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An Adaptive Spatial Fuzzy Clustering Algorithm for
3-D MR Image Segmentation

Alan Wee-Chung LiewfMember, IEEEand Hong YanSenior Member, IEEE

Abstract—An adaptive spatial fuzzy c-means clustering algo- a lack of tissue specific meanings for MRI intensities within
rithm is presented in this paper for the segmentation of three-di- scans, even for the same patient obtained on the same scanner
mensional (3-D) magnetic resonance (MR) images. The inputim- ,qing the same protocol. Data preprocessing using a tissue in-
ages may be corrupted by noise and intensity nonuniformity (INU) tensit librati d din [61 orior to th i
artifact. The proposed algorithm takes into account the spatial con- ensity ,Ca ibration procedure as proposed in [6] prior to the 569
tinuity constraints by using a dissimilarity index that allows spa- Mentation process would ensure a more accurate segmentation.
tial interactions between image voxels. The local spatial continuity ~ Besides INU artifact, issues such as poor contrast and
constraint reduces the noise effect and the classification ambiguity. imaging noise also make accurate segmentation difficult. In
The INU artifact is formulated as a multiplicative bias field af- addition, many pixels in a real image are ambiguous and cannot

fecting the true MR imaging signal. By modeling the log bias field - . .
as a stack of smoothingB-spline surfaces, with continuity enforced be classified consistently based on feature attributes alone.

across slices, the computation of the 3-D bias field reduces to that IN an image, pixels of the same object usually form coherent
of finding the B-spline coefficients, which can be obtained using a patches. Thus, the incorporation of local spatial information in
computationally efficient two-stage algorithm. The efficacy of the the clustering process could filter out noise and artifacts and
proposed algorithm is demonstrated by extensive segmentation ex- reduce classification ambiguities
periments using both simulated and real MR images and by com- S | thods h b ) dt t the INU
parison with other published algorithms. . everal methods have been proposed to correct the . ar-
_ _ _ _ ~ tifact [7]-[15], [30]-[33]. In [7], [8], and [11], a polynomial
Index Terms—Adaptive spatial fuzzy clustering, intensity  g\,face and a thin-plate spline surface are used to approximate
nonuniformity correction, MR image segmentation, spatial the bias field ated with the INU dvelv. In 191, th
continuity constraint, spline approximation. .e '_as e assomg e W' e ’ reSpe.C Ively. . n 9], .e
bias field for the INU is estimated by sharpening the image his-
togram in an iterative process. In these methods, after correcting
. INTRODUCTION the INU artifact, the MR image is then segmented using an al-

N IMPORTANT first step in image analysis is image segdorithm that assumes that the inhomegeneity is not present. In
A mentation, or separation of the input image into meahl2], [13], and [33], the bias field is estimated by homomorphic
ingful regions. In medical imaging, this could involve organ ddiltering. In [10], the problem of estimating the bias field is cast
tection or tissue characterization. A commonly used image ség2 Bayesian framework and the EM algorithm is used to esti-

mentation method is the fuzzy c-means (FCM) clustering algBlate the inhomogeneity and the tissue classes. In [39] and [40],
rithm [1]-[4], which assigns pixels in the image into differenthe MRI brain tissue classes are modeled as finite Gaussian mix-

classes according to their features. tures with Markov random field regularization for contextual in-

Inimage segmentation, we expect the pixels in the same C|ggr§na.1tion. anqa priori digital brain atlas initialization, whereas
to have similar pixel values independent of their locations. HoP€ bias field is modeled as a fourth order least square polyno-
ever, in magnetic resonance imaging (MRI), inhomogeneity fRial fit. A method of estimating the INU based on fuzzy clus-

the magnetic field usually give rises to the so-called intensit§ring has been reported in [15], where intermediate segmenta-
nonuniformity (INU) artifact [5]. This common artifact exhibitstion results are utilized for the INU estimation. The method uses

itself as a smooth, slowly varying change in image pixel valuémodified FCM cost functional to model the variation in inten-
and could have adverse effect on the performance of intensi®jty values via a multiplicative bias field applied to the cluster
based automatic segmentation methods [37], [38]. In additi§gntroids. The computation of the bias field is formulated as a

to intensity variation due to field inhomogeneity, there may briational problem and the bias field is estimated at every voxel
using a multigrid algorithm.
Many attempts have also been made to introduce spatial con-
Manuscript received June 29, 2001; revised March 18, 2003. This work wkext into the classification and segmentation procedures. One
supported by the Hong Kong Research Grant Council under Project Cit pular approach is the relaxation Iabeling method [16]—[18].
1088/00E. The Associate Editor responsible for coordinating the review | . labeli . he initial labeli b
this paper and recommending its publication was C. Meysterisk indicates 1OWeVer, relaxation labeling requires the initial labeling prob-
corresponding author. abilities of each pixel to be available. In [19], a spatial conti-
*A. W. C. Liew is with the Department of Computer Engineering andy ity constraint is incorporated into the fuzzy clustering algo-

Information Technology, City University of Hong Kong, Hong Kong (e-mail: . . e ..
nwdiew@cnyu.edu.h%y. b b 9 ong g Kong rithm by either the addition of a small positive constant to, or

H. Yan is with the Department of Computer Engineering and Informatiogubtraction of a small positive constant from, the membership
Technology, City University of Hong Kong, Hong Kong, and School of Elecyg|ye of the center pixel in a 83 window. The decision de-
trical and Information Engineering, University of Sydney, NSW 2006, Australia d heth h . el . f h ixel
(e-mail: ityan@cityu.edu.hk). pends on whether the optimal cluster assignment for the pixe
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of the center pixel. Recently, a supervised segmentation teelstimate@(g), the log-transformed true signal can be recovered
nique using the idea of fuzzy-connectedness has been propasd
in [21] and [22], which take into account pixel affinities and
spatial continuities using the notion of fuzzy “hanging togeth- |og o(z) = log s(z) — 1Og'5(£) ~ log (0@) + @) 2)
erness.” Given some prelabeled pixels from each of the object
classes, the fuzzy-connectedness map of pairs of pixels is com-
puted. The segmentation can then be obtained by appropriate
thresholding of the fuzzy-connectedness map.

In this paper, we proposed an FCM-based algorithm that a§- Conventional FCM Segmentation

dresses both the INU artifact and the local spatial continuity. OurThe FCM clustering algorithm assigns a fuzzy membership
method incorporates the local spatial continuity into the clugajue to each data point based on its proximity to the cluster
tering algorithm using a dissimilarity index [20], in place of theentroids in the feature space [1]. L&t= {s(z)} be the set
usual distance metric. The log of the three-dimensional (3-lg) feature vectors associated with a 3-D image defined in the
multiplicative bias field is modeled by a stack of smoothingomainz. The conventional FCM algorithm is formulated as
B-spline surfaces and estimated by an efficient two-stage ge minimization of the objective functiondfcy; with respect
gorithm. Although the method in [15] is also FCM-based, oyb the membership valués and cluster centroids

approach is different in several aspects. First, the bias field is .
derived according to the commonly used multiplicative mod _ m 2
[7]-[11], [14]. Second, the 3-D log bias field is modeled as 2FCM(U v) =D i
stack of smoothing3-spline surfaces, instead of the solution to .
a variational problem. Finally, the spatial continuity constraint subject to Zw” -1 Vzel (3)
is taken into account in our fuzzy objective function. Extensive - -
experiments using both simulated and real MR brain image data ) ] »
show that the proposed algorithm can suppress INU and nofégere the matrix/. = {uy .} is a fuzzy c-partition ofs5,

to produce good segmentation results. v = {v,v9,...,v.} is the set of fuzzy cluster centroids,
m € (1, 00) is the fuzzy index¢ is the total number of clusters,

anduy, gives the membership of pixg(z) in the kth cluster

ci. Using the Euclidean norm, the distance metfimeasures
The task of 3-D MR image segmentation involves the sepgre vector distance of a feature vector from a cluster centroid

ration of image voxels into regions comprising different tissu@ the feature space, i.e.,

types. Letr = (x,y, z) be the 3-D image coordinate of a voxel. )

We assume that each tissue clagss a specific valuey, that i, = lls(z) — vl (4)

1S, aquantlty bemg measured. The_n, the ideal SIG(_!EN would The FCM objective function is minimized when high mem-
consist of piecewise constant regidgnsach having one of the . .
bership values are assignedsd) that are close to the cen-

vy values. However, imperfectionin the magneuc_ﬂeld °fteT‘ "}'rPid for their particular class, and low membership values are
troduces an unwanted low frequency bias term into the signal, .

which gives rise to the INU artifact. The bias field that givegifiez:t(i?/de;\l:f?n thevzi;r?e?rgg?&tgﬁ dijegtrjg'tg‘ig'rgg itglzsflrSt
rise to the INU artifact in an MR image is usually modeled as FoM P q Y

smooth multiplicative field. This model is widely used [7]—[11],tﬁe two necessary conditions for minimizidgcy. The FCM
. : . e . . algorithm proceeds by iterating the two necessary conditions

[14] and is consistent with the spatial inhomogeneity arising=,. S .
N ok : til a solution is reached. After FCM clustering, each data

from the variation in the sensitivity of the RF coils and the

. o . . : Faample will be associated with a membership value for each
nonuniform excitations. The image formation process in M I ianina the d | he ol ith the high
can be modeled as class. By assigning the data sample to the class with the highest

membership value, a segmentation of the data can be obtained.
In the conventional FCM formulation, each class is assumed
to have a uniform value as given by its centroid. Each data point

wheres(z) is the measured MR signai(z) is the true signal is algo iassume.d to be mdependent.of every other Qata point and
spatial interaction between data points is not considered. How-

emitted by the tissué(z) is the unknown smoothly varying blase\{er, for image data, there is strong correlation between neigh-

field, andn(z) is an additive hoise assume_d to be mde.pendel?oring pixels. In addition, due to the INU artifact, the data in
of b(z). Accurate segmentation of an MR image thus involves

o e a class no longer have a uniform value. Therefore, to produce

an accurate estimation of the unknown bias figld) and re- : ; . .
moving this bias field from the measured MR sianal. Using t rgeamngful segmentation, the conventional FCM algorithm has
9 gnal. g hfo be modified to take into account both local spatial continuity

between neighboring data and INU artifact compensation.

I1l. METHODS

z€l k=1

k=1

Il. PROBLEM FORMULATION

s(z) = o(z)b(z) + n(z) 1)

B. Incorporation of Local Spatial Continuity

1n practice, the limited resolution of the imaging device leads to blurring The incorporation of local spatial Continuity considers the in-
along border regions between tissue classes, i.e., the partial volume effect. Hﬂﬁ- " ighbori | th ¢ | of int t
ever, this effect is confined to the border regions, in contrast to the more globs/€11CE O NEIGNDONNG voXxels on the center voxel or Interes

INU artifact. during classification [20]. Lett, denote a chosen 3-D local
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neighborhood configuration with respect to a center vgxel to belong to the same class. Hendeawill be large and\ — 1

If the voxels inX, and the center voxgl belong to the same for all its neighbors. In this casé)y, , ~ dk - i.e., neighboring
class, therp should be smoothed by the clustering results d@ffluence is turned off. WheR,, falls on a step boundary(z) is

its neighboring voxels so that they all eventually have high amhly affected by those neighboring voxels in the same class (i.e.,
similar membership values in one of the clusters. This is doneighboring voxels on the same step levek@s)). Whens(z)

as follows. Letdist(a, b) = /”a _ b||2 denote thel, distance is on a smooth region and is affected by all its neighbors, the in-

between vectors andb. For every voxels(z) in the 3-D MR fluence of each neighbety) ons(z) is affected by the distance

image, we compute the following, distances between them, i.e., the dlstanﬁgJ, through the weighting.
Hence,D,, , enables spatial interaction between neighboring
Oy =dist(s(z),s(y)), s(y) €Ny (5) voxels and is adaptive to image content.
dy,  =dist(s(z), v (6) The spatial continuity constraint also has a noise suppression

capability due to the adaptive smoothing operation. Random
whereR,, is the neighborhood of(z) andv, is the centroid of noise would either increase or decrease the distance of the center
thekth cluster. Now, if the distanag, , is small, we would like voxel and the distances of its neighbors to the cluster centroids
di, » to be greatly influenced by, ,. Otherwise,d;. , should randomly. When the weighted average of these distances, i.e.,
be largely independent af, - Taking all voxels |an into ac- (7), is taken, the effect of random noise is smoothed out.
count, we define a dissimilarity inde®;, , which measures the  Finally, we would like to point out that the incorporation of
dissimilarity betweens(z) and thekth cluster centroidy, as  local spatial continuity actually takes into account explicitly the
1 spatial dimensionality of the data. Without the local spatial con-
|N— Z [d cAzy + di y( - )\Lg)] (7) tinuity constraint, the FCM clustenng algorithm is obI|v[ous to
Zl yew, the spatial arrangement of the data, i.e., the FCM algorithm just
treats each data point as an independent instance, regardless of
where R, | is the cardinality of the neighborhood configurawhether the data are from two-dimensional (2-D), 3-D, or from
tion, andA(dy,y) = Az y, With ranges between zero and oney-dimensional space. Therefore, the incorporation of local spa-
is the weighting factor controlling the degree of influence of thga| continuity into the FCM algorithm is well justified for data
neighboring voxels(y) € R, on the center voxel , defined by with a dimensionality interpretation such as 3-D MRI data.

1
l+e @m/o

Dy =

A0) = (8) C. INU Bias Field Compensation

The parameters ando specify the displacement affrom zero When a bias field is present, the piecewise constant signal
b B P P " assumption of the MRI data is no longer valid. In view of the MR

and the steepness of the S|gm0|d curve, respe_ct|vely. image formation model of (1), the data should be compensated
The parametef, can be viewed as measuring the averagga
t

“randomness” of the homogeneous region with respect to or the bias field when computing thie, distance between the

chosen neighborhoat, . Assuming that the majority af,, fall dta and the cluster centroids, '@ should be given by
on homogeneous regions, the paramgtean be computed by

1 @2, =, 11
n =m Z Dan () 9 B ) ()
where  8,0(z Z (10) whereb(z) is the estimate for the unknown bias fieid:). Sub-

stituting (11) into (3) (or into (7) if spatial continuity is imposed)
and by incorporating a regularizing term, we can formulate the
Thus, when the difference betweg) and its neighbos(y) computation of the bias field as a variational problem.
is much larger than the average “randomness”, de;» u, However, the variational formulation has several disadvan-
s(z) ands(y) are less likely to belong to the same class, artdges. First, the number of unknowns is equal to the image di-
the influence ofs(y) on the center voxel(z) is suppressed in mension, so the problem becomes computationally very expen-
Dy . B sive. Moreover, the resulting system of equations is not spa-
The steepness parametercontrols the degree of influencetial invariant inb(z), and expensive iterative numerical proce-
of the neighboring voxels on the center voxel. Clearlghould dures such as a multigrid method or a gradient descent method
be chosen such that the clustering results of important imageeeded to reach a solution. Finally, the system of equations is
structures are not smoothed out, i&¢) ~ 1 whend is due ill-conditioned and error prone, making convergence difficult.
to genuine structures, such as region borders or edges, in thinstead of estimating the bias fieldz) in (11) directly, we
image. We determine as follows. From thé),,(z) computed estimate its log-transformation. This results in a simpler ex-
over the image data, we takg equal to the 95 percentile of pression and implementation. Le{z) = log b(_) We model
O (z). Then we let\(9;) = 0.8 and solve forr using (8). the 3-D log bias fieldw(z) as a stack of 2-D spline surfaces
The dissimilarity indexD;. ,, effectively smoothes the cluster{w. (z,y)}, where each of the spline surfaces(z, y) is com-
assignment of(z) by the cluster assignment of its neighboringuted over the 2-D—y plane at the particularindex. Then, we
voxels. Whens(z) is along an edge, its value will be very dif-employ a novel technique that couples the 2-D surfaces together,
ferent from that of its neighbors, reflecting that they are unlikelsuch that they form a smooth 3-D field. This approach reduces

| —| JEN
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computation time significantly, and at the same time producesvith D;, , defined by (7) and (11), subject to
good estimate of the actual 3-D field, as will be shown later.
Specifically, we consider the cubig-spline [23], which has °
a continuous derivative up to the second order. The normalized Z g,z = 1 Ve el (18)
cubic B-spline basisV; 4 with knots\;, . . ., A;14 is given by k=1

. where the first regularizing term is given by

N ' (Ai+j—2)3
Niala)= A=) 12=:0 J P ()\,i+j_;\ri+l> 42 n(w-(z,y)) =

e /] { a2wz<x,y>} " [82w2<x,y>]2+{a2wz<x,y>} } dvdy

2 2
(X *—:L‘)?’: ()\i+j—;1:)3_/ if \it; > ‘ (13) ox oy
S {2 otherwise

The 2-D log bias fieldw. (z,y) at indexz is formed by the and the second regularizing term is given by

tensor products of cubiB-spline bases, i.e., , )
o“w. (x,
. otwsto) = [[[ 2550 doay. 0
z J. zZ
wo(zy) =Y D e Nia(@)Ma(y)  (14)

i=—3j=-3 The first regularizing term of (19) minimizes the thin plate
_ energy of each of the spline surfaces(z,y). Although the
with  the knot sequences {A_3,A_,...,As} and gmaothness of the spline surfage(z,y) can be ensured to
{p—3,p—2,...,un}. The superscriptz on the spline gome degree by using fewer knots in they plane, the incorpo-
coefficients{a7;} denotes that they are for the spline surfacgsjon of (19) further minimizes the variation of the spline sur-
at index z. The spline surfacev.(z,y) is assumed to have ¢ce This is important since we are seeking a smoothing spline
coincident boundary knots, i.e., far dimension spanning grface fitting instead of an interpolating spline surface fitéing.
[a, b] and fory dimension spanning:, d] The second regularizing term of (20) forces smoothness be-
tween slices of spline surfaces. It couples the slices together to
A=Az =Aa=h=a form a smooth 3-D field. The parametgtsnd~y control the fi-
b=MAgt1=Ag12 = Ag43 = Ag14 delity of the fit to the data and the smoothness of the field. Note
fig =f_o = fl_1 = Jig = C that due to the functional representation of the surface using
B-splines, the smooth functionakan be evaluated analytically
during implementation.

With this choice, allB-spline bases vanish outside the region AN Important observation about the objective function (17)
[a,b] x [, d]. Using the local support property; 4(z) = 0 if is that the two regularizing terms only involve double integra-

@ & [\, A\i+a], the tensor produds-splines can be shown to petion over thez—y plan, instead of the usual 3-D triple integra-
o tion [[[ f(-)dzdydz. This formulation allows the spline sur-

N;4(z)M; 4(y) >0for all 2,y € R fac_es to be_estimated slice by sl_ic_e, resulting in great compu-
tational saving without compromising the accuracy of the esti-
mated field, as we will show later. It also ensures that smooth-
(16) nessis forced onto each individual slice, as well as globally over
) ) ) the entire 3-D domain.
Using the tensor product spline representationofz,y),  The necessary conditions for the minimization.bfspc
the computation of the log bias field becomes that of finding th§,er the memberships, .., cluster centroids;, and B-spline
setof5-spline coefficientfa7; }. Letther andy dimensions be ¢oefficientsa?; are obtained by setting the respective first partial

divided intot,. andt, intervals, respectively. Then the number ofjerivatives ot/ spcy to zero while keeping the other variables
B-spline coefficients to be computed(is +3) x (t,+3). Since  onstant.

the log bias field to be estimated is smooth and slowly varying, consider the following Lagrange functional

the number of intervals needed is small. Thus, the number of

unknownB-spline coefficients is much less than the number of <

unknowns in the variational formulation. L(u) = Jasrom(u) + Y 6x <1 -3 ukg) (21)
zel k=1

d =ph41 = ht2 = [bh+3 = [Lhta- (15)

=0 for all z,y & [Ai; Aiga] X [p, j44]-

D. The P-ropFJsed Ad-apt|ve Spatial FCM ) ) whereé is the Lagrange multiplier. Differentiating with re-
The objective function for the proposed adaptive spatial Fc%ect touy, .., Setting the result to zero and using (18) yields
(ASFCM) clustering algorithm is given by -

. ‘[ Di, 1/m—17"1
Tasvort = 3 S uts D + (s (2,)) + (w5, ) Uy = [Z ( Dr ) ] ' 22

1=1
zel k=1

a7 2See [23] for a detail exposition of the two classes of surface fitting problem.
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Differentiating./asrcn With respect tay, and setting the result  To find an expression fo{a -}, we fix uy, , andvy, and dis-

to zero yields, cretize the second regularlzmg term using finite difference, i.e.,
> uflyge // [a%z} ’
" :U—m (23) 922 Y
Z Uk,z
zel = // [Wy—o —4w,_1 + 6w, — 4w, 41 + wz+2]2da:dy. (27)

s(z) s(y)
[)‘gy <%) +(1- )‘g,g) (%)] * Then, differentiating the modifiedasrcy with respect tay;,
YER: = y for a particularw, (z,y), and setting the result to zero, yields
(24) the set of linear equations, shown in (28) at the bottom of the

o ] o ] page, foralp = —3,...,gandg = -3, ..., h, where
In deriving the first derivative off spcn With respect to the

B-spline coefficient§ a;; }, we make two modifications to theL
objective function of (17) The first modification involves ig- (P,4.,7) Z Zuk z Pl
noring the spatial interactions between neighboring voxels. Al-
though it is straightforward to include the spatial influence into . (29)
the derivation, doing so would increase the computation cost ;. _ moalo A

while having negligible effect on the estimation of the bias field. b(p,0)= (w%:el ; U (3(2) = )Ny o () My (y) (30)
This is because the spline surface we are trying to estimate is al- 0 L . 4l =42

ready very smooth, so that the additional noise smoothing effect Da(aij)=ag; " —dag; +6aj; —daji +aj; (31)

offered by the spatial interactions between neighboring voxeC; (9,4, §)= /N- A(2)N, a(z)dz [ M;.a(y)M, 4(y)dy (32)
is insignificant by comparison. T N P PERIETTRA

Ny

where g, :l—

0,4(Y)Nia(z) M; 4(y)
(z,y)el k=1

The second modification is to replace the origidial, of (11) "
by the following expression: - 1P, 0,0, 7)= [Nia(#)Npa(w)d [ Mjaly (y)dy (33)
d3 , = [15(z) — w(z) — o) (25) w2(p,q.0:5)= /Ni_4<w)Np4<w)dx / M; 4 (y) Mg 4(y)dy (34)
wherew(z) is the log bias field3(z) = logs(z) andd, = ws(p,q,i,7)= /N74 N, 4(z)dx /M” YM 4 (y)dy (35)

log vi. This is equivalent to estimating the bias field in the Iog

domain. The replacement df , is valid mathematically since: where the single and double primeAhandM denote first and

1) the variables.;, , andv;, are held fixed when computing thesecond derivatives, respectively. The first curly bracket in (28)
B-spline coefﬂments{a ;15 2) the solutions of of;} are ob- corresponds to the data term, whereas the second curly bracket
tained by a direct Ieast square method mstead of an iterato@responds to the regularizing terms. Unlike the complicated
gradient descent minimization method, where the latter is sdarm of (26), the data term in (28) represents a weighted least
sitive to the expression and initialization. This modification resquare smoothing-spline surface fitting to the residual signal
sults in a much simpler expression for the data term as showrrits(z) = Y-, _; ui",(5(z) — 9x). Note also that the finite dif-
(27)—(29), whereas the origindf . of (11) results in the com- ference of the spline surfaces in (27) becomes the finite differ-
plicated data term involving inverse powers, as shown in (26hce between the spline coefficients in (31).

at the bottom of the page, where (26) is over one slice of theEquation (28) indicates that we are trying to fit a smoothing

B-spline surface. spline surfacev.(z,y) to the 3-D residual signales, (z) be-
—3 _9
c g h g h
DD u [s@) [ DD D aiNia(z)Ma(y) —uks(z) | D Y aiiNia(@)Mja(y) Np.a(z)Mga(y)
(z,y)€l k=1 i=—3j=-3 i=—3j=—3
(26)
g h
Z Z af]LZ(p,q7zaj)_bz(p7q)
i=3 j=-3
g h
+8 > > [Bagi(wi(p, 48, 5)+2wa(p, .4, ) +ws (D, -4, §) +7 D= (i )wo (p, 4,7, 7)) ¢ =0
i=3 j=3

(28)
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tween the actual data and a piecewise constant FCM solutiomatobserved ig€2;. } . Note that due to the use of tensor splines,
a particularz index, i.e., from (28) the double integral in (19) and (20) is separable, resulting in
the separable integrals of (32)—(35), which can be computed
Z [Err.(z,y)]Npa(x) My 4(y) + smooth terms =0 efficiently. The B-spline valuesV; 4(z) can be evaluated in a

(x,y)€l (36) numerically stable way using the recurrence relation
- . Y i .
where the fitting error is given bfrr. (x,y) Nivsa () = T Nii(x) + +l+1 — Nista(o),
, Aigl — A Aigi41 — Aig1
° g 1, ifx e [)\, )"H-l)
Err.(z,y) :Z up'y Z Zai,jNiA(x)MjA(y) —res, (z). N;i(z) = { 0, ¢ [hihis1) (38)

k=1 i=—3j=—3

] ) i (3_7) while the first and second derivatives & 4(z) and M; 4(y)
Sinceres.(z) is obtained by a 3-D FCM-based algorithmq,, pe computed using the following recursion:
it would inherit the within-slice and between-slice continuity

from the 3-D data. Fitting slice-wise smoothing 2-D splinesover () = k{ N; () Nij1.r(z) } (39)

the residual would therefore not incur significant discontinuity ikt 1\
between slices, even without the second regularizing term of

(20), as we have observed experimentally. Nevertheless, (20YVith L. and{€2;.}, the setofg+4) x (h+4) equations from
explicitly forces the stack of spline surfaces to be smooth ov&$8), ignoring the second regularizing term, can be expressed in
the z direction. Another computational advantage of being abfgatrix notation

to identify the residual signaks. (z) in the formulation is that

local smoothing in the: direction can be applied tees.(z), A0, =b; (40)
such that the iterative procedure we used to enforce (20) ca

converge faster. We note that (26) does not allow such simﬁfYEereAz is the(g +4) x (h +4) by (g +4) x (h + 4) sparse

interpretation and manipulation, since no such residual sig%?mx given byL, + B + 2Q; + Qs), 6. is the vector of

Aitk = A Aidk+1 — Aig1

can be easily identified in (26). The “residual signal fitting b spline coefficients{afj} arranged using the ordering and

smoothing splines” interpretation of our INU correction metho _|rshthe \I/eftortobZa(;ned frk()) m SO) usdlr;)g the orldertnlg d
also allows the procedure to be used as an efficient bias fiel 't'e S0 g\'/og 02(4 )Acl'in er(])A aine y"smgfufalrlva UIS tﬁcom-
estimation technique in data preprocessing [7]-[9], [11]-[1 sition ( ) [24]. ougnd. 1S usually of full rank, the

independent of the FCM discussed here, prior to applying an D\;V'" [_)rrr(])wds_lqtmtmlrrginj norm s_olutlon whed, :st(;losg to
of the existing segmentation methods. singular. The ability to obtain a minimum norm solution is very

useful in near singular situation, whereby small perturbations
due to noise or rounding error could be greatly amplified and
rendered the solution useless. THespline coefficienty a};

To compute the spline coefficientsa?;}, we proposed are obtained as
a novel two-stage algorithm. In the first stage, the second
regularizing term of (20) is ignored. The bias field is estimated 0.=VSTU"b, (41)
slice by slice, with no explicit coupling between adjacent slices
of spline surface. In the second stage, an iterative procedif@ereS™ is a diagonal matrix with diagonal elements given
is used, whereby the previously computédt;} is updated by the reciprocal of that ity if it is greater than a small tol-
iteratively, taking into account the explicit coupling betweefrance, or zero otherwise, ahdandV” are column orthogonal
adjacent spline surfaces resulting from the second regularizffad square orthogonal matrices, respectively.
term of (20).

IV. IMPLEMENTATION

B. Iterative Update of Spline Coefficients
A. Slice-Wise Spline Surface Computation Let us define the quantity’ , as

As the resultant system of equations is linear, thapline .
coefficients{a;}; } can be solved efficiently using the direct least, - 1 a4l 29 a4D o
squares az{prc;;ch. By using the ordering (p + 3) x (h + Pa~ 7 Z Z (4o o™ —a; " ~afP)wo(p, ¢, .)-
4)+ (g+4) andu = (i + 3) x (h+4) + (j + 4), we rearrange mmsiEe (42)
L:(p,q.1,5), wk(p, q,1,5), k = 1,2, 3, into square matricds,  Then, (28) can be written in matrix form as
and{Q;.} with indicest andu. Wheng = h, i.e., the number
of knots in ther andy dimensions are equal, is a symmetric [A. 4+ 67Q0]0. =b. + c. (43)
matrix with L. = LT. Hence, not all elements ih. need to
be computed. In addition, using the local support property wfhereQ, andc, are obtained in a similar way a%, andb..
(16), the summations in (29) can be restricted to be over a sadjuation (43) forms the basis of our iterative procedure for up-
region in the image domain, instead of over the entire imagating the spline coefficient§a;;}, wherec; , is computed
dimension. The matrice2; } need to be calculated only onceusing the spline coefficients found during the previous itera-
since they do not change during the FCM iteration. When thien. Unlike (40), (43) explicitly constrains the stack of spline

2 andy dimensions of the image are equal, symmetry can alsarfaces to be continuous over théirection. We have chosen
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v = 2 x 10* in (43) in our experiments and found it to workcluster centroids. When such knowledge is not available, the

well. initial centroids can be estimated as follows. For scalar data,
Note that the bracket term ahdin (43) do not change in the we compute a smooth histogram of the data and use thest

iterations. Also )y can be precomputed, and there is no negatominent peaks as thecluster centroids. For vector-valued

to explicitly evaluate the spline surfaces during iterations sindata, we compute the smooth histogram for each dimension,

only the spline coefficients are involved in the update, but not tlsed record the location of the prominent peaks that are above

actual spline surfaces. In addition, the small size of the matrix@ncertain threshold. The intersections of these locations specify

(43), due to the use of a small number of spline intervals, makib® possible concentration of data in the multi-dimensional

it very fast to compute. space. The data density within a local region around these
The two-stage algorithm allows fast computation of a smoothtersections is computed, and theintersections with the

3-D field. If we were to compute a true 3-D tensor spline fieldhighest data density are chosen asdirétial cluster centroids.

the computation involved in evaluating (29) will be prohibitive, The procedure for carrying out adaptive spatial FCM segmen-

since it cannot be evaluated in a separable form in each of tadon of MR images can now be stated as follows.

z, y andz dimensions due to the weight tef; _, u7*, [23].

To i[lustrate,.we Igt the ngmber of splipe intgrvalé_beind Adaptive Spatial FCM Segmentation

the image c_j|m_enS|on be: in all t_hree c_j|men5|ons. A _rough 1) Set the number of clusters c. Set

calculation indicates that each dimension would require=

h h m = 2. Choose a value for the spline
(4 k111)/3 unit of comput2er operatiorfsFor 2D the numbeg of  <moothness weighting coefficient 3. Set
operations would bgop)®, whereas for 3-D, it would b&p)°.  the number of splines knots in the + and

If we let k = 3 andm = 180, thenop = 720, and the number y dimensions. Set the maximum number of
of operations in 3-D is therefore 720 times that of 2-D. FOr giarations ITMAX. Initialize the log bias
stack of 2-D spline surfaces of size 247181x 181, typical  q|q {w.(z,y)} to zero.
computer time for evaluating (29) on a Pentium-4 2 GHz PC'5 Obtain initial estimates of the cluster
around 10s. This would increasexo2 h for the true 3-D spline  cantroids v, as outlined above.
case, which would make the algorithm impractical for 3-D ar;) Compute A, using  (8) —(10) .
plications. In contrast, the novel two-stage algorithm takes ) compute the??iinitial membership for
overall time of around 15 s for computing the spline coef‘ficientsevery voxel using 22) .
with the number of iterations on (43) set to 500. 5) Compute the regularizing matrices

With the B-spline coefficients obtained from (43), the Q=0 +20+ Q3 and Qp using (32)—(35)
B-spline surfacew,(z,y) can be obtained by evaluating (14)6) Repeat for ¢ = 1 to ITMAX or until max-
at every location4, y). The INU compensated MR image can j,um change in membership value is less
be obtained by dividing(z) by the exponential of the log bias han a small threshold of 0.005:

field w. (z,y). ) ) o i) When t > 1 AND the maximum change
The 3-D local spatial neighborhood that we used in this work, membership value is less than 1/(2¢)

is a 3-D six-point neighborhood and is given by tNg neigh- 4y p {w.(z,y)} is not updated during the
borhood on the plane, i.e., north, east, south, west of the centglg; iteratio/n, updates the {w.(z,y)} by
voxel, plus the voxels immediately before and after the Ce”teéolving, for every slice of B—splin'e
voxel. _ o _ surface in the z direction, the B-spline
During updating of the bias field, the membership values and ) officients {a3.} using the two-stage al-
cluster centroids of the data are fixed. When the membershi@orithm_ ”
values and cluster centroids are still changing rapidly betweem Update the fuzzy cluster centroids
FCM iterations, the bias field cannot be updated in a stablgsing (23) .
manner. Therefore, we update the bias field when Ehg i) Update the membership values using
change in membership value between two iterations is less th 52)
1/(2¢), wherec is the number of clusters in the data. The biaf,.) Perform a final hard classification by
field is also held fixed at least once between two successivgssigning the data to the cluster with
iterations to allow the updated results to propagate sufficiently,o highest membership value.
to the membership update and centroid update steps.
We initialize the ASFCM by specifying the initial locations
of the cluster centroids. Like the conventional FCM, the V. MR BRAIN IMAGE SEGMENTATION

ASFCM iterates to the final solution by a local optimization The a|gorithm is imp|emented in C and tested on both simu-
of the objective function (17). Hence, proper selection of thgted 3-D MR images obtained from the BrainWeb Simulated
initial cluster centroids will generally improve accuracy an@rain Database at the McConnell Brain Imaging Centre of
convergence. Whenever the values of the true tissue clg@ss Montreal Neurological Institute (MNI), McGill University

intensities are approximately known, they can be used as iniigh]-[28], and on real MRI data. Simulated brain data of

. . ) varying noise and INU levels are used to perform quantitative
3We do not differentiate the type of computer operation here. One operation

could involve several logical and arithmetic operations. Our purpose here isat§sessmem of the proposed algorithm since ground FrUthS are
illustrate the additional computer time in going from 2-D to 3-D. known for these data. In these data sets, the INU artifact was
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(b) ©

Fig. 1. A slice of the simulated 3-D brain image from MNI £ 60). (a) True model. (b) Image corrupted with noise and INU artifact. (c) The corresponding
bias field.

@ (b)

Fig. 2. Segmentation result for the MRl image of Fig. 1(b). (a) The segmentation using the proposed algorithm. (b) The recovered bias field nf@ntaigoseg
using the conventional FCM algorithm.

produced by multiplying the simulated MR image by a bias
field recovered from an actual MR scan according to the image
formation model of (1¥. Extra-cranial tissues were removed
from all images prior to segmentation. For real data, this can a )‘
be done using any of the techniques reported in the literature 4
[32]-[36]. Fig. 1 shows a slice of the simulated MRI brain data, Y
taken atz = 60. The brain image of Fig. 1(a) was generated
based on a discrete anatomical normal brain model, and serves
as the true model. The image of Fig. 1(b) was simulated from
the true model with the following setting$; modality, ICBM
protocol [29], slice thickness of 1 mm (hm? voxels), 3% @ ()

noise level and 40% INU. Fig. 1(c) shows the actual bias fielig. 3. Segmentation result for the slice near the base of the brain %5).
that produces the INU artifact. It was obtained by solving) True model. (b) Segmented result.

for (1), using the noise-free, INU artifact-free data and the

noise-free, INU affected data, obtained also from MNI. Fig. 2(b) shows the recovered bias field, which resembles very

The number of tissue classes in the segmentation was segltsely the actual bias field of Fig. 1(c). In comparison, we also
three, which corresponds to gray matter (GM), white mattehow in Fig. 2(c) the segmentation by the conventional FCM al-
(WM) and cerebrospinal fluid (CSF). Background pixels are igyorithm, whose accuracy is severely affected by noise and INU.
nored in the computation. For all the segmentation experimentsie results clearly indicate that the proposed algorithm is able
the default parameter values used are:= 2, 3 = 5000, to compensate for noise and INU artifact in the input image.
number of spline intervals in the andy dimensionspz = Figs. 3 and 4 show the ground truth and the segmentation re-
ny = 2, maximum number of iterationsI'M AX = 50. The sult for slices taken at = 35 (near the base of the brain) and
algorithm usually converges in around 6-7 iterations. For the= 140 (near the top of the skull), respectively. Although they
simulated 3-D MRI brain image of dimension 2¢7181x 181 are more difficult to segment than slices from the center of the
[row (y) x column () x depth )], the total computation time brain, the results show that accurate segmentation can still be
is around 1.5-2 min on a Pentium 4 2-GHz PC. achieved.

Fig. 5(a) shows an across-slice view of the actual bias field,
taken aty = 110, for the same data set. Fig. 5(b) shows the esti-

Fig. 2(a) shows the segmented image. The segmentation ozated bias field taken at the same location. As can be seen, the
be observed to correspond well to the true model in Fig. 1(&stimated bias field has captured accurately the intensity inho-

. __ ) mogeneity across slices without exhibiting between-slice dis-
4This was done by MNI. However, we have verified experimentally, through

the computation of the actual bias field shown Fig. 1(c), that they actually us@@minmty in 5pi.te of the modeling of the 3-D bia_-s_ field by a
the multiplicative model of (1) in simulating the INU artifact. stack of 2-D spline surfaces. The second regularizing term of

A. Visual Evaluation
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Fig. 4. Segmentation result for the slice near the top of the skutt (140). % }\'." ¥
(a) True model. (b) Segmented result. '
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Fig. 6. Mean intensity value of WM as a function sfcoordinate, from the
base of the brain to the top of the brain. The dashed line is for the uncorrected
data {NU = 40%); the solid line is for the INU corrected data. The dotted line

is for the data with no INU.

TABLE |
MISCLASSIFICATION RATE FOR DIFFERENT INU CORRECTION AND
SEGMENTATION METHODS AT DIFFERENTINU L EVEL

(@ (b)
Fig.5. (a) Actual, and (b) computed bias field fpe= 110. Thex coordinate Method 0% INU 209 INU  40% INU
increases from left to right and thecoordinate increases from bottom to top. FCM 3988% 5450%  9.016% -
FM-AFCM | 4171%  4322%  5065%
TM-AFCM | 4.168%  4322%  4.938% !
(20) has successfully constrained the estimated 3-D field to be EM1 6344% 7591 %  13.768 %
smooth in the: direction. To show the effectiveness of the bias EmMz2 4242%  5638%  9.604% :
. . . . 4 g 0 50 oy i
correction method, Fig. 6 shows the mean intensity value of the Mﬁ%‘&i ig;g i 1;23 7 2?;‘5‘ %
H H i1- L 70 . ) 3, o
WM from the base of the brain to the top of the brain. The uncor Proposed | 3717%  3676%  3832%

rected data with 40% INU (dashed line) shows significant vari-
ation in intensity value whereas the INU corrected data (solid
line) has a more uniform WM intensity value. For comparisoonventional FCM algorithm. FM -AFCM and TM-AFCM
the WM mean intensity value for the data with no INU (dottedenote the full multigrid adaptive FCM algorithm and the
line) is also shown. Besides a constant offset, the remarkatigncated multigrid adaptive FCM algorithm, respectively [15].
similarity in the shape of the two curves indicates that INU hasv1 and EM2 denote the unsupervised EM algorithm for finite
been correctly compensated for. Note that the mean intensigussian mixture models, where EM1 refers to the standard
value for the data with no INU is not a constant straight lingnodel and EM2 refers to the model where variances and
This is due largely to partial volume effect, where a voxel igixture coefficients of the Gaussian components are assumed
partially shared by two or more tissue types. This phenomenegual [30]. AMRF denotes the adaptive Markov random field
is particularly noticeable at the two extremes of the brain, whesggorithm [31], [32]. MNI-FCM denotes the method where
boundaries between tissue types become less defined. The gie-N3 inhomogeneity correction technique [9] from MNI is
posed algorithm is also able to correctly take that into accousplied first, followed by FCM segmentation.

as reflected in the closely matched shape around the two endgrom Table |, we see that the MCR generally increases with

of the curve. an increase in the INU level. Also, our method has significantly
better performance than other methods and is more robust to
B. Quantitative Evaluation increased inhomogeneity. For the 40% INU level, our method

For a quantitative evaluation of the performance of th@ows animprovement of 58% over the FCM method, 24% over
algorithm, we compute the misclassification rate (MCR) for tn&€ FM -AFCM method, 22% over the TM-AFCM method, 72%
segmentation of the simulated MRI dat (veighted, Imm?® ©Over the EM1 method, 60% over the EM2 method, 44% over the

voxels, 3% noise) with varying level of INU inhomogeneity®MRF method and 32% over the MNI-FCM method.

(i.e., 0% INU, 20% INU, 40% INU). The MCR is defined as the We also compare our results with the results obtained by
number of pixels misclassified by the algorithm divided by th&'® EM-MRF algorithm of Leempugt al. [39], [40]* In the
total number of pixels in the image. For comparison, we quotM-MRF algorithm, the MRI brain tissue classes are modeled
f[he MCR of the different INU estimation algorithms as reported spgynioaded  from  hitp:/bilbo.esat. kuleuven.ac.be/web-pages/down-
in [15]. The results are presented in Table I. FCM denotes tlads/ems/ems.html
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TABLE I
COMPARISON BETWEEN OURALGORITHM AND THE EM-MRF ALGORITHM: IN TERMS OFOVERLAP METRIC (IN %) FOR DIFFERENT TISSUE CLASS, AND THE
MCR (IN %), FOR DIFFERENTINU LEVEL. “NO MRF” DENOTES THEEM-MRF ALGORITHM WITHOUT MRF REGULARIZATION, “WITH
MRF” DENOTES THEEM-MRF ALGORITHM WITH MRF REGULARIZATION

0% INU 20 9% INU 40% PU
our ne with our 0 with our o with
. #lgotithm MRF MRF | algorithm MRF = MRF | algorithm MRF = MRF
W 96.44 93170 9331 896,62 93.52 93153 96.59 9349 9313
GM 9387 9.3 9212 96,02 9395 &1.81 95,97 9339 91.24
CSF 46,68 86.67 8503 56,67 87.17 8537 96.61 860.66 3533
GM+WM 9922 98.98 9797 99.22 9901 §7.73 99.20 08,98 9752
MCR (%) 3717 9294 11810 3676 9224 12002] 3832 6459 12.357

as finite Gaussian mixtures with Markov random field regular- TABLE I
ization and digital brain atlas initialization, and the bias field is M!SCLASSIFICATION RSTIFEFE‘;EJT”;_?QE’";LDASTEASSET REFORMATTED AT
modeled as a fourth order least square polynomial fit. For the

EM-MRF method, we calculated both the MCR and the overlap COOYHINU 20%INU 409 INU
metric [41]. The overlap metric is define ag~ /(VF + VF), Transverse slices -~ 3717%  3.676%  3.832%
where V¥ denotes the number of voxels assigned to class Coronal shees .+ 3.825%  3.823%  4.065%

Sagittal slices ~ 3.815% 3.802 % 3879 %

by both the ground truth and the algorithivj* and V* de-
note the number of voxels assigned to clads/ the algorithm
and the ground truth, respectively, for the three tissue classes. TABLE IV /
The overlap metric attains the value of one if both segment%'—saﬁi??ﬁf,'\,%mﬁféf SAPEL;,';C,L'SSRS:LEEG%JWR'ZAT,'CLN»PARAM4ETER 7
nr WITHy =2 X 10
tions are in full agreement and zero if there is no overlap at all.
We run both our algorithm and the EM-MRF algorithm on th| mx i 5 3 4 5
three simulated MRI datasets. The comparison results are t _ f ™. )
ulated in Table Il. For the EM-MRF algorithm, we used tw¢ 3 X107 | 3.779% 3834 % 3862% 3.945% 3.917%
different settings: one with MRF regularization and the othe 4xi0* | 3.780% 3.8349% 3941% 3.928% 3.923%
one without MRF regularization. The results show that our & 3 X_wz 3.780 Z" 3.832 z° 3.852 z" 3’?1? Z" 3'941 z“
gorithm has performed well over all three tissue types compar gzig% i;?} ;Z :gz 0’;‘ igg D: z;gi “2 23“,;5 DZ
to the EM-MRF algorithm, even though the EM-MRF algorithn—~ e e T e T o S
uses a prior classification derived from a digital brain atlas that
Eggtg‘;nésslgagﬂly;ﬁy\;c& prior prObabi“ty maps for the IocaMISCLASSIFICATION RATE AS A FIﬁE‘hEN\éF REGULARIZATION PARAMETERS
) ) : 3 AND v WITH na = 2

Itis also remarkable that the performance of our method, even ’
at 40% INU, is still better than the FCM method at 0% INU. ~_ »
Our method has a slightly inferior performance at 0% INU tha___ 8 ~
at 20% INU. This is due to the additional degree of freedor 3x10° | 3.835% 3.834% 3.834% 3.834% 3.835%
associated with the bias field. This effect is also observed 4x10° | 3.835% 3.834% 3.834% 33834% 3.834%
the MNI-FCM method. One can easily reduce the error by ir > X10° | 3.833% 3.833% 3832% 3832% 3833%
creasings if the amount of inhomogeneity is known to be low. 2383 ;gzz 0 ;gzz o ;SZ o ;gzz 02 ggzz o
It is interesting to note that at 0% INU, our method, with the ac—— — — — : —
ditional degree of freedom, still performs better than the FCM
method. This is due to the spatial continuity constraint in our As a mean of quantitatively validating the two-stage approach
algorithm, which smoothes out noise and reduces classificatiti 3-D bias field estimation for slices taken at different planes,
ambiguity. To see the advantage of incorporating the spatial cave computed the MCR for the same dataset (which is originally
tinuity constraint, we set the bias field in our algorithm to zerth transverse slices) reformatted as coronal slices and sagittal
and carried out the segmentation on 0% INU data with just tiséces. The results are presented in Table Ill. The results show
spatial continuity constraint. The MCR for this case is 3.474%)at the two-stage approach for estimating the 3-D bias field is
an improvement of over 13% over the FCM method. If we jusfsensitive to the slice plane. We remark that if the bias field
have the bias field correction but not the spatial continuity cogstimation is required to be totally invariant to the slice plane,
straint, we get an MCR of 4.003% at 0% INU, which is inferiopne possible approach is to compute a bias field for each slice
to the FCM method, as expected. The difference, however,pine, and then average the three bias fields to get the slice-plane
small, indicating that our method performs well on images #fvariant bias field in each iteration.
varying inhomogeneity, without the need for tedious adjustment
of the regularizing parameters. The advantage of having a nofse
smoothing property is also observed in the AMRF method atTable IV shows the MCR after applying the proposed
0% INU, which has a slightly better performance than the FCISFCM algorithm to the simulated data setifim?® voxels,
method. 3% noise, and 40% INU) when varying the regularizing

1x10* 1.5x10*  2x10*  2.5x10*  3x10°

Variation of Algorithmic Parameters
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Fig. 7. Segmentation of real MRI image. (a) Original image. (b) INU corrected image. (c) Proposed ASFCM segmentation. (d) FCM segmentatioat€e) Estim
bias field. (f) Intensity histogram before (dashed line) and after (solid line) INU correction.
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Fig. 8. Segmentation of another real MRI image. (a) Original image. (b) INU corrected image. (c) Proposed ASFCM segmentation. (d) FCM segeentation. (
Estimated bias field. (f) Intensity histogram before (dashed line) and after (solid line) INU correction.
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parameterd and the number of spline intervals, while settinghe proposed algorithm is insensitive to the parameter settings.
v = 2 x 10%. As can be seen, the algorithm is insensitive tBinally, we observe that the different parameter combinations
both parameters. The bias field can adequately be modeledibyables IV and V all have an MCR of less than the seven other
B-spline surfaces with very few intervals since the bias fielohethods we compare in Table | (see last column in Table I),
is knowna priori to be smooth. We observe that fewer splinand even the FCM at 0% INU, indicating the robustness and
intervals generally give better results. This can be explainefficacy of our algorithm.

by the fewer degree-of-freedom, which implicitly imposes

a strong constraint on the smoothness of the spline surfabe. Performance on Actual MRI Data

Nevertheless, if the bias field were known to have large spatialFigs. 7 and 8 show one slice of the segmentation results for
variation, more spline intervals would be needed to ensure @& realT; -weighted MR images using the proposed algorithm.
adequate fit. Even sapline intervals = 2 ~ 5 would suffice Figs. 7(a) and 8(a) are the original images. Figs. 7(b) and 8(b)
in most cases. Table V shows the MCR when varythgnd are the INU corrected images. The INU artifact has largely been
v, while setting the number of spline intervals to two. Agairsuppressed and one can see a fairly uniform image compared
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to the original image. Figs. 7(c) and 8(c) show the segmenta{7]
tions using our method. Figs. 7(d) and 8(d) show the segmenta-

tions using the FCM algorithm. Visual inspection shows that our g

method produces better segmentations than the FCM algorithm.
In particular, the GM and WM in the top region of both images

can be better separated by our method. Figs. 7(e) and 8(e) sho

the estimated bias fields. The bias field has successfully cap-
tured the different shading in the original images. Figs. 7(f) and0]
8(f) show the intensity histogram of the slices before and after
INU correction. One can see that there is less spread in the hig;
togram after INU correction. Also, the two prominent peaks,

which correspond to the GM and WM are sharper and better re-
solved in the INU corrected images.

(12]

VI. CONCLUSION [13]

We have presented an adaptive spatial FCM segmentation qh]
gorithm that takes into account a local spatial continuity con-
straint, as well as the suppression of the INU artifact in 3-D

MR images. The algorithm employs a novel dissimilarity index!1®

that considers the local influence of neighboring pixels in an
adaptive manner. If the neighborhood window is in a nonho{16]
mogeneous region, the influence of the neighboring voxels on
the center voxel is suppressed; otherwise, the center voxel E§7]
smoothed by its neighboring voxels during membership and
cluster centroid computation. To suppress the INU artifact, a
multiplicative MR image formation model is used. The estima- 18]
tion of the 3-D multiplicative bias field is formulated as the esti-
mation of a stack of 2-D smoothing spline surfaces, with conti-

nuity enforced across slices, minimizing the 3-D residual signa[l1

between the actual data and a piecewise constant FCM solution.
The B-spline coefficients of the spline surfaces are obtained by20]
a computationally efficient two-stage algorithm. Extensive ex-
periment results and comparative studies with several existing,;
methods on the segmentation of both simulated and real MR

brain images illustrate the effectiveness and robustness of 0u2r2
algorithm. [
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