown in Beaumont et al. (2009) that πε(θ |y) is visually
indistinguishable from π(θ |y).

The adaptive SMC algorithm described is run using a
normal random walk MH kernel for θ of variance given, at
time n ≥ 1, by twice the empirical variance of the {θ(i)

n−1} as
in Beaumont et al. (2009). We set NT = N/2 and ε = 0.01.

4.1.2 Varying M and N

Our experiments use N ∈ {1000,10000,100000} particles,
M = 1 and the adaptive SMC algorithm is run for α ∈
{0.9,0.95,0.99}. In Table 1, the CPU times are given for
this adaptive SMC algorithm averaged over 50 realisations
using a PC Intel 3.33 GHz.

In Fig. 1 the histograms of the samples obtained by the
adaptive SMC method are given. As expected, the results
improve as both α and N increase. Note that the particles
are resampled after the last time step.

For N = 10000 and α = 0.95 we now investigate the
influence of M ∈ {1,5,50} on the performance of the al-
gorithm. In Fig. 2 the average, over the alive particles, ac-
ceptance rate of the MH step and the sequence of tolerance

Table 1 Averaged CPU times in seconds for various values of N and α

N α

0.90 0.95 0.99

1000 0.08 0.16 0.77

10000 0.87 1.73 8.50

100000 8.58 17.39 88.39

levels {εn} as a function of the time index n are displayed.
Note that M has an influence on the number of intermedi-
ate distributions required to reach the target. The higher M

the smaller this number is and, as expected, the higher M

the higher the average acceptance rate for a fixed ε. In gen-
eral, the value of M that is necessary to stabilize the results
depends on f (x|θ); the more diffuse f (x|θ) is (in x), the
higher M should be.

Ideally, we would like all the M , N and α to be large.
With a fixed computational budget, a tradeoff has to be
found. It appears unfortunately difficult to give useful gen-
eral guidelines how to select those parameters as it is highly
case dependent.

4.1.3 Adaptive versus deterministic schedules

The relative benefits of the adaptive to deterministic toler-
ance schedule is now investigated. Our approach requires
setting α and ε whereas a deterministic schedule requires
specifying all the tolerance levels {εn}. A conservative ap-
proach consists of adopting a schedule {εn} which is as-
sumed to decrease slowly so as to prevent a collapse of
the algorithm. We compare the following two approaches.
First we select a deterministic tolerance schedule, ε1 = 10
and then falling linearly by 0.1 until εn < 0.01—the last
ε is then taken as 0.01. A linear decreasing schedule was
also adopted in Beaumont et al. (2009, Sect. 2). It has been
shown recently that such linear schedules enjoy good theo-
retical properties in high-dimensional scenarios (Beskos et
al. 2011) and so one may suspect it can also produce rea-
sonable results in simpler applications. Second, we deter-
mine our schedule adaptively using our adaptive procedure
with α = 0.9 and ε = 0.01. In both scenarios M = 1 and
N = 1000. Both settings are what we might call conserva-
tive, especially given the toy nature of the example. We cal-
culated, across 50 repeats, the L1 distance between the true
and estimated second moment. It was (standard deviation
in brackets) 0.19 (0.025) for the adaptive schedule and 0.28
(0.240) for the deterministic schedule.

We display the evolution of the ESS for the two schedules
in Fig. 3, as well the sequence of tolerance levels {εn} com-
puted by the adaptive method. The plots show that, whilst
intuitively reasonable, the deterministic schedule leads to

http://www2.imperial.ac.uk/~aj2/abc_new1.zip
http://www2.imperial.ac.uk/~aj2/abc_new1.zip
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Fig. 1 Histograms of the samples obtained through SMC. Each row corresponds to a different α (from top to bottom α = 0.9, 0.95 and 0.99),
each column corresponds to a different N (from left to right N = 1000, 10000 and 100000). The true target density πε(θ |y) is the full line

Fig. 2 Average acceptance rate of the MH step (left) and sequence of tolerance levels {εn} (right) as a function of n for M = 1 (solid), 5 (dots),
10 and 50 (dashes)

the ESS decreasing drastically close to ε (Fig. 3(a)). Con-
versely, the adaptive procedure has a fairly consistent re-
sampling rate, and Monte Carlo estimates are likely to be
far more reliable on the basis of the given output (Fig. 3(b)).

