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An Adaptive Spatial Fuzzy Clustering Algorithm for
3-D MR Image Segmentation

Alan Wee-Chung Liew*, Member, IEEE,and Hong Yan, Senior Member, IEEE

Abstract—An adaptive spatial fuzzy c-means clustering algo-
rithm is presented in this paper for the segmentation of three-di-
mensional (3-D) magnetic resonance (MR) images. The input im-
ages may be corrupted by noise and intensity nonuniformity (INU)
artifact. The proposed algorithm takes into account the spatial con-
tinuity constraints by using a dissimilarity index that allows spa-
tial interactions between image voxels. The local spatial continuity
constraint reduces the noise effect and the classification ambiguity.
The INU artifact is formulated as a multiplicative bias field af-
fecting the true MR imaging signal. By modeling the log bias field
as a stack of smoothing -spline surfaces, with continuity enforced
across slices, the computation of the 3-D bias field reduces to that
of finding the -spline coefficients, which can be obtained using a
computationally efficient two-stage algorithm. The efficacy of the
proposed algorithm is demonstrated by extensive segmentation ex-
periments using both simulated and real MR images and by com-
parison with other published algorithms.

Index Terms—Adaptive spatial fuzzy clustering, intensity
nonuniformity correction, MR image segmentation, spatial
continuity constraint, spline approximation.

I. INTRODUCTION

A N IMPORTANT first step in image analysis is image seg-
mentation, or separation of the input image into mean-

ingful regions. In medical imaging, this could involve organ de-
tection or tissue characterization. A commonly used image seg-
mentation method is the fuzzy c-means (FCM) clustering algo-
rithm [1]–[4], which assigns pixels in the image into different
classes according to their features.

In image segmentation, we expect the pixels in the same class
to have similar pixel values independent of their locations. How-
ever, in magnetic resonance imaging (MRI), inhomogeneity in
the magnetic field usually give rises to the so-called intensity
nonuniformity (INU) artifact [5]. This common artifact exhibits
itself as a smooth, slowly varying change in image pixel values
and could have adverse effect on the performance of intensity-
based automatic segmentation methods [37], [38]. In addition
to intensity variation due to field inhomogeneity, there may be
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a lack of tissue specific meanings for MRI intensities within
scans, even for the same patient obtained on the same scanner
using the same protocol. Data preprocessing using a tissue in-
tensity calibration procedure as proposed in [6] prior to the seg-
mentation process would ensure a more accurate segmentation.

Besides INU artifact, issues such as poor contrast and
imaging noise also make accurate segmentation difficult. In
addition, many pixels in a real image are ambiguous and cannot
be classified consistently based on feature attributes alone.
In an image, pixels of the same object usually form coherent
patches. Thus, the incorporation of local spatial information in
the clustering process could filter out noise and artifacts and
reduce classification ambiguities.

Several methods have been proposed to correct the INU ar-
tifact [7]–[15], [30]–[33]. In [7], [8], and [11], a polynomial
surface and a thin-plate spline surface are used to approximate
the bias field associated with the INU, respectively. In [9], the
bias field for the INU is estimated by sharpening the image his-
togram in an iterative process. In these methods, after correcting
the INU artifact, the MR image is then segmented using an al-
gorithm that assumes that the inhomegeneity is not present. In
[12], [13], and [33], the bias field is estimated by homomorphic
filtering. In [10], the problem of estimating the bias field is cast
in a Bayesian framework and the EM algorithm is used to esti-
mate the inhomogeneity and the tissue classes. In [39] and [40],
the MRI brain tissue classes are modeled as finite Gaussian mix-
tures with Markov random field regularization for contextual in-
formation anda priori digital brain atlas initialization, whereas
the bias field is modeled as a fourth order least square polyno-
mial fit. A method of estimating the INU based on fuzzy clus-
tering has been reported in [15], where intermediate segmenta-
tion results are utilized for the INU estimation. The method uses
a modified FCM cost functional to model the variation in inten-
sity values via a multiplicative bias field applied to the cluster
centroids. The computation of the bias field is formulated as a
variational problem and the bias field is estimated at every voxel
using a multigrid algorithm.

