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AN ADAPTIVE SPARSE GRID SEMI-LAGRANGIAN SCHEME FOR FIRST

ORDER HAMILTON-JACOBI BELLMAN EQUATIONS

OLIVIER BOKANOWSKI, JOCHEN GARCKE,

MICHAEL GRIEBEL, AND IRENE KLOMPMAKER

ABSTRACT. We propose a semi-Lagrangian scheme using a spatially adaptive sparse grid

to deal with non-linear time-dependent Hamilton-Jacobi Bellman equations. We focus in

particular on front propagation models in higher dimensions which are related to control

problems. We test the numerical efficiency of the method on several benchmark problems

up to space dimension d = 8, and give evidence of convergence towards the exact viscosity

solution. In addition, we study how the complexity and precision scale with the dimension

of the problem.

1. INTRODUCTION

We are interested in solving the Hamilton-Jacobi Bellman (HJB) equation

vt + max
β(t)∈B

(f(x, β(t)) · ∇v) = 0, t > 0, x ∈ R
d,(1a)

v(0, x) = ϕ(x), x ∈ R
d(1b)

in a higher dimensional state space of dimension d. The action space B, wherein the time-

dependent control β takes its values, is a nonempty compact subset of Rm (m ≥ 1), and

the function f : Rd × B → R
d, describing the state dynamics, is assumed to be Lipschitz

continuous. This problem is closely related to the computation of the value function of

optimal control problems [2]. Note here that the HJB equation (1a) is a particular case of

the more general Hamilton-Jacobi (HJ) equation vt +H(x,∇v) = 0.

In this paper, we shall focus on the approximation of a reachable set, either coded as

Ω(t) := {x, v(t, x) ≤ 0} or defined by its front ∂Ω(t). It is known from the work of Osher

and Sethian [22] that front propagation problems can be solved by using level sets and HJ

equations. Front propagation can be used for the determination of safety regions or for the

treatment of avoidance problems [20, 21], for the computation of the function describing

the minimal time to reach a set

Ω(0) := {x, ϕ(x) ≤ 0},(2)

and for optimal trajectory and feedback control law reconstruction, cf. [2, Appendix]. In-

deed, the solution of (1) is given by

v(t, x) = inf
β∈L∞([0,t],B)

ϕ(yβx (t)),(3)

where yβx : [0, t] → R
d denotes the absolutely continuous solution of

{

ẏ(t) = −f(y(t), β(t)) for t ∈ R+ a.e.,

y(0) = x.
(4)

Date: September 20, 2012.

Key words and phrases. sparse grids, Hamilton-Jacobi Bellman equation, front propagation, semi-Lagrangian

scheme, adaptivity.
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Hence Ω(t) ≡
{

x ∈ R
d, ∃β ∈ L∞([0, t],B), yβx (t) ∈ Ω(0)

}

represents the set of points

from which one can reach a given target Ω(0) in the time interval [0, t] using some control

β, where Ω(0) is defined by the given data ϕ such that (2) holds.

Various numerical methods have been proposed to determine approximations to the vis-

cosity solution of vt + H(x,∇v) = 0 (which includes the case of (1)). Crandall and

Lions [6] studied first order monotone finite difference schemes, which converge to the

solution. Note that monotone schemes are in general limited to at most first order accuracy

[13]. Beyond that, higher order finite difference schemes, such as ENO schemes [23], have

also been developed. These finite difference methods work quite efficiently for Cartesian

meshes, but on unstructured meshes the schemes are more delicate [29]. Discontinuous

Galerkin (DG or RKDG) methods, originally devised to solve conservation laws, can also

be applied to HJ equations, with the flexibility for arbitrarily unstructured meshes [18].

Then, there are semi-Lagrangian (SL) schemes which are based on the discretization of the

dynamic programming principle, see e.g. [11]. They can be easily implemented on arbi-

trary meshes. Here, it is mainly required to know how to interpolate from given values on

a given mesh. A simple version of the SL scheme, which uses P1 polynomial interpolation,

is monotone and provides first order accuracy. Furthermore, higher order modifications

exist, see e.g. [5, 7, 10]. Finally, adaptive schemes for solving the HJ(B) equation have

been developed, see for instance [4, 16]. But altogether, the numerical treatment of HJ(B)

equations remains a challenging problem, in particular in higher dimensions.

In this work we employ the sparse grid method, a special discretization technique which

allows to cope with the curse of dimensionality to some extent. It is based on a hierarchical

multilevel basis [8, 27] and a sparse tensor product construction. The underlying idea was

first used for numerical integration [26]. Subsequently, the sparse grid method has been

developed for the solution of partial differential equations [14, 28]. By now, it is also

successfully used for, e.g., integral equations, stochastic differential equations, machine

learning, or interpolation and approximation, see the overview article [3] and the references

cited therein.

For the representation of a function f defined over a d-dimensional domain, the conven-

tional sparse grid approach employs O(h−1
n · log(h−1

n )d−1) grid points in the discretization

process, where hn := 2−n denotes the mesh width. It can be shown that the order of ap-

proximation to describe a function f , provided that certain mixed smoothness conditions

hold, is O(h2
n · log(h−1

n )d−1). This is in contrast to conventional grid methods, which need

O(h−d
n ) for an accuracy of O(h2

n), albeit for less stringent smoothness conditions. Thus,

the curse of dimensionality of full grid methods arises for sparse grids to a much smaller

extent. In case the smoothness conditions are not fulfilled, spatially adaptive sparse grids

have been used with good success [3, 12, 25]. There, as in any adaptive grid refinement pro-

cedure, the employed hierarchical basis functions are chosen during the actual computation

depending on the function to be represented.

In this paper we define a new semi-Lagrangian scheme on an adaptive sparse grid. We

show that, for a particular kind of HJB equations related to the front propagation model, the

number of grid points needed in higher dimensions to approximately represent the involved

functions with a given threshold error can be small. Thus, we are able to circumvent

the curse of dimensionality of standard grid approaches to some extent. There are two

important ingredients that make things work: firstly, the spatial adaptivity of the sparse

grid used in the scheme, and secondly, a particular type of boundary treatment using non-

standard basis functions. We illustrate the feasibility of the method numerically for a set

of front propagation examples for dimensions up to d = 8.

Note that the introduced sparse grid scheme is not monotone as the interpolation with

sparse grids is not monotone [25]. Thus neither convergence towards the viscosity solu-

tions of (1) nor stability can presently be guaranteed, even for the linear advection equation.
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(a) Basis function φ(2,1),(1,1) on grid Ω2,1 (b) Three-dimensional sparse grid Ωs
5

FIGURE 1. An example of a basis function φl,j and a sparse grid Ωs
n.

To this end, further work on the new scheme is in progress. Nevertheless, our numerical

results give promising results.

This paper is organized as follows. In section 2 we describe the sparse grid structure we

use to represent the data, the boundary treatment, and the adaptive refinement and coars-

ening procedures. Our new adaptive semi-Lagrangian sparse grid scheme is introduced

and discussed in Section 3. Section 4 contains the results for various numerical examples.

Finally we give some concluding remarks.

2. SPARSE GRIDS

For ease of presentation we will consider the domain Ω = [0, 1]d in this section. Let

l = (l1, . . . , ld) ∈ N
d denote a multi-index. We define the anisotropic grid Ωl on Ω with

mesh width hl := (hl1 , . . . , hld) := (2−l1 , . . . , 2−ld). It has, in general, different but

equidistant mesh widths hlt in each coordinate direction t, t = 1, . . . , d. The grid Ωl thus

consists of the points

(5) xl,j := (xl1,j1 , . . . , xld,jd),

with xlt,jt := jt · hlt = jt · 2−lt and jt = 0, . . . , 2lt . For any grid Ωl we define the

associated space Vl of piecewise d-linear functions

(6) Vl := span{φl,j | jt = 0, . . . , 2lt , t = 1, . . . , d},
which is spanned by the conventional basis of d-dimensional piecewise d-linear hat func-

tions

(7) φl,j(x) :=

d
∏

t=1

φlt,jt(xt).

The one-dimensional functions φl,j(x) with support

[xl,j − hl, xl,j + hl] ∩ [0, 1] = [(j − 1)hl, (j + 1)hl] ∩ [0, 1]

are defined by

(8) φl,j(x) =

{

1− |x/hl − j|, x ∈ [(j − 1)hl, (j + 1)hl] ∩ [0, 1],

0, otherwise,

see Figure 1(a) for an example of a two-dimensional basis function.

The multi-index l ∈ N
d denotes the level, i.e. the discretization resolution, be it of a grid

Ωl, of a space Vl, or of a function fl, whereas the multi-index j ∈ N
d gives the position of

a grid point xl,j or its corresponding basis function φl,j .
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W4,1 W4,2 W4,3 W4,4

W3,1 W3,2 W3,3 W3,4

W2,1 W2,2 W2,3 W2,4

W1,1 W1,2 W1,3 W1,4

FIGURE 2. Supports of the basis functions of the hierarchical subspaces Wl. All

spaces are used for V4, only the marked upper left triangle is used for V s
4 .

We now define a hierarchical difference space Wl via

(9) Wl := Vl \
d
⊕

t=1

Vl−e
t
,

where et is the t-th unit vector. In other words, Wl is spanned by all φk,j ∈ Vl which

are not included in any of the spaces Vk smaller1 than Vl. To complete the definition, we

formally set Vl := ∅, if lt = 0 for at least one t ∈ {1, . . . , d}. As can be easily seen from

(6) and (9), the definition of the index set

(10) Bl :=

{

j ∈ N
d

∣

∣

∣

∣

∣

jt = 1, . . . , 2lt − 1, jt odd, t = 1, . . . , d, if lt > 1,

jt = 0, 1, 2, t = 1, . . . , d, if lt = 1

}

leads to

(11) Wl = span{φl,j |j ∈ Bl}.
With these hierarchical difference spaces we now can define a multilevel subspace decom-

position and write Vl as a direct sum of subspaces

(12) Vl :=

l1
⊕

k1=1

· · ·
ld
⊕

kd=1

Wk =
⊕

k≤l

Wk.

Here and in the following “≤” refers to the element-wise relation for multi-indices. Fur-

thermore, |l|∞ := max1≤t≤d lt and |l|1 :=
∑d

t=1 lt are the discrete ℓ∞- and the discrete

ℓ1-norm of l, respectively.

The family of functions

(13)
{

φl,j

∣

∣j ∈ Bl

}(n,...,n)

l=(1,...,1)

is just the hierarchical basis [8, 27] of Vn(:= V(n,...,n)), which generalizes the one-dimensional

hierarchical basis, see Figure 3(a), to the d-dimensional case with a tensor product ansatz.

1We call a discrete space Vk smaller than a space Vl if ∀tkt ≤ lt and ∃t : kt < lt. In the same way a grid

Ωk is smaller than a grid Ωl.
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Observe that the supports of the basis functions φl,j(x), which span Wl, are disjoint for

l > 1. Figure 2 gives a representation of the supports of the basis functions of the differ-

ence spaces Wl1,l2 forming V4.

Now, each function f ∈ Vn can be represented as

(14) f(x) =
∑

|l|∞≤n

∑

j∈Bl

αl,j · φl,j(x),

where αl,j ∈ R are the coefficients of the representation in the hierarchical tensor product

basis. In one dimension it is easy to see that they specify what has to be added to the

hierarchical representation of level l− 1 to obtain that of level l. This generalizes to higher

dimensions accordingly and specifies what has to be added to the representation in space
⊕d

t=1 Vl−e
t

to obtain a representation in Vl.

The number of basis functions which describe a f ∈ Vn in nodal or hierarchical basis

is (2n + 1)d. For example, a resolution of 17 points in each dimension, i.e. n = 4, for a

ten-dimensional problem needs more than 2 · 1012 coefficients, i.e. we encounter the curse

of dimensionality.

On the other hand it was observed that for a function f with bounded second mixed

derivatives it holds

‖fl‖2 ≤ C(d) · 2−2·|l|1 · |f |H2

mix
,

where fl :=
∑

j∈Bl
αl,j ·φl,j(x) ∈ Wl denotes its hierarchical components and |f |H2

mix
:=

‖ ∂2d

∂x2

1
...x2

d

f‖2 is the H2
mix-semi-norm, see [3, 28] for details.

Motivated by this dependence of the “importance” of the hierarchical components fl on

the size of the supports of the involved basis functions, i.e. | suppφl,j | = 2d · 2−l, Zenger

[28] and Griebel [14] introduced so-called sparse grids, where hierarchical basis functions

with a small support, and therefore a small contribution to the function representation, are

not included in the discrete space of level n anymore.

Formally, the sparse grid function space V s
n ⊂ Vn is defined as

(15) V s
n :=

⊕

|l|1≤n+d−1

Wl,

where in the definition (12) for Vn in terms of hierarchical subspaces the condition |l|∞ ≤
n is replaced by |l|1 ≤ n + d − 1. In Figure 2 the employed subspaces Wl are given in

black, the spaces omitted in comparison to (12) are given in grey.

Every f ∈ V s
n now can be represented, analogous to (14), as

(16) f s
n(x) =

∑

|l|1≤n+d−1

∑

j∈Bl

αl,jφl,j(x).

The resulting grid which corresponds to the approximation space V s
n is called sparse grid

and is denoted by Ωs
n, an example in three dimensions is given in Figure 1(b).

The sparse grid space V s
n has a size of order dimV s

n = O(2n · nd−1), see [3]. It thus

depends on the dimension d to a much smaller degree than Vn whose number of degrees

of freedom is O(2nd). Note that for the approximation of a function f by a sparse grid

function f s
n ∈ V s

n the error relation

‖f − f s
n‖2 = O

(

2−2n · nd−1
)

holds, provided that f fulfils the smoothness requirement |f |H2

mix
< ∞ [3]. Therefore,

sparse grids need much less points in comparison to a full grid to obtain an error of the

same size.
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φ1,0 φ1,2φ1,1

φ2,1 φ2,3

φ3,1 φ3,3 φ3,5 φ3,7

(a) Hierarchical basis functions φi,j up to level 3

φ̃1,1

φ̃2,1 φ̃2,3

φ̃3,1 φ3,3 φ3,5 φ̃3,7

(b) Modified basis functions φi,j up to level 3

FIGURE 3. Standard and modified hierarchical basis functions.

φ2,3

x2,3 1

φ̃2,3

x2,3 1

φ̃2,3

x2,3 1

FIGURE 4. The modified hierarchical basis function φ̃2,3 stems from φ2,3 by

folding up the half of the hat function near the boundary. It then can be straight-

forwardly extended to the outside of the domain Ω using linear extrapolation.

2.1. Modified basis functions on the boundary. Looking more closely at the number of

basis functions used for a regular sparse grid of level n, we observe that the ratio of points

on the boundary versus that in the interior grows significantly with increasing dimension-

ality [25], i.e. more and more grid points are spent on ∂Ω. When dealing with functions

that are zero or fixed on ∂Ω, e.g. in case of Dirichlet boundary conditions, one could just

work without the two basis functions φ1,0 and φ1,2 to avoid this effect. But since in our

application the function values on the boundary are not known a priori, we can not employ

this approach.

Instead, we proceed as follows: We still omit the grid points on the boundary but addi-

tionally modify the interior basis functions so that they extrapolate towards the boundary,

as it was proposed in [25]. Figure 3(b) illustrates this modification for the case of level

n = 3, the interior basis functions nearest to the boundary are “folded up” for any level,

see also Figure 4 (mid). The d-dimensional basis functions are again obtained as tensor

products of the one-dimensional ones in the same way as described in the previous section.

This modification can be advantageous especially in settings where the accuracy close to

the boundary is not required to be very high. In our case, this will correspond to the situa-

tion where the zero level is not located close to the boundary. Another advantage of these

modified basis functions is the fact that we are able to extrapolate values for points outside

of the domain, we then linearly extend the basis functions φ̃l,i, i = 1, 2l− 1 to the exterior,

which is illustrated in Figure 4 (right). This property will later be used for those examples

where trajectories which leave the domain need to be considered.

2.2. Spatially adaptive sparse grids. The sparse grid structure (15) defines an a priori

selection of grid points that is optimal if certain smoothness conditions are met, i.e. if the

function has bounded second mixed derivatives, and no further knowledge of the function

is known or used. If the aim is to approximate functions which either do not fulfil this
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smoothness condition at all or show strongly varying behaviour due to finite but neverthe-

less locally large derivatives, then adaptive refinement may be used. There, depending on

the characteristics of the problem and function at hand, adaptive refinement strategies de-

cide which points and corresponding basis functions should be incrementally added to the

sparse grid representation to increase the accuracy.

In the sparse grid setting, usually an error indicator stemming directly from the hierar-

chical basis is employed [12, 15, 25]: depending on the size of the hierarchical surplus αl,j

it is decided whether a basis function should be marked for further improvement or not.

This is based on two observations: First, the hierarchical surplus gives the absolute change

in the discrete representation at point xl,j due to the addition of the corresponding basis

function φl,j , i.e. it measures its contribution to a given sparse grid representation (16) in

the maximum-norm. And second, a hierarchical surplus represents discrete second mixed

derivatives and hence can be interpreted as a measure of the smoothness of the considered

function at point xl,j .
2

In the adaptive procedure we use a set I to track the indices of the employed basis

functions and denote the corresponding sparse grid by ΩI and the associated sparse grid

space by VI , respectively. We start with a coarse initial sparse grid function f s
n ∈ V s

n for

some given small n as in (16). The index set is thus initialized as I := {(l, j) | |l|1 ≤
n+ d− 1}. We proceed as follows: If, for any given index (l, j) ∈ I, we have

|αl,j | · ‖φl,j‖ > ε(17)

for some given constant ε > 0, then the index will be marked. Here, ‖ · ‖ is typically either

the L∞- or L2-norm, but other norms or weighted mixtures of norms are used in practice

as well. If an index is marked, all its 2d so-called children will be added to the index set I
to refine the discretization, i.e. all (̃l, j̃) with l̃ = l+ et and j̃ = j+ jt et± 1 will be added

to I for t = 1, . . . , d. For the indices added that way it is possible that not all parents in

all dimensions are already contained in the grid; note that in such cases, for algorithmic

and consistency reasons, these missing parents have to be added to I as well. Thus for any

(l, j) ∈ I it holds that all parents (̃l, j̃) with l̃ ≤ l and supp(φl̃,j̃)∩supp(φl,j) 6= ∅ are also

in the index set I. In other words, holes in the hierarchical structure are not allowed. The

refinement step is repeated until no indices are added anymore. In Algorithm 1 we give the

full adaptive refinement procedure. Note that if a global error criterion is available one can

perform an additional outer loop with successively decreasing ε until the measured global

error falls below a given threshold εglob.
In a similar way one can use the value |αl,j | · ‖φl,j‖ to coarsen the grid in case of

over-refinement. If this value is smaller than some coarsening constant η, and no children

of (l, j) are in I, the index will be removed from this set. In Algorithm 2 we give the

coarsening step, where the procedure is repeated until no indices are being removed. The

coarsening will in particular be relevant once we consider time-dependent problems where

the region in need of a higher resolution moves over the domain. This will be described

more precisely in Section 3.

3. SEMI-LAGRANGIAN SCHEME

We will now use adaptive sparse grids in a new semi-Lagrangian scheme for Hamilton-

Jacobi Bellman equations. Here, we focus on the equation

vt(t, x) + max
β(t)∈B

(f(x, β(t)) · ∇v(t, x)) = 0, t ≥ 0, x ∈ Ω,(18a)

v(0, x) = ϕ(x), x ∈ Ω.(18b)

The state dynamics function f is assumed to be Lipschitz continuous. We are interested

in the zero level set of v(t, ·). The region Ω(t) := {x | v(t, x) ≤ 0} is also called the

2Here, also many other approaches exist, which are based on interpolets, prewavelets or wavelets, cf. [12].
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Algorithm 1: Spatially Adaptive Refinement

Data: initial index set I, refinement threshold ε and function evaluation F
Result: refined index set I, adaptive sparse grid approximation of F in VI

for all indices (l, j) ∈ I do

compute F (xl,j) ⊲ evaluate F at initial grid points

compute hierarchical values αl,j for all indices, see e.g. [15]

while indices are added to I do

for (l, j) ∈ I do ⊲ look at all indices
if |αl,j | · ‖φl,j‖ > ε then

for t = 1, . . . , d do ⊲ hierarchical surplus is large
if (̃l, j̃) /∈ I for l̃ = l+ et and j̃ ∈ {j + jt et ± 1} then

I = I ∪ (̃l, j̃) ⊲ add children which are not in I

check ∀(l, j) ∈ I holds: (̃l, j̃) ∈ I for l̃ ≤ l and supp(φl̃,j̃) ∩ supp(φl,j) 6= ∅
for all added indices (l, j) ∈ I do

compute F (xl,j) ⊲ evaluate F at new grid points

compute hierarchical values αl,j for newly added indices, see e.g. [15]

Algorithm 2: Spatially Adaptive Coarsening

Data: index set I, coarsening threshold η, and αl,j ∀(l, j) ∈ I
Result: coarsened index set I
while indices are removed from I do

for (l, j) ∈ I do ⊲ look at all indices
if |αl,j | · ‖φl,j‖ < η then ⊲ hierarchical surplus is small

if ∀t = 1, . . . , d: (̃l, j̃) /∈ I for l̃ = l + et and j̃ ∈ {j + jt et ± 1} then

I = I\(l, j) ⊲ remove if no children in I

(backward) “reachable set”. As mentioned in the introduction, it corresponds to the set

of points that can be reached at time t ≥ 0 by some trajectory that starts from Ω(0) :=
{x |ϕ(x) ≤ 0}, see [22].

In the following we will introduce a semi-Lagrangian (SL) scheme for the numerical

treatment of (18). It is inspired by the dynamic programming principle, which is here:

v(t+ τ, x) = min
β∈L∞([0,τ ];B)

v
(

t, yβx(−τ)
)

∀τ ≥ 0.(19)

Together with v(0, x) = ϕ(x) this is equivalent to equation (18), see [2]. Here, yβx denotes

the absolutely continuous solution of the corresponding state dynamics system (4). Hence

yβx(−τ) in (19) is a solution of (4) backwards in time, it gives the point from which x is

reached under control β in the time interval [t, t+ τ).
For the discretization of the time interval [0, T ], let K be the number of time steps, let

τ := T/K be the time step and set tk := kτ, k ∈ {0, · · · ,K − 1}. Note that from now

on we will only consider controls that are constant during a time step, i.e. β(t) ≡ bk, t ∈
[tk, tk + τ ], and we will denote the corresponding trajectory as ybkx (−τ). Furthermore, the

computation of ybkx (−τ) can be done in an approximate way without changing the core of

the scheme, by e.g. using some high order Runge Kutta method. In the numerical examples

of Section 4, there will be no need for such approximations since the considered ybkx (−τ)
can be calculated analytically.
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Let us for now consider a suitably chosen sparse grid ΩI . The semi-Lagrangian (SL)

scheme to solve (18) in the time interval [0, T ] on ΩI then takes the following form:

• Initialize v0 ∈ VI by interpolating ϕ.

• Iterate for k = 0, . . . ,K − 1,

(20) vk+1(x) := min
bk∈B

vk

(

ybkx (−τ)
)

∀x ∈ ΩI .

Here, vk ∈ VI is the numerical solution computed by the scheme at time tk and the value

vk

(

ybkx (−τ)
)

denotes the sparse grid interpolation of vk at point ybkx (−τ). In general,

depending on the initial function and the state dynamics, a specific treatment of the case

ybkx (−τ) /∈ Ω is necessary; for our approach we will give details in the numerical section.

Moreover note that for our experiments in Section 4 the minimization over the set B can

be done in a straightforward way by evaluating the function values for each possible action

bk ∈ B. In case this number is too large, or if the set B is infinite, then a minimisation

procedure which uses only evaluations of the objective function, and not its derivatives,

could be performed without changing the main steps of the SL-SG scheme. We refer for

instance to [4], where this approach was successfully employed for a semi-Lagrangian

scheme using Brent’s minimization algorithm.

3.1. Spatially adaptive semi-Lagrangian sparse grid scheme. With an SL scheme us-

ing spatially adaptive sparse grids (SL-SG scheme), the employed selection of grid points

needs to be changed from time step tk to tk+1 for a fully efficient scheme to achieve the

smallest grid for a given accuracy at each time step, i.e. for each k there is a corresponding

adaptive sparse grid ΩI(k), defined by the index set I(k), with an approximate solution

vk ∈ VI(k). To this end, we first discretize in time and then in space, this approach is often

called Rothe-method.

To compute the approximate solution vk+1 for the next time step tk+1 the new index set

I(k+1) is initialized by I(k). For this index set the effect of the actions is then evaluated

and the approximation at time tk+1 is computed for I(k + 1) as

vk+1(xl,j) := min
bk∈B

vk

(

ybkxl,j
(−τ)

)

∀(l, j) ∈ I(k + 1).

With that, one can compute the hierarchical surplus αl,j for all (l, j) ∈ I(k + 1), mark

those indices with coefficients which are larger than the refinement constant ε, add the cor-

responding child indices to I(k + 1) and repeat. In other words, we apply Algorithm 1

where the function evaluation F (x) is min
bk∈B

vk

(

ybkx (−τ)
)

. After the new sparse grid

ΩI(k+1) is sufficiently refined we apply Algorithm 2 to remove the superfluous indices

up to some minimal level. This coarsening not only concerns children added newly in the

refinement step which are not needed in the end, but is in particular relevant to take the

movement of the region of interest in time into account, which corresponds to the state

dynamics. In other words, the higher resolved area of the state space changes in time. The

full spatially adaptive semi-Lagrangian Sparse Grid scheme is given in Algorithm 3.

3.2. Non-smooth initial data. We now explain how the scheme can be generalized to the

case of non-smooth initial data of the form

ϕ(x) := min
i=1,...,J

(ai + ϕi(x)),(21)

where J ≥ 1, ai ∈ R and where ϕi : R
d → R are some given functions. Each function

ϕi will be assumed to be sufficiently smooth to allow for the efficient application of the
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Algorithm 3: Adaptive SL-SG scheme

Data: suitable initial index set I, refinement constant ε and coarsening constant η
Result: sequence of adaptive sparse grid solutions vk ∈ VI(k) for k = 0, ...,K

call Alg. 1 with I, ε and F (x) = ϕ(x) ⊲ interpolate ϕ by v0 ∈ VI(0)

call Alg. 2 with I(0), η and v0 ⊲ coarsen v0
for k = 0, . . . ,K − 1 do ⊲ iterate in time

call Alg. 1 with I(k), ε and F (x) = min
bk∈B

vk(y
bk
x (−τ)) ⊲ compute

vk+1 ∈ VI(k+1) call Alg. 2 with I(k + 1), η and vk+1 ⊲ coarsen vk+1

SL-SG scheme to the following subproblems for i = 1, . . . , J :

v
(i)
t (t, x) + max

β(t)∈B

(

f(x, β(t)) · ∇v(i)(t, x)
)

= 0, t ∈ (0, T ), x ∈ Ω,(22a)

v(i)(0, x) = ϕi(x), x ∈ Ω.(22b)

Note that by using the equivalent formula (3) for initial data of the form (21), the solu-

tion of (18) is also given as

v(t, x) = min
i=1,...,J

(

ai + v(i)(t, x)
)

.

Here each v(i) is the solution of the subproblem (22) associated to ϕi.

Indeed, it is well known (see [19], the ”max-plus approach” of [1], and the references

therein) that for a convex Hamiltonian

H(x, p) := max
b∈B

(

f(x, b) · p
)

the solution v(t, ·) of vt +H(x,∇v) = 0 with initial data v(0, ·) = ϕ(·) has a ”min-plus”

property: For any ϕ decomposed in the form (21) we have v(t, x) = mini(ai+(Stϕi)(x)),
where St denotes the semigroup associating ϕ to its corresponding solution v(t, ·) = Stϕ.

Therefore, we can apply an adaptive SL-SG scheme to each initial data ϕi from (21), where

values and grid points are adapted with respect to ϕi. In order to obtain the value of

v(T, x) at the final computational time T and for a given point x, we minimize the J values

ai + v(i)(T, x) by using the corresponding sparse grid representation of each v(i)(T, ·)
which we computed separately up to time T . Hence this scheme needs J sparse grid

functions. However the computation of the v(i) can be done independently and therefore

completely in parallel. This generalized scheme will be applied to the example 5 in the

following section.

4. NUMERICAL RESULTS

We have tested the adaptive sparse grid procedure from Algorithm 3 on various nu-

merical examples. We shall show two types of results. The first one concerns numerical

convergence, and the second one deals with the scaling behaviour of the proposed scheme

with respect to the dimension d ≥ 2.

In our tests we only compute the L∞- and L2-error against the known exact solution v
localized around the zero level set. This localization takes place for two reasons. First, the

region around the zero level set is the important one for our applications, and second and

more importantly, we can thus reduce the computational effort for the error calculation in

higher dimensions. To this end, we define the region

Qt
c(v) = {x | |v(t, x)| ≤ c}

around the zero level set of the exact solution v at time t, where c > 0 is a given threshold.

In general one would define Qt
c(v) such that |v(t, x)|/‖∇v(t, x)‖ ≤ c, but since in our

examples we will have ‖∇v‖ ∼ 1 near the zero level set we simplify the criterion and use
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only |v(t, x)| ≤ c. We now can localize any function u, in particular the exact solution v
and its numerical approximation vk, by setting the function to zero outside of Qt

c(v), i.e.

(23) uloc(x) :=

{

u(x), if x ∈ Qt
c(v),

0, if x /∈ Qt
c(v).

To simplify the presentation we do not indicate the dependence of uloc on Qt
c(v) since

Qt
c(v) straightforwardly follows from the context for any employed uloc. Now we can

define the relative localized L∞-error at time tk by

‖vloc(tk, ·)− vk,loc(·)‖L∞

‖vloc(tk, ·)‖L∞

.

To this end, let v(tk, ·) denote the exact solution at time tk, whereas vk(·) denotes the

sparse grid approximation function at time tk. Their localized counterparts vloc and vk,loc
are then defined by (23) usingQtk

c (v). The discrete local L∞-error at time tk is now further

approximated using an equidistant tensor grid G covering the whole domain, i.e.

(24) eL∞

loc
=

max
x∈G

|vloc(tk, x)− vk,loc(x)|

c
,

where ‖vloc(tk, ·)‖L∞ = c.
The relative local L2-error is defined in a similar fashion by

(25) eL2

loc
=

(

∑

x∈G

|vloc(tk, x)− vk,loc(x)|2
)1/2

(

∑

x∈G

|vloc(tk, x)|2
)1/2

.

For the computation of these localized relative errors only points x ∈ G ∩ Qt
c(v) are now

relevant due to the localization. In our examples we use Nx = 70 points in each direction

for the grid G and c = 0.2. Note that in higher dimensions the error computation using

the grid G will still dominate the computational time, even in the localized form. Let us

remark that we observe with a relative local L∞ error of roughly 10−2 already a quite good

localization of a front in our numerical experiments.

To analyze the rate of convergence of the adaptive sparse grid scheme with respect to

- for instance - the refinement constant ε, we compute the quantity

̺εj ,ej :=
log(ej/ej−1)

log(εj/εj−1)
,

where ej is the error corresponding to the refinement constant εj , see Section 2.2. Here,

j enumerates the sequence of refinement constants used and it will later correspond to the

rows in the tables of the numerical results. The order of the cost complexity ̺Nj ,ej is

defined analogously, where Nj is the number of sparse grid points in the adaptive sparse

grid which results from the refinement constant εj .

In the following, we first test our new adaptive SL-SG scheme on two linear examples

and discuss its properties. This corresponds to the particular case of the control set B in

(1) consisting of just one element. Then, we apply it to more involved nonlinear HJB

equations.

In all examples we start with a sparse grid of level 3, which is also the minimal level

for the coarsening procedure. Moreover, we always employ the modified basis functions

of Figure 3(b) from section 2.1 in our sparse grid algorithms. The coarsening constant η
corresponding to a given ε is set to η = ε/5 in all of the following examples. As norm in

the refinement condition (17) we always use ‖.‖∞.
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t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 133 9.73−3 1.15−2

2.00−3 261 2.44−3 1.00 −2.05 2.99−3 0.97 −2.00
5.00−4 517 6.08−4 1.00 −2.03 7.50−4 1.00 −2.02
1.25−4 1,029 1.52−4 1.00 −2.01 1.86−4 1.01 −2.03
3.13−5 2,053 3.81−5 1.00 −2.00 4.67−5 1.00 −2.00
7.81−6 4,101 9.53−6 1.00 −2.00 1.16−5 1.00 −2.01
1.95−6 8,197 2.38−6 1.00 −2.00 2.88−6 1.01 −2.02

4.88−7 16,389 5.88−7 1.01 −2.02 6.76−7 1.05 −2.09

t = 1

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 105 1.14−1 1.92−1

2.00−3 201 2.85−2 1.00 −2.14 4.79−2 1.00 −2.14
5.00−4 393 7.12−3 1.00 −2.07 1.20−2 1.00 −2.07
1.25−4 777 1.78−3 1.00 −2.03 2.99−3 1.00 −2.04
3.13−5 1,547 4.45−4 1.00 −2.01 7.48−4 1.00 −2.01
7.81−6 3,081 1.11−4 1.00 −2.01 1.87−4 1.00 −2.01
1.95−6 6,155 2.78−5 1.00 −2.00 4.68−5 1.00 −2.00
4.88−7 12,297 6.95−6 1.00 −2.00 1.17−5 1.00 −2.00

TABLE 1. Example 1, convergence for d = 2, initial data (t = 0) and terminal

data (t = 1), after K = 12 time steps.

Concerning the boundary treatment, we consider three different types of examples. At

first there are problems where the trajectory is known to stay inside the domain, hence there

is no need for a specific treatment for the boundary (Ex. 2 and 3). For the second type,

we know that there is always at least one trajectory staying inside Ω and those leaving the

domain can be safely ignored (Ex. 5). If this is not the case, i.e. if possibly all trajectories

end up outside of Ω, we utilise the fact that our modified basis functions enable us to

extrapolate function values even outside of the domain (see 2.1), and use the extrapolated

values for the scheme if necessary (Ex. 1 and 4).

Example 1. We consider the following advection equation:

vt + f · ∇v = 0, t ≥ 0, x ∈ Ω,

v(0, x) = ϕ(x), x ∈ Ω,

where Ω = (−2, 2)d, f ≡ f(x) = (−1, . . . ,−1) and

ϕ(x) := ‖x− a‖22 − r20 , with r0 = 0.5.

The vector a is defined by the first d coordinates of the sequence
(

1
2 ,

1
3 ,

1
5 ,

1
7 ,

1
11 ,

1
13

)

, there-

fore a does not correspond to a sparse grid point. The level set {x |ϕ(x) = 0} represents a

sphere in R
d of radius r0 centered at a. This system describes the movement of the initial

functionϕ, and hence its zero level set, in direction f . The exact solution for this advection

equation is given by v(t, x) = ϕ(x − ft).
We start with a convergence analysis for dimensions two and four. In Table 1 we first

consider the two-dimensional case. For different refinement constants ε we give for t = 0
(initial data) and for t = 1 (terminal time) the number N of resulting sparse grid points, i.e.

N = |I(t)|, and the local errors eL∞

loc
and eL2

loc
which were obtained.

We observe that ̺ε,e ∼ 1, hence the computed errors eL∞

loc
and eL2

loc
depend linearly

on the parameter ε of the adaptive refinement procedure. We therefore can reduce the

error in a controlled fashion by correspondingly reducing the parameter ε in the refinement

procedure. Moreover, we approximately have ̺N,e ∼ −2, hence the computed errors are

of second order with respect to the total number of sparse grid points N .
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t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 281 1.95−2 2.28−2

2.00−3 537 4.88−3 1.00 −2.14 5.73−3 1.00 −2.13
5.00−4 1,049 1.20−3 1.01 −2.09 1.42−3 1.01 −2.09
1.25−4 2,073 3.05−4 0.99 −2.01 3.61−4 0.99 −2.01
3.13−5 4,121 7.62−5 1.00 −2.02 9.00−5 1.00 −2.02
7.81−6 8,217 1.91−5 1.00 −2.01 2.23−5 1.01 −2.02
1.95−6 16,409 4.76−6 1.00 −2.00 5.39−6 1.02 −2.05

4.88−7 32,793 1.01−6 1.12 −2.24 1.10−6 1.15 −2.30

t = 1

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 225 2.28−1 3.84−1

2.00−3 417 5.69−2 1.00 −2.25 9.59−2 1.00 −2.25
5.00−4 801 1.42−2 1.00 −2.12 2.40−2 1.00 −2.12
1.25−4 1,569 3.56−3 1.00 −2.06 5.99−3 1.00 −2.06
3.13−5 3,109 8.90−4 1.00 −2.03 1.50−3 1.00 −2.03
7.81−6 6,177 2.22−4 1.00 −2.02 3.75−4 1.00 −2.02
1.95−6 12,325 5.54−5 1.00 −2.01 9.39−5 1.00 −2.00
4.88−7 24,609 1.39−5 1.00 −2.00 2.37−5 0.99 −1.99

TABLE 2. Example 1, convergence for d = 4, initial data (t = 0) and terminal

data (t = 1), after K = 12 time steps.

To summarize, for both types of errors we observe the behaviour

eL∞

loc
, eL2

loc
∼ Cd · ε and eL∞

loc
, eL2

loc
∼ C′

d ·N−2,(27)

with Cd, C′
d constants independent of ε and N , respectively, but dependent on the dimen-

sion of the problem. This holds for both t = 0 and t = 1.

We observe the same type of behaviour for the 3-dimensional case (not shown here),

as well as for the 4-dimensional case, see Table 2. Thus, (27) holds independent of the

dimension. This is due to the specific structure of the initial data and the solution which is

resolved by the adaptivity of our approach. All employed sparse grid points are on one of

the coordinate axes, see Figure 5, therefore the adaptive sparse grid is just the superposition

of d one-dimensional grids which explains (27) for all dimensions.

Moreover, we observe here that the number of sparse grid points for the terminal data

(t = 1) is smaller than that for the initial data. This is at least in parts due to the evaluation

outside of the domain in direction of the flow f in (20). There, instead of the exact solution

v one needs to employ the discretized vk, resulting in incoming data which is more easily

representable by an adaptive sparse grid. We will not observe such a decrease of the number

of necessary points in the general case, though.

Next, we consider the dependence of the complexity on the dimension d of the problem

for a fixed threshold ε. The obtained results are presented in Table 3. We can observe

that for time t = 1, the number N of points scales linearly with the dimension d of the

problem, i.e. N ∼ d. This almost perfect scaling can again be explained by the mentioned

approximately additive structure of the solution which is detected by our adaptive sparse

grid algorithm and which results in a pure axis-structure of the corresponding adaptive

grid. Also the errors increase only slowly with the number d of dimensions by a factor of

roughly d/d − 1 per additional dimension, in other words, linearly in d. This shows that

our adaptive procedure has very good scaling properties with respect to the dimension in

simple cases.

Note here that the main bottleneck in runtime for higher dimensions is the error compu-

tation on the full grid and not the semi-Lagrangian sparse grid scheme itself. The method
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(a) initial grid (b) initial function with zero level set

(c) resulting grid (d) resulting function with zero level

set

FIGURE 5. Example 1 for d = 2 and ε = 5 · 10−4.

t = 0 t = 1

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 517 6.08−4 7.50−4

3 781 9.05−4 1.09−3 1.51
4 1,049 1.20−3 1.42−3 1.34
5 1,321 1.49−3 1.70−3 1.26
6 1,597 1.77−3 1.95−3 1.21

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 393 7.12−3 1.20−2

3 595 1.07−2 1.83−2 1.51
4 801 1.42−2 2.40−2 1.35
5 1,011 1.78−2 2.91−2 1.26
6 1,255 2.14−2 3.37−2 1.24

TABLE 3. Example 1, scaling behaviour (2 ≤ d ≤ 6) for initial data (t = 0)

and terminal data (t = 1), after K = 12 time steps, using ε = 5 · 10−4 for the

adaptive procedure.

alone could actually be run in many more dimensions since its costs for the d-dimensional

case involves only about d times the cost of the one dimensional case for this special test

problem.

Remark 4.1. Notice that a spatially adaptive sparse grid representation of a function f1(x1)
that does not depend on the other variables x2, . . . , xd will have points located only on the

x1 axis. Similarly, a function of the form f1(x1) + · · · + fd(xd) will have a spatially

adaptive sparse grid representation located only on the d principal axis. This explains the

behavior in Figure 5, as well as for some initial data that will be used in Example 4 and 5

(see Figures 8 and 9, resp.).

Example 2. Next, we consider the following transport equation

vt + f(x) · ∇v = 0, t ≥ 0, x ∈ Ω,

v(0, x) = ϕ(x), x ∈ Ω,

where Ω = (−2, 2)d and t = 0.5. In comparison to the first example the velocity field f(x)
is now x-dependent and thus the solution has no longer an approximately additive structure.

We will assume that −f is an inward pointing flow, i.e. (−f(x))·ν ≤ 0, ∀x ∈ ∂Ω, where ν
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(a) resulting grid (b) resulting function with zero level

set (green line)

(c) resulting grid (d) resulting zero level set

FIGURE 6. Example 2 for d = 2 and d = 3, ε = 5 · 10−4.

is the outward normal on ∂Ω, such that the backward characteristics of the flow stay inside

the domain Ω.3 Moreover, we choose the state dynamics as

f(x) = a(‖x‖) f1(x),

where a(r) :=
(

max
(

1− r

1.5
, 0
))3

is a scalar function, and f1(x) is a vector field cor-

responding to a rotation of Rd, which is made precise in appendix A. The initial function

is taken as ϕ(x) = x2. Since the characteristics yx(−t) can be computed analytically (see

appendix), the exact solution is known. It is given by

v(t, x) = ϕ
(

yx(−t)
)

.

For the numerical scheme, we also use the analytical formula for yx(−τ) where τ is the

time step.

Note that the initial function ϕ(x) = x2 can be represented exactly by a sparse grid.

In Tables 4 and 5, we give the convergence results for dimension d = 2 and d = 3,

respectively, observed at the terminal time t = 0.5. Again, we roughly obtain ̺ε,e ∼ 1.

Thus, also for this non-smooth function we have a control of the final error by a suitable

adjustment of the refinement parameter ε. However, the number of grid points which are

employed for a given refinement threshold is now much larger and the order with respect

to N is worse than for the first example. This is due to the higher variability of the function

(see Figure 6) which also exhibits larger second mixed derivatives. In higher dimensions

this effect grows, the factor
N(d)

N(d−1) is about 5. We therefore need more and more grid

points, but we are still able to achieve reasonable accuracies. In particular we observe no

exponential scaling of the complexity with respect to d.

3Since yx(−t) stays in Ω for all x ∈ Ω the boundary needs no specific consideration and for this example

we could use the standard hat basis of Figure 3(a) as well. Indeed we numerically observed the same accuracy

with roughly the same number of points for the standard and modified basis of Figure 3, respectively.
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t = 0.5

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 281 2.44−1 1.77−1

4.00−3 539 1.33−1 0.88 −0.93 9.61−2 0.88 −0.94
2.00−3 919 5.86−2 1.18 −1.54 4.09−2 1.23 −1.60
1.00−3 1,409 3.20−2 0.87 −1.41 1.98−2 1.04 −1.69
5.00−4 2,361 1.49−2 1.10 −1.48 9.90−3 1.00 −1.35
2.50−4 3,683 6.03−3 1.31 −2.04 4.41−3 1.17 −1.82
1.25−4 5,603 3.20−3 0.92 −1.51 2.38−3 0.89 −1.47

6.25−5 8,531 1.69−3 0.92 −1.52 1.28−3 0.89 −1.47

TABLE 4. Example 2, convergence for d = 2, terminal data (t = 0.5), after

K = 10 time steps.

t = 0.5

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 1,297 3.75−1 1.15−1

4.00−3 2,507 2.26−1 0.73 −0.76 6.09−2 0.92 −0.97
2.00−3 4,771 1.43−1 0.67 −0.72 3.53−2 0.79 −0.85
1.00−3 8,451 7.01−2 1.03 −1.24 1.79−2 0.98 −1.18
5.00−4 15,153 3.16−2 1.15 −1.36 9.74−3 0.88 −1.04
2.50−4 25,213 1.63−2 0.96 −1.31 5.27−3 0.89 −1.21
1.25−4 42,553 7.37−3 1.14 −1.51 2.98−3 0.82 −1.09
6.25−5 72,267 4.06−3 0.86 −1.12 1.71−3 0.80 −1.05

TABLE 5. Example 2, convergence for d = 3, terminal data (t = 0.5), after

K = 10 time steps.

t = 0.5

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 2,361 1.49−2 9.90−3

3 15,153 3.16−2 9.74−3 6.42
4 83,741 6.36−2 7.72−3 5.53
5 431,823 1.10−1 7.84−3 5.16

TABLE 6. Example 2, scaling behaviour (2 ≤ d ≤ 5) for terminal data (t =
0.5), after K = 10 time steps, using ε = 5 · 10−4 for the adaptive procedure.

Example 3. Now, we consider a nonlinear PDE example, the Eikonal equation

vt + ‖∇v‖ = 0, t ≥ 0, x ∈ Ω,

v(0, x) = ϕ(x), x ∈ Ω,

in Ω = (−2, 2)d. Note that this is a particular case of (1), since with f(x, b) = b for

b ∈ B := B(0, 1), i.e. the unit ball, we have maxb∈B(0,1)(−f(x, b) · ∇v) = ‖∇v‖.

To obtain an exact solution to compare with, we consider the case ϕ(x) := q(‖x‖)
where q : R+ → R is a non-decreasing function. Then, we can show that4

(30) v(t, x) = q((‖x‖ − t)+).

Here, we use

q(z) :=
1

2r0
(z2 − r20)

4With St(x) := {x ∈ Rd | ‖x‖2 ≤ t} = B(x, t) we can show that v(t, x) = infy∈St(x) ϕ(y) = ϕ(x∗)

where x∗ is a point of Rd such that x∗ := argminy∈St(x) ‖y‖.
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(a) resulting grid (b) resulting function with zero level

set

FIGURE 7. Example 3 for d = 2, ε = 2 · 10−3.

t = 1

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 261 1.27−1 1.30−1

2.00−3 705 3.41−2 0.95 −1.32 3.24−2 1.00 −1.40
5.00−4 1,889 1.12−2 0.80 −1.13 1.02−2 0.83 −1.17
1.25−4 4,745 2.93−3 0.97 −1.46 2.99−3 0.88 −1.33
3.13−5 11,153 8.75−4 0.87 −1.41 7.83−4 0.97 −1.57
7.81−6 25,477 2.19−4 1.00 −1.68 2.14−4 0.93 −1.57
1.95−6 57,641 6.24−5 0.90 −1.54 6.30−5 0.88 −1.50
4.88−7 130,193 1.63−5 0.97 −1.65 1.70−5 0.94 −1.61

TABLE 7. Example 3, convergence for d = 2, terminal data (t = 1), after

K = 10 time steps.

t = 0 t = 1

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 261 2.44−3 2.92−3

3 397 3.66−3 4.45−3 1.52
4 537 4.88−3 5.81−3 1.35
5 681 6.10−3 6.98−3 1.27

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 705 3.41−2 3.24−2

3 4,525 5.36−2 3.95−2 6.42
4 28,281 6.63−2 4.73−2 6.25
5 246,665 7.62−2 4.48−2 8.72

TABLE 8. Example 3, scaling behaviour (2 ≤ d ≤ 5) for initial data (t = 0)

and terminal data (t = 1) after K = 10 time steps, using ε = 2 · 10−3 for the

adaptive procedure.

with r0 = 0.5, i.e. q is chosen such that q(z) = 0 for z = r0 and q′(r0) = 1. Hence, the

zero level set {x |ϕ(x) = 0} represents just the sphere of radius r0.

In the numerical scheme we now employ the known optimal path yx(−τ) = x − τ x
‖x‖

if ‖x‖ ≥ τ , and yx(−τ) = 0 otherwise. Thus, no error can come from a discretization of

the continuous control and only interpolation errors from the SL scheme can occur.

Since we have the same initial function as in the first example, just moved to the center,

we only give figures and results for t = 1 here. We observe a similar order ̺ε,e ∼ 1 for

d = 2 with respect to ε but we now need more grid points, i.e. we obtain ̺N,e ∼ −3/2,

see Table 7. The resulting grid and function for t = 1 are shown in Figure 7. Obviously,

the solution at time t = 1 cannot be represented by an adaptive grid with points only on

the axes like in Example 1. We now need to resolve the transition of the function from a

flat region inside the zero level set to a steeper one outside. Furthermore, we have a non-

smooth function due to the (·)+ in (30). This behaviour can however be handled well by
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our adaptive discretization approach. Note in particular the sparse grid effect away from

the area of non-smoothness in Figure 7.

The scaling behaviour is shown in Table 8. Although we now use a different value for ε,

we observe for t = 0 the same factors N(d)/N(d − 1) as in Table 3 for the first example,

where the same initial function was used. The scaling behaviour for t = 1 starts similar as

in Example 2, but gets somewhat worse with rising d, which clearly shows that it depends

on the function to be represented. But, again, we do not observe an exponential scaling

with raising number of dimensions.

Example 4. In this example we consider the HJB equation

vt +max
b∈B

(

∑

i

biPi · ∇v

)

= 0, t ≥ 0, x ∈ Ω,(31a)

v(0, x) = ϕ(P−1x), x ∈ Ω.(31b)

where d ≥ 2, Ω = (−2, 2)d, and B := {b = (b1, . . . , bd), bi = ±1} is a set of 2d column

vectors, hence we have 2d possible controls, and Pj denotes the j-th column vector of a

given matrix P ∈ R
d×d. The definition of P and more details are given in appendix B. For

the initial function, we consider radially symmetric data ϕ(x) := q(‖x‖) as in Example 3.

Hence, due to P 2 = Id and v(0, x) ≡ ϕ(Px), the zero level set at t = 0 is an ellipse in the

first two dimensions, see Figure 8(a). The exact solution is given by

(32) v(t, x) ≡ ϕ ((Px)∗t ) ,

see the appendix for details. Thus, the zero level set at time t = 0.5 describes a par-

allelogram with rounded edges in the first two dimensions, see Figure 8(d), whereas, in

the other dimensions, it forms a rectangle with rounded edges. Note that we specifically

designed this example to show the advantage of our adaptive sparse grid approach in sit-

uations where the function needs higher refinement in some dimensions and only small

refinement in other dimensions.

For the numerical scheme we need to consider the explicit paths

ybx(−τ) = x− τ(
∑

i

biPi) ≡ x− τPb

for all b ∈ B. Here, the first two components of Pb take the four possible values ±(1,−2),
±(1, 0), and the other d − 2 values are given by (±1, . . . ,±1). Let us emphasize that

we now have to use an explicit minimization over all possible trajectories y
b
x(−τ) for the

different actions Pb.
Since we are in a non-linear control setting, we have to reconsider the choice of the time

step τ , which now needs to depend on ε. It is known from the approximation properties of

regular grids that the error between the continuous solution and its discrete approximation

depends on the time step τ and the spatial error εh in a mixed relation like O(τ + εh/τ),
see [2, 9, 24]. In our adaptive sparse grid setting we do not have a mesh size h relating to the

discretization error εh. Instead, we have a refinement constant ε which controls the error

of our approximation. Therefore, to balance ε and τ accordingly, we choose here τ = c
√
ε,

with constant c = 1 in our case. This gives an overall error of O(
√
ε+ ε/

√
ε) = O(

√
ε).

A more detailed investigation of the relation between the error of the adaptive sparse grid

discretization and the time step size is warranted, but beyond the scope of this paper.

In Figure 8 we show the initial and resulting grids as well as the level set of v for t = 0
and t = 0.5 for the two-dimensional case, and also the grids for the three-dimensional case.

As can be seen in Figure 8(f) the resulting grid is essentially two-dimensional, since the

rectangle-structure in the other dimensions can be represented by an adaptive grid which

only has points on the axis in these coordinates. We also observe that a more diagonal

structure of the function is disadvantageous for a sparse grid, since one needs a substantial

number of points to represent such a diagonal formation by a locally refined sparse grid.
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t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 263 3.66−3 4.42−3

5.00−4 519 9.03−4 1.01 −2.06 1.10−3 1.01 −2.05
1.25−4 1,031 2.29−4 0.99 −2.00 2.75−4 1.00 −2.01
3.13−5 2,055 5.72−5 1.00 −2.01 6.84−5 1.00 −2.02
7.81−6 4,101 1.43−5 1.00 −2.01 1.70−5 1.01 −2.02
1.95−6 8,199 3.57−6 1.00 −2.00 4.16−6 1.01 −2.03

t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 1,415 2.64−1 2.31−1

5.00−4 23 3,217 1.65−1 0.34 −0.57 1.36−1 0.38 −0.64
1.25−4 45 7,529 9.10−2 0.43 −0.70 7.46−2 0.44 −0.71
3.13−5 90 16,675 4.82−2 0.46 −0.80 3.89−2 0.47 −0.82
7.81−6 179 36,967 2.53−2 0.47 −0.81 2.01−2 0.48 −0.83
1.95−6 358 80,537 1.28−2 0.49 −0.87 1.02−2 0.49 −0.87

TABLE 9. Example 4, convergence for d = 2 for initial data (t = 0) and

terminal data (t = 0.5) with K = t
τ

for varying time step size τ =
√
ε.

t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 399 4.88−3 5.95−3

5.00−4 783 1.19−3 1.02 −2.10 1.45−3 1.02 −2.09
1.25−4 1,551 3.05−4 0.98 −1.99 3.70−4 0.99 −2.00
3.13−5 3,087 7.62−5 1.00 −2.01 9.24−5 1.00 −2.02
7.81−6 6,159 1.91−5 1.00 −2.01 2.30−5 1.00 −2.01
1.95−6 12,303 4.76−6 1.00 −2.01 5.49−6 1.03 −2.07

t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 1,523 2.59−1 2.20−1

5.00−4 23 3,425 1.63−1 0.33 −0.57 1.27−1 0.40 −0.68
1.25−4 45 7,935 9.04−2 0.43 −0.70 6.83−2 0.45 −0.74
3.13−5 90 17,467 4.81−2 0.46 −0.80 3.54−2 0.47 −0.83
7.81−6 179 38,535 2.52−2 0.47 −0.82 1.83−2 0.48 −0.84
1.95−6 358 83,653 1.28−2 0.49 −0.87 9.26−3 0.49 −0.88

TABLE 10. Example 4, convergence for d = 3, initial data (t = 0) and terminal

data (t = 0.5) with K = t
τ

for varying time step size τ =
√
ε.

d N eL∞

loc
e2d
L∞

loc

N(d)
N(d−1)

2 16,675 4.82−2 4.82−2

3 17,467 4.81−2 4.81−2 1.05
4 18,263 4.79−2 4.79−2 1.05
5 19,063 4.78−2 4.78−2 1.04
6 19,867 − 4.76−2 1.04

TABLE 11. Example 4, scaling behaviour for 2 ≤ d ≤ 6 for terminal data

(t = 0.5) with ε = 3.125 · 10−5 for the adaptive procedure and K = 90 time

steps. For d = 6, the error is only measured in the x1 − x2 plane.
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(a) initial function with zero level

set for d = 2
(b) initial grid for d = 2 (c) initial grid for d = 3

(d) resulting function with zero

level set for d = 2
(e) resulting grid for d = 2 (f) resulting grid for d = 3

FIGURE 8. Example 4 for d = 2 and d = 3, ε = 3.125 · 10−5.

Results for the case d = 2 and d = 3 are given in Tables 9 and 10, respectively. The

initial grid shows a convergence rate as in the earlier examples, since the ellipsoidal struc-

ture has a form similar to the circle. As expected, the convergence order at t = 0.5 is

now different due to the need for different time steps. We observe the predicted order of

̺ε,e ∼ 0.5 for the refinement constant ε which controls our discretization error. For the

number of grid points N we roughly observe an order of ̺N,e ∼ −0.8.

The scaling behaviour is displayed in Table 11, up to dimension d = 6. Note again that

the error computation is the most time consuming part of the numerical procedure. Be-

cause it allows computationally cheap measurements in higher dimensions we additionally

estimated the L∞-error just for the x1 − x2 plane and denoted the result by e2dL∞

loc
. The re-

duction to the x1 −x2 plane is justified in this example, as well as the following one, since

the zero-level set in this plane reflects the dominant behaviour of the function at the final

time, see Figures 8 and 9. Note that as long we could compute both errors eL∞

loc
and e2dL∞

loc

they are here the same for the resulting function at t = 0.5. As can be expected from the

picture of the grid in three dimensions, more dimensions only slightly increase the number

of points since in the other dimensions only grid points on the axes are employed.

Example 5. At last, we consider the following problem with mixing fronts:

vt +max
b∈B

(

∑

i

biPi · ∇v

)

= 0, t ≥ 0, x ∈ Ω,(33a)

v(0, x) = min(ϕ1(P
−1x), ϕ2(P

−1x)), x ∈ Ω,(33b)

with d ≥ 2, Ω = (−2, 2)d, ϕ1(x) := q(‖x − r‖) and ϕ2(x) := q(‖x − s‖), and q as in

Example 3. Here, r, s are the two points in R
d defined by r := (0.7, 0.3, 0, . . . , 0) and

s := −r. The matrix P ∈ R
d×d is an orthogonal matrix, and as in Example 4, Pj denotes

the j-th column vector of P and B = {b = (b1, . . . , bd)
T , bi = ±1}. The definition of P

and more details are given in the appendix C.



AN ADAPTIVE SPARSE GRID SEMI-LAGRANGIAN SCHEME FOR HJB EQUATIONS 21

(a) overlay of both initial

grids, d = 2
(b) initial function with zero level

set for d = 2
(c) initial zero level set for d = 3

(d) overlay of both result-

ing grids, d = 2
(e) resulting function with zero

level set for d = 2
(f) resulting zero level set for d = 3

FIGURE 9. Example 5 for d = 2 and d = 3, α = π
6
, ε = 5 · 10−4, at time

t = 0 in figures (a), (b), (c), and time t = 0.5 in figures (d), (e) and (f).

The exact solution here is

v(t, x) = min
(

ϕ
(

(PT (x− r))∗t
)

, ϕ
(

(PT (x− s))∗t
))

.

In the first two dimensions the zero level set at time t = 0.5 describes the intersection

of two rotated squares with rounded edges, in the other dimensions the level set forms a

square with rounded edges, see Figure 9.

In this example, the initial data and the solution correspond to the mixing of two fronts

and therefore are much less regular than in the previous examples. We numerically ob-

served that the direct application of our adaptive SL-SG scheme from Section 3.1 is not

efficient for dimensions d ≥ 3 in this case. Hence, we now apply the generalized SL-SG

scheme as described in Section 3.2 which is better suited for data of the form (33b).

For the generalized scheme, we employ two separate grids. For each initial data ϕi, i =

1, 2, we apply the SL-SG scheme and use the explicit paths y
b
x(−τ) = x − τ(

∑

i biPi) ≡
x−τPb for all b ∈ B. Then, the minimum of both resulting functions is taken to obtain the

solution at time t. The advantage of this approach is that the (costly) direct representation

due to the discontinuity of the gradient of the min-function is avoided.

We give results for the two- and three-dimensional case in Table 12 and Table 13, re-

spectively. Here we only show the results for the terminal time, the results for t = 0 are

equal to the ones from Example 1, but with twice the number of points. As before, we

observe the predicted order of ̺ε,e ∼ 0.5 for the convergence with respect to ε and roughly

̺N,e ∼ −0.8 with respect to N .

The scaling behaviour is analyzed in Table 14, this time in up to 8 dimensions. We

observe that the error, the complexity, and the scaling behaviour behave quite well and are

similar to Example 4.
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t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 2,192 9.43−2 5.75−2

5.00−4 23 5,560 3.44−2 0.73 −1.08 2.52−2 0.60 −0.89
1.25−4 45 13,132 1.83−2 0.45 −0.73 1.26−2 0.50 −0.81
3.13−5 90 31,046 8.89−3 0.52 −0.84 6.44−3 0.48 −0.78
7.81−6 179 71,874 4.24−3 0.53 −0.88 3.22−3 0.50 −0.82

TABLE 12. Example 5, convergence for d = 2, terminal data (t = 0.5) with

K = t
τ

for varying time step size τ =
√
ε.

t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 2,408 8.91−2 6.17−2

5.00−4 23 5,976 4.13−2 0.55 −0.85 2.66−2 0.61 −0.92
1.25−4 45 13,944 2.18−2 0.46 −0.76 1.33−2 0.50 −0.82
3.13−5 90 32,630 1.06−2 0.52 −0.85 6.66−3 0.50 −0.81
7.81−6 179 75,010 5.08−3 0.53 −0.88 3.37−3 0.49 −0.82

TABLE 13. Example 5, convergence for d = 3 for terminal data (t = 0.5) with

K = t
τ

for varying time step size τ =
√
ε.

d N eL∞

loc
e2d
L∞

loc

N(d)
N(d−1)

2 5,560 3.44−2 3.44−2

3 5,976 4.13−2 3.61−2 1.07
4 6,400 4.83−2 3.78−2 1.07
5 6,832 5.53−2 3.95−2 1.07
6 7,272 − 4.12−2 1.06
7 7,720 − 4.29−2 1.06

8 8,176 − 4.46−2 1.06

TABLE 14. Example 5, scaling analysis for 2 ≤ d ≤ 8 for terminal data (t =
0.5) with ε = 5 · 10−4 for the adaptive procedure and K = 23 time steps. For

d ≥ 6, for the same reasons as in Example 4, the error is only measured in the

x1 − x2 plane.

5. CONCLUSION

We presented and implemented a new spatially adaptive semi-Lagrangian sparse grid

scheme and tested it on a series of linear and nonlinear time-dependent Hamilton-Jacobi

Bellman equations. In particular, we focused on the zero level set of the solution. The

adaptive sparse grid is able to handle the representation of the front with reasonable preci-

sion in higher dimensions. This was tested up to d = 8 dimension in this work. From the

numerical point of view, two main ingredients are crucial for our new approach: First, the

adaptivity of the employed sparse grid, and, second, a special boundary treatment allow to

keep the number of necessary sparse grids points relatively small. Furthermore we should

emphasize that the sparse grid effect only works properly if the data has some potentially

lower-dimensional structure or is roughly axis-aligned, e.g. after a suitable transformation.

As noted, the main computational burden in our SL-SG scheme is the evaluation of the

adaptive sparse grid function. It was shown recently [17] that using a specific reordering

of the steps of the point evaluations together with a GPU-based parallelisation one can

achieve speed-ups of almost 50 in comparison to the standard implementation of adaptive
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sparse grids. This approach can also be employed in our scheme and could be used to

improve the runtime significantly.

Note that, for the moment, the proposed scheme neither has the monotony property that

would give convergence towards the viscosity solution, nor has provable stability as far

as we know. However, we think that this initial work is an encouraging step towards the

construction of related schemes for the solution of HJB equations in higher dimensions

that could remedy these drawbacks.

Let us also mention that extensions of the proposed scheme to more general situations

are possible. For instance a sparse grid SL scheme can be straightforwardly defined for

HJB equations with an additional cost term.

APPENDIX A. DETAILS FOR EXAMPLE 2

In order to define the vector field f1(x), let us first define two vectors u, v of Rd as follows:

u = (1, 0, . . . , 0)T and v = (0, 1, . . . , 1)T /
√
d− 1.

We then denote by A the operator such that A(α, β) = (−β, α) in the basis (u, v), that is, A(αu+
βv) = −βu+ αv. We now decompose a vector x as x = Px+ (x− Px), where Px = (x, u)u+
(x, v)v is the projection on the plane Vect(u, v). We have also

Px = (x1, y, . . . , y)
T , where y =

∑d

i=2 xi

d− 1
.

We can now define f1(x) in the following way:

f1(x) = A(Px) := −(x, v)u+ (x, u)v.

We then have

yx(−t) := R−ta(‖x‖)(Px) + x− Px,

where the operator Rθ is represented by the following rotation matrix in the basis (u, v)

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

.

Hence, to compute yx(−t) we have, using the notation θ = −ta(‖x‖),

RθPx = Rθ

(

(x, u)u+ (x, v)v

)

=

(

cos θ(x, u)− sin θ(x, v)

)

u+

(

sin θ(x, u) + cos θ(x, v)

)

v

=

(

cos θx1 − sin θ(x, v)

)

u+

(

sin θx1 + cos θ(x, v)

)

v

and thus

yx(−t) = x+

(

(cos θ − 1)x1 − sin θ(x, v)

)

u+

(

sin θx1 + (cos θ − 1)(x, v)

)

v

where (x, u) = x1 and (x, v) = 1√
d−1

∑

i≥2 xi.

APPENDIX B. DETAILS FOR EXAMPLE 4

We consider the equation

vt + |vx1
− vx2

|+ | − vx2
|+

∑

i=3,...,d

|vxi
| = 0, t ≥ 0, x ∈ Ω,(34a)

v(0, x) = v0(x) = ϕ(P−1x), x ∈ Ω.(34b)
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where d ≥ 2, Ω = (−2, 2)d, and P is the matrix defined by

P :=





















1 0 0 . . . . . . 0
−1 −1 0 . . . . . . 0
0 0 1
... 0

. . .

...
...

. . .

0 . . . 0 1





















.(35)

We denote by Pj the j-th column vector of P , i.e. P = [P1, . . . , Pd] and ϕ(x) := q(‖x‖) as

in Example 3. Then equation (34a) is equivalent to the HJB equation (31a). To obtain the exact

solution for this problem, let ξ be the new coordinate vectors of Rd in the basis (P1, . . . , Pd) such

that x = Pξ, and let u(t, ξ) := v(t, x) = v(t, P ξ). Then we have ∂ξiu = ∇xv · (∂ξix) = ∇xv ·Pi.

Hence, u is a solution of ut +
∑

i=1,...,d |uξi | = 0 for t ≥ 0 and x ∈ R
d, and u(0, ξ) = ϕ(ξ). The

solution is given by u(t, ξ) = miny∈St(ξ) ϕ(y), where St(ξ) := {y, ‖y − ξ‖∞ ≤ t}. Therefore,

u(t, ξ) = ϕ(ξ∗
t
) where ξ∗

t
:= argmin{d(0, y), y ∈ St(ξ)} is the orthogonal projection of 0 on

the convex set St(ξ). Since St(ξ) is the d-dimensional box
∏

i=1,...,d[ξi − t, ξi + t], the projection

ξ∗
t
= (ξ∗t,i) can be computed component-wise and we have ξ∗t,i = min(max(0, ξi− t), ξi + t). This

formula will now be denoted by

ξ∗
t
= min(max(0, ξ − t), ξ + t).

Finally we obtain the exact solution

(36) v(t, x) = u(t, ξ) = ϕ(ξ∗
t
) = ϕ

(

(P−1x)∗t
)

≡ ϕ ((Px)∗t ) .

APPENDIX C. DETAILS FOR EXAMPLE 5

We consider

vt + | cosα · vx1
+sinα · vx2

|+ | − sinα · vx1
+ cosα · vx2

|(37a)

+
∑

i=3,...,d

|vxi
| = 0, t ≥ 0, x ∈ Ω,

v(0, x) = min(ϕ1(P
−1x), ϕ2(P

−1x)), x ∈ Ω,(37b)

where d ≥ 2, Ω = (−2, 2)d, and in this example P is the matrix defined by

P :=





















cosα − sinα 0 . . . . . . 0
sinα cosα 0 . . . . . . 0
0 0 1
..
. 0

. . .

..

.
. . .

. . .

0 . . . 0 1





















.(38)

Let again Pj denote the j-th column vector of P and B = {b = (b1, . . . , bd)
T , bi = ±1}.

Then, equation (37a) is equivalent to the HJB equation (33a). Note that since ϕ(x) := q(‖x‖)
and P orthogonal, and with ϕ1(x) := ϕ(x − r) and ϕ2(x) := ϕ(x − s), we have v(0, x) ≡
min

(

ϕ1(x), ϕ2(x)
)

here. The exact solution for each initial data ϕi, i = 1, 2 is obtained as in the

previous example, and therefore

v(t, x) = min
(

ϕ
(

(P−1(x− r))∗t
)

, ϕ
(

(P−1(x− s))∗t
)) (

with P−1 = P T
)

holds.
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[16] L. Grüne. An adaptive grid scheme for the discrete Hamilton–Jacobi–Bellman equation. Numer. Math.,
75(3):319–337, 1997.
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AND UFR DE MATHÉMATIQUES, SITE CHEVALERET, UNIV. PARIS-DIDEROT, 75205 PARIS CEDEX

AND PROJET COMMANDS, ENSTA PARISTECH, 828, BOULEVARD DES MARCHAUX, 91762 PALAISEAU

CEDEX

E-mail address: boka@math.jussieu.fr
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