Note that the sequence of tolerance levels computed by our
adaptive algorithm exhibits an exponential decrease which
is quite intuitive given its construction. It could be ar-
gued that a deterministic schedule decreasing exponentially
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Fig. 3 Left: ESS obtained using an SMC sampler run with a deter-
ministic schedule, starting at ε1 = 10 and falling by 0.1 at each step.
Middle: ESS obtained using the adaptive SMC sampler using α = 0.9.

Right: Tolerance levels computed using the adaptive SMC sampler.
Both deterministic and adaptive schemes were run for similar CPU
times with M = 1

could provide better results. However, it would remain dif-
ficult to specify the parameters of this exponential function;
this problem is circumvented by our algorithm.

4.1.4 Comparison with population Monte Carlo

Finally, we performed a comparison with the O(N2) Pop-
ulation Monte Carlo (PMC) method of Beaumont et al.
(2009). The PMC algorithm settings are as in their Fig. 1
(i.e. M = 1 and ε1 = 2 falling 0.5 and ending at ε = 0.01),
and is run for N ∈ {1000,2000,3000,4000,5000}. To com-
pare, our adaptive SMC method is run with α = 0.95 and for
the same CPU times as the corresponding PMC algorithm.
This leads to N ∈ {3400,13000,28000,50000,78000}. The
results are given in Table 2. This table reveals that, for a fixed
computational complexity, the SMC algorithm significantly
outperforms the PMC algorithm. However we acknowledge
that this is a favourable scenario for our algorithm as the
cost of simulating pseudo-observations is low for this toy
example. For challenging applications, simulating pseudo-
observations is typically very expensive and we cannot ex-
pect such gains.

4.2 Intractable birth-death-mutation process

4.2.1 Model and data

We consider a birth-death-mutation model as detailed in
Tanaka et al. (2006). The model is designed to capture the
dynamics of the growth in the number of infectious diseases
over a period of time. The birth (rate ϕ), corresponds to
new infections, the death (rate τ ) to death or recovery of
a host and the mutation (rate ξ ) is assumed to always give
rise to genotypes that have not appeared before. We denote

by Xi(t) the number of cases of genotype i and G(t) the
number of distinct genotypes that have existed in the popu-
lation up to and including time t . A full mathematical pre-
sentation of the transition probabilities of the birth-death-
mutation model is detailed in Tanaka et al. (2006) and the
references therein but from an ABC viewpoint we only re-
quire being able to simulate pseudo-observations from the
likelihood. This can be achieved as follows:

• At time t = 1, the process begins with one genotype and
a single individual of that type: X1(1) = 1, G(1) = 1.

• Set t ← t + 1. If t > 10000 then stop, otherwise draw
an event of type birth with probability ϕ/(ϕ + τ + ξ),
death with probability τ/(ϕ + τ + ξ) or mutation other-
wise. A genotype i is picked with probability Xi(t − 1)/∑G(t−1)

j=1 Xj(t − 1). If the event is a birth, then Xi(t) =
Xi(t − 1) + 1, G(t) = G(t − 1). If the event is a death,
Xi(t) = Xi(t − 1) − 1, G(t) = G(t − 1). If the event is a
mutation, G(t) = G(t −1)+1, Xi(t) = Xi(t −1)−1 and
XG(t)(t) = 1; i.e. a new genotype with a single individual
is created.

• Sample n individuals without replacement from the pop-
ulation of 10000 individuals. We obtain clusters of size
ni with

∑g

i=1 ni = n where g is the number of distinct
genotypes in the sample. Note that necessarily we have
g ≤ G(10000).

The observed data are from Small et al. (1994) (San-
Francisco Tuberculosis data) and constitute 326 different
genotypes of n = 473 isolates; the data are summarized as

301 231 151 101 81 52 44 313 220 1282

where mk indicates there were k clusters of size m.
In our implementation of ABC the summary statistics for

data are as in Tanaka et al. (2006):
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Table 2 L1-Distance between the true and estimated second moment. The algorithms were run 50 times for similar CPU times and the average
distance, with standard deviation in brackets, across the runs is reported

Particles PMC 1000 2000 3000 4000 5000

PMC 0.128 (0.107) 0.107 (0.161) 0.105 (0.118) 0.076 (0.059) 0.071 (0.050)

SMC 0.089 (0.054) 0.042 (0.028) 0.034 (0.023) 0.025 (0.016) 0.022 (0.017)

η = (η1, η2) =
(

g,1 −
g∑

i=1

(ni/n)2

)

and we also use the same distance metric and priors as in
Tanaka et al. (2006) ρ(η,η) = 1

n
|η1 − η1| + |η2 − η2|. As

noticed by Fearnhead and Prangle (2010), the parameters
(ϕ, τ, ξ) are not likelihood-identified as any rescaled ver-
sion of the parameters (αϕ,ατ,αξ) for α > 0 has the same
likelihood. Hence it would be appropriate to set one of the
parameters to a given value. However, to compare our re-
sults with those of Tanaka et al. (2006), we follow their
approach by setting the following priors: ϕ ∼ Ga(1,0.1)

(Ga(a, b) is the Gamma distribution of mean b/a), ξ ∼
T N (0.198,0.067352) where T N is the truncated normal
restricted to R

+ and p(τ |ϕ) ∝ I[0,ϕ)(τ ); i.e. ξ is assigned a
very informative prior which deals partially with the identi-
fiability issue.

4.2.2 Simulation results

The objective of this example is to illustrate the ability of our
SMC method to be able to sample from the ABC posterior
for small values of ε. The SMC sampler is run with M = 15,
α = 0.9, ε = 0.00045, N = 1000 and the resampling thresh-
old is set to NT = 500. The choice of M = 15 was made
for robustness of results across multiple runs. The MH ker-
nels used within the SMC algorithm were based on normal
random walks after reparameterizing onto the real line. We
determine the final valueε by stopping the algorithm when
the MCMC acceptance rate for one parameter drops below
1.5%; this yields ε = 0.00045. For comparison, we run the
MCMC algorithm of Bortot et al. (2009). The artificial prior
on ε is selected as p(ε) ∝ I[0.00045,10](ε)e−2000ε to ‘push’ ε

towards small values. The MCMC proposal standard devi-
ations for the normal random walks being (0.05, 0.05, 0.7)
for (ϕ, τ, ξ) respectively reparameterized over the real line.
The MCMC algorithm is a Metropolis-within-Gibbs algo-
rithm which sweeps over updating ε and then each of the
(ϕ, τ, ξ) in turn.

The CPU time for the SMC sampler was 147100 seconds
for these simulation settings (run on a PC Intel 3.33 GHz).
For approximately the same amount of CPU time, we could
run the MCMC algorithm for 50000 iterations, taking every
10th sample. The results are displayed in Figs. 4, 6 and 7.

In Fig. 4 the evolution of {εn} for both methods can be
seen. Figure 4(a) displays the decay of {εn} for the SMC
sampler. As the MCMC kernels begin to mix slowly, the
rate of decline of {εn} falls. However the SMC algorithm
operates reasonably well along the path to ε (Fig. 6(a))
as the ESS never drops below 477. Figure 4(b) shows
the exploration of the MCMC on the ε space. The algo-
rithm is able to move slowly around the support, but strug-
gles to consistently visit low values of ε (i.e. in the range
(0.00045,0.001))—only 1213 samples were obtained from
the 5000 taken (i.e. roughly only 20% of the samples were
within this range). Similar behaviour was observed on dif-
ferent runs.

The MH acceptance rates for the MCMC algorithm were
0.55 (ε), 0.51 (ϕ), 0.55 (τ ), and 0.36 (ξ ). Slow mixing on
all the parameters was observed (see Fig. 5) with the excep-
tion of ξ , which has a posterior very similar to its prior as
observed in Tanaka et al. (2006).

We compared the MCMC and SMC algorithms in terms
of posterior means and standard deviations; see Table 3.
They target different distributions as ε is made random in the
MCMC sampler whereas ε = 0.00045 for the SMC sampler
so a direct comparison is obviously difficult. So as to per-
form a fairer comparison, we computed the posterior means
and standard deviations for the MCMC algorithm condi-
tional upon ε ∈ (0.00045,0.001). We observed that the esti-
mates of the death τ and mutation ξ rates do not differ sig-
nificantly. However in terms of birth rate ϕ, there is much
more discrepancy. To assess the robustness of the SMC al-
gorithm, we additionally run it for N = 10000 particles and
obtained estimates relatively similar to those obtained using
N = 1000 particles.

In Fig. 7 we display some of the results we have ob-
tained. These results differ slightly from those in Tanaka et
al. (2006); in (a) the net transmission rate ϕ − τ has a mode
at higher values and is far more positively skewed whereas
in (b) it appears that the doubling rate log(2)/(ϕ − τ) has a
mode at lower values. Similarly in (c) and (d) the joint poste-
riors exhibit shapes different from the results in Tanaka et al.
(2006). It is remarked, however, that the strong positive cor-
relation between τ and ϕ observed in Tanaka et al. (2006) is
also observed here. Note, however, that it is not possible to
perform a direct comparison between our results and those
in Tanaka et al. (2006) as we use a much smaller final value
of ε than in Tanaka et al. (2006).
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Fig. 4 (a) Tolerance levels {εn} computed by an SMC sampler with 1000 particles. (b) MCMC samples for ε; the dotted line is 0.00045

Fig. 5 Autocorrelation plots for the MCMC method of Bortot et al. (2009). 50000 iterations were simulated and every 10th sample taken

Fig. 6 (Color online) Performance of the SMC sampler. (a) Displays the ESS against the time index, and (b) the acceptance rates of the MCMC
moves for the 3 parameters ϕ (black) and τ (green). In (b) the dotted line is 0.013

5 Discussion

In this paper we have presented an adaptive SMC algo-
rithm for ABC. Our approach has a computational cost that
is linear in the number of samples and is able to adap-
tively calculate the tolerance levels in a sensible manner.
Although little user input is required, it is difficult to a pri-

ori decide what the best combination of parameters N, M

and α is as it is highly model dependent. We have demon-
strated the performance of our algorithm on a toy example
and a more complex application from genetics (Tanaka et
al. 2006). It would be worth investigating the experimental
performance of this algorithm on more challenging prob-
lems.
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Fig. 7 Inference from the SMC sampler

Table 3 Posterior means and standard deviations. The first number is the mean, the second is the standard deviation and the third in brackets is
the standard error across 20 runs. The MCMC draws inference conditional upon ε ∈ (0.00045,0.001)

Parameter SMC (N = 1000) SMC (N = 10000) MCMC

Birth ϕ 28.30 (0.41), 16.87 (0.18) 29.70, 17.7 33.99 (0.68), 14.89 (0.21)

Death τ 0.97 (0.08), 0.58 (0.11) 1.02, 0.60 1.16 (0.11), 0.51 (0.13)

Mutation ξ 0.20 (0.03), 0.06 (0.01) 0.20, 0.06 0.20 (0.02), 0.06 (0.04)

We have not provided any convergence results in this ar-
ticle. Precise convergence results for adaptive SMC methods
have been recently obtained in Del Moral et al. (2011); these
ideas may be modified to study the algorithm presented here.
In more details, one can define the ‘limiting’ ideal algo-
rithm where the target densities are determined inductively
by solving the following equation for εn at time n

ESS∗(εn) = αESS∗(εn−1)

where, for any ε > 0, limN→∞ ESS(ε) = ESS∗(ε) almost
surely; see Del Moral et al. (2011) for precise results. Then
one needs to show that the algorithm which uses the empiri-
cal versions of these criteria converge towards the ‘limiting’
ideal algorithm as N increases.
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