Many attempts have also been made to introduce spatial con-
text into the classification and segmentation procedures. One
popular approach is the relaxation labeling method [16]–[18].
However, relaxation labeling requires the initial labeling prob-
abilities of each pixel to be available. In [19], a spatial conti-
nuity constraint is incorporated into the fuzzy clustering algo-
rithm by either the addition of a small positive constant to, or
subtraction of a small positive constant from, the membership
value of the center pixel in a 3 3 window. The decision de-
pends on whether the optimal cluster assignment for the pixel
in the 8-neighborhood is the same as, or different from, that

0278-0062/03$17.00 © 2003 IEEE
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of the center pixel. Recently, a supervised segmentation tech-
nique using the idea of fuzzy-connectedness has been proposed
in [21] and [22], which take into account pixel affinities and
spatial continuities using the notion of fuzzy “hanging togeth-
erness.” Given some prelabeled pixels from each of the object
classes, the fuzzy-connectedness map of pairs of pixels is com-
puted. The segmentation can then be obtained by appropriate
thresholding of the fuzzy-connectedness map.

In this paper, we proposed an FCM-based algorithm that ad-
dresses both the INU artifact and the local spatial continuity. Our
method incorporates the local spatial continuity into the clus-
tering algorithm using a dissimilarity index [20], in place of the
usual distance metric. The log of the three-dimensional (3-D)
multiplicative bias field is modeled by a stack of smoothing

-spline surfaces and estimated by an efficient two-stage al-
gorithm. Although the method in [15] is also FCM-based, our
approach is different in several aspects. First, the bias field is
derived according to the commonly used multiplicative model
[7]–[11], [14]. Second, the 3-D log bias field is modeled as a
stack of smoothing -spline surfaces, instead of the solution to
a variational problem. Finally, the spatial continuity constraint
is taken into account in our fuzzy objective function. Extensive
experiments using both simulated and real MR brain image data
show that the proposed algorithm can suppress INU and noise
to produce good segmentation results.

II. PROBLEM FORMULATION

The task of 3-D MR image segmentation involves the sepa-
ration of image voxels into regions comprising different tissue
types. Let be the 3-D image coordinate of a voxel.
We assume that each tissue classhas a specific value , that
is, a quantity being measured. Then, the ideal signal would
consist of piecewise constant regions,1 each having one of the

values. However, imperfection in the magnetic field often in-
troduces an unwanted low frequency bias term into the signal,
which gives rise to the INU artifact. The bias field that gives
rise to the INU artifact in an MR image is usually modeled as a
smooth multiplicative field. This model is widely used [7]–[11],
[14] and is consistent with the spatial inhomogeneity arising
from the variation in the sensitivity of the RF coils and the
nonuniform excitations. The image formation process in MRI
can be modeled as

(1)

where is the measured MR signal, is the true signal
emitted by the tissue, is the unknown smoothly varying bias
field, and is an additive noise assumed to be independent
of . Accurate segmentation of an MR image thus involves
an accurate estimation of the unknown bias field and re-
moving this bias field from the measured MR signal. Using the

1In practice, the limited resolution of the imaging device leads to blurring
along border regions between tissue classes, i.e., the partial volume effect. How-
ever, this effect is confined to the border regions, in contrast to the more global
INU artifact.

estimated , the log-transformed true signal can be recovered
as

(2)

III. M ETHODS

A. Conventional FCM Segmentation

The FCM clustering algorithm assigns a fuzzy membership
value to each data point based on its proximity to the cluster
centroids in the feature space [1]. Let be the set
of feature vectors associated with a 3-D image defined in the
domain . The conventional FCM algorithm is formulated as
the minimization of the objective functional with respect
to the membership values and cluster centroids

(3)

where the matrix is a fuzzy c-partition of ,
is the set of fuzzy cluster centroids,

is the fuzzy index, is the total number of clusters,
and gives the membership of pixel in the th cluster

. Using the Euclidean norm, the distance metricmeasures
the vector distance of a feature vector from a cluster centroid
in the feature space, i.e.,

(4)

The FCM objective function is minimized when high mem-
bership values are assigned to that are close to the cen-
troid for their particular class, and low membership values are
assigned when they are far from the centroid. Letting the first
derivatives of with respect to and equal to zero yields
the two necessary conditions for minimizing . The FCM
algorithm proceeds by iterating the two necessary conditions
until a solution is reached. After FCM clustering, each data
sample will be associated with a membership value for each
class. By assigning the data sample to the class with the highest
membership value, a segmentation of the data can be obtained.

In the conventional FCM formulation, each class is assumed
to have a uniform value as given by its centroid. Each data point
is also assumed to be independent of every other data point and
spatial interaction between data points is not considered. How-
ever, for image data, there is strong correlation between neigh-
boring pixels. In addition, due to the INU artifact, the data in
a class no longer have a uniform value. Therefore, to produce
meaningful segmentation, the conventional FCM algorithm has
to be modified to take into account both local spatial continuity
between neighboring data and INU artifact compensation.

B. Incorporation of Local Spatial Continuity

The incorporation of local spatial continuity considers the in-
fluence of neighboring voxels on the center voxel of interest
during classification [20]. Let denote a chosen 3-D local
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neighborhood configuration with respect to a center voxel.
If the voxels in and the center voxel belong to the same
class, then should be smoothed by the clustering results of
its neighboring voxels so that they all eventually have high and
similar membership values in one of the clusters. This is done

as follows. Let denote the distance
between vectors and . For every voxel in the 3-D MR
image, we compute the following distances

(5)

(6)

where is the neighborhood of and is the centroid of
the th cluster. Now, if the distance is small, we would like

to be greatly influenced by . Otherwise, should
be largely independent of . Taking all voxels in into ac-
count, we define a dissimilarity index which measures the
dissimilarity between and the th cluster centroid , as

(7)

where is the cardinality of the neighborhood configura-
tion, and , with ranges between zero and one,
is the weighting factor controlling the degree of influence of the
neighboring voxels on the center voxel , defined by

(8)

The parametersand specify the displacement offrom zero,
and the steepness of the sigmoid curve, respectively.

The parameter can be viewed as measuring the average
“randomness” of the homogeneous region with respect to the
chosen neighborhood . Assuming that the majority of fall
on homogeneous regions, the parametercan be computed by

(9)

(10)

Thus, when the difference between and its neighbor
is much larger than the average “randomness”, i.e., ,

and are less likely to belong to the same class, and
the influence of on the center voxel is suppressed in

.
The steepness parametercontrols the degree of influence

of the neighboring voxels on the center voxel. Clearly,should
be chosen such that the clustering results of important image
structures are not smoothed out, i.e., when is due
to genuine structures, such as region borders or edges, in the
image. We determine as follows. From the computed
over the image data, we take equal to the 95 percentile of

. Then we let and solve for using (8).
The dissimilarity index effectively smoothes the cluster

assignment of by the cluster assignment of its neighboring
voxels. When is along an edge, its value will be very dif-
ferent from that of its neighbors, reflecting that they are unlikely

to belong to the same class. Hence,will be large and
for all its neighbors. In this case, i.e., neighboring
influence is turned off. When falls on a step boundary, is
only affected by those neighboring voxels in the same class (i.e.,
neighboring voxels on the same step level as ). When
is on a smooth region and is affected by all its neighbors, the in-
fluence of each neighbor on is affected by the distance
between them, i.e., the distance , through the weighting .
Hence, enables spatial interaction between neighboring
voxels and is adaptive to image content.

The spatial continuity constraint also has a noise suppression
capability due to the adaptive smoothing operation. Random
noise would either increase or decrease the distance of the center
voxel and the distances of its neighbors to the cluster centroids
randomly. When the weighted average of these distances, i.e.,
(7), is taken, the effect of random noise is smoothed out.

Finally, we would like to point out that the incorporation of
local spatial continuity actually takes into account explicitly the
spatial dimensionality of the data. Without the local spatial con-
tinuity constraint, the FCM clustering algorithm is oblivious to
the spatial arrangement of the data, i.e., the FCM algorithm just
treats each data point as an independent instance, regardless of
whether the data are from two-dimensional (2-D), 3-D, or from
N-dimensional space. Therefore, the incorporation of local spa-
tial continuity into the FCM algorithm is well justified for data
with a dimensionality interpretation such as 3-D MRI data.

C. INU Bias Field Compensation

When a bias field is present, the piecewise constant signal
assumption of the MRI data is no longer valid. In view of the MR
image formation model of (1), the data should be compensated
for the bias field when computing the distance between the
data and the cluster centroids, i.e., should be given by

(11)

where is the estimate for the unknown bias field . Sub-
stituting (11) into (3) (or into (7) if spatial continuity is imposed)
and by incorporating a regularizing term, we can formulate the
computation of the bias field as a variational problem.

However, the variational formulation has several disadvan-
tages. First, the number of unknowns is equal to the image di-
mension, so the problem becomes computationally very expen-
sive. Moreover, the resulting system of equations is not spa-
tial invariant in , and expensive iterative numerical proce-
dures such as a multigrid method or a gradient descent method
is needed to reach a solution. Finally, the system of equations is
ill-conditioned and error prone, making convergence difficult.

Instead of estimating the bias field in (11) directly, we
estimate its log-transformation. This results in a simpler ex-
pression and implementation. Let . We model
the 3-D log bias field as a stack of 2-D spline surfaces

, where each of the spline surfaces is com-
puted over the 2-D– plane at the particularindex. Then, we
employ a novel technique that couples the 2-D surfaces together,
such that they form a smooth 3-D field. This approach reduces
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computation time significantly, and at the same time produces a
good estimate of the actual 3-D field, as will be shown later.

Specifically, we consider the cubic-spline [23], which has
a continuous derivative up to the second order. The normalized
cubic -spline basis with knots is given by

(12)

if
otherwise

(13)

The 2-D log bias field at index is formed by the
tensor products of cubic -spline bases, i.e.,

(14)

with the knot sequences and
. The superscript on the spline

coefficients denotes that they are for the spline surface
at index . The spline surface is assumed to have
coincident boundary knots, i.e., for dimension spanning

and for dimension spanning

(15)

With this choice, all -spline bases vanish outside the region
. Using the local support property if
, the tensor product -splines can be shown to be

(16)

Using the tensor product spline representation of ,
the computation of the log bias field becomes that of finding the
set of -spline coefficients . Let the and dimensions be
divided into and intervals, respectively. Then the number of

-spline coefficients to be computed is . Since
the log bias field to be estimated is smooth and slowly varying,
the number of intervals needed is small. Thus, the number of
unknown -spline coefficients is much less than the number of
unknowns in the variational formulation.

D. The Proposed Adaptive Spatial FCM

The objective function for the proposed adaptive spatial FCM
(ASFCM) clustering algorithm is given by

(17)

with defined by (7) and (11), subject to

(18)

where the first regularizing term is given by

(19)

and the second regularizing term is given by

(20)

The first regularizing term of (19) minimizes the thin plate
energy of each of the spline surfaces . Although the
smoothness of the spline surface can be ensured to
some degree by using fewer knots in the– plane, the incorpo-
ration of (19) further minimizes the variation of the spline sur-
face. This is important since we are seeking a smoothing spline
surface fitting instead of an interpolating spline surface fitting.2

The second regularizing term of (20) forces smoothness be-
tween slices of spline surfaces. It couples the slices together to
form a smooth 3-D field. The parametersand control the fi-
delity of the fit to the data and the smoothness of the field. Note
that due to the functional representation of the surface using

-splines, the smooth functionalcan be evaluated analytically
during implementation.

An important observation about the objective function (17)
is that the two regularizing terms only involve double integra-
tion over the – plan, instead of the usual 3-D triple integra-
tion . This formulation allows the spline sur-
faces to be estimated slice by slice, resulting in great compu-
tational saving without compromising the accuracy of the esti-
mated field, as we will show later. It also ensures that smooth-
ness is forced onto each individual slice, as well as globally over
the entire 3-D domain.

The necessary conditions for the minimization of
over the memberships , cluster centroids , and -spline
coefficients are obtained by setting the respective first partial
derivatives of to zero while keeping the other variables
constant.

Consider the following Lagrange functional

(21)

where is the Lagrange multiplier. Differentiating with re-
spect to , setting the result to zero and using (18) yields

(22)

2See [23] for a detail exposition of the two classes of surface fitting problem.
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Differentiating with respect to and setting the result
to zero yields,

(23)

(24)

In deriving the first derivative of with respect to the
-spline coefficients , we make two modifications to the

objective function of (17). The first modification involves ig-
noring the spatial interactions between neighboring voxels. Al-
though it is straightforward to include the spatial influence into
the derivation, doing so would increase the computation cost
while having negligible effect on the estimation of the bias field.
This is because the spline surface we are trying to estimate is al-
ready very smooth, so that the additional noise smoothing effect
offered by the spatial interactions between neighboring voxels
is insignificant by comparison.

The second modification is to replace the original of (11)
by the following expression:

(25)

where is the log bias field, and
. This is equivalent to estimating the bias field in the log

domain. The replacement of is valid mathematically since:
1) the variables and are held fixed when computing the

-spline coefficients ; 2) the solutions of are ob-
tained by a direct least square method instead of an iterative
gradient descent minimization method, where the latter is sen-
sitive to the expression and initialization. This modification re-
sults in a much simpler expression for the data term as shown in
(27)–(29), whereas the original of (11) results in the com-
plicated data term involving inverse powers, as shown in (26)
at the bottom of the page, where (26) is over one slice of the

-spline surface.

To find an expression for , we fix and , and dis-
cretize the second regularizing term using finite difference, i.e.,

(27)

Then, differentiating the modified with respect to
for a particular , and setting the result to zero, yields
the set of linear equations, shown in (28) at the bottom of the
page, for all and , where

(29)

(30)

(31)

(32)

(33)

(34)

(35)

where the single and double prime inand denote first and
second derivatives, respectively. The first curly bracket in (28)
corresponds to the data term, whereas the second curly bracket
corresponds to the regularizing terms. Unlike the complicated
form of (26), the data term in (28) represents a weighted least
square smoothing -spline surface fitting to the residual signal

. Note also that the finite dif-
ference of the spline surfaces in (27) becomes the finite differ-
ence between the spline coefficients in (31).

Equation (28) indicates that we are trying to fit a smoothing
spline surface to the 3-D residual signal be-

(26)

(28)
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tween the actual data and a piecewise constant FCM solution at
a particular index, i.e., from (28)

(36)
where the fitting error is given by

(37)
Since is obtained by a 3-D FCM-based algorithm,

it would inherit the within-slice and between-slice continuity
from the 3-D data. Fitting slice-wise smoothing 2-D splines over
the residual would therefore not incur significant discontinuity
between slices, even without the second regularizing term of
(20), as we have observed experimentally. Nevertheless, (20)
explicitly forces the stack of spline surfaces to be smooth over
the direction. Another computational advantage of being able
to identify the residual signal in the formulation is that
local smoothing in the direction can be applied to ,
such that the iterative procedure we used to enforce (20) can
converge faster. We note that (26) does not allow such simple
interpretation and manipulation, since no such residual signal
can be easily identified in (26). The “residual signal fitting by
smoothing splines” interpretation of our INU correction method
also allows the procedure to be used as an efficient bias field
estimation technique in data preprocessing [7]–[9], [11]–[14]
independent of the FCM discussed here, prior to applying any
of the existing segmentation methods.

IV. I MPLEMENTATION

To compute the spline coefficients , we proposed
a novel two-stage algorithm. In the first stage, the second
regularizing term of (20) is ignored. The bias field is estimated
slice by slice, with no explicit coupling between adjacent slices
of spline surface. In the second stage, an iterative procedure
is used, whereby the previously computed is updated
iteratively, taking into account the explicit coupling between
adjacent spline surfaces resulting from the second regularizing
term of (20).

A. Slice-Wise Spline Surface Computation

As the resultant system of equations is linear, the-spline
coefficients can be solved efficiently using the direct least
squares approach. By using the ordering

and , we rearrange
, , , 2, 3, into square matrices

and with indices and . When , i.e., the number
of knots in the and dimensions are equal, is a symmetric
matrix with . Hence, not all elements in need to
be computed. In addition, using the local support property of
(16), the summations in (29) can be restricted to be over a small
region in the image domain, instead of over the entire image
dimension. The matrices need to be calculated only once,
since they do not change during the FCM iteration. When the

and dimensions of the image are equal, symmetry can also

be observed in . Note that due to the use of tensor splines,
the double integral in (19) and (20) is separable, resulting in
the separable integrals of (32)–(35), which can be computed
efficiently. The -spline values can be evaluated in a
numerically stable way using the recurrence relation

if
if

(38)

while the first and second derivatives of and
can be computed using the following recursion:

(39)

With and , the set of equations from
(28), ignoring the second regularizing term, can be expressed in
matrix notation

(40)

where is the by sparse
matrix given by , is the vector of

-spline coefficients arranged using the ordering, and
is the vector obtained from (30) using the ordering.
The solution to (40) can be obtained by singular value decom-

position (SVD) [24]. Although is usually of full rank, the
SVD will provide a minimum norm solution when is close to
singular. The ability to obtain a minimum norm solution is very
useful in near singular situation, whereby small perturbations
due to noise or rounding error could be greatly amplified and
rendered the solution useless. The-spline coefficients
are obtained as

(41)

where is a diagonal matrix with diagonal elements given
by the reciprocal of that in , if it is greater than a small tol-
erance, or zero otherwise, andand are column orthogonal
and square orthogonal matrices, respectively.

B. Iterative Update of Spline Coefficients

Let us define the quantity as

(42)
Then, (28) can be written in matrix form as

(43)

where and are obtained in a similar way as and .
Equation (43) forms the basis of our iterative procedure for up-
dating the spline coefficients , where is computed
using the spline coefficients found during the previous itera-
tion. Unlike (40), (43) explicitly constrains the stack of spline
surfaces to be continuous over thedirection. We have chosen
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in (43) in our experiments and found it to work
well.

Note that the bracket term andin (43) do not change in the
iterations. Also, can be precomputed, and there is no need
to explicitly evaluate the spline surfaces during iterations since
only the spline coefficients are involved in the update, but not the
actual spline surfaces. In addition, the small size of the matrix in
(43), due to the use of a small number of spline intervals, makes
it very fast to compute.

The two-stage algorithm allows fast computation of a smooth
3-D field. If we were to compute a true 3-D tensor spline field,
the computation involved in evaluating (29) will be prohibitive,
since it cannot be evaluated in a separable form in each of the

, and dimensions due to the weight term [23].
To illustrate, we let the number of spline intervals beand
the image dimension be in all three dimensions. A rough
calculation indicates that each dimension would require

unit of computer operations.3 For 2-D, the number of
operations would be , whereas for 3-D, it would be .
If we let and , then , and the number
of operations in 3-D is therefore 720 times that of 2-D. For a
stack of 2-D spline surfaces of size 217181 181, typical
computer time for evaluating (29) on a Pentium-4 2 GHz PC is
around 10 s. This would increase to for the true 3-D spline
case, which would make the algorithm impractical for 3-D ap-
plications. In contrast, the novel two-stage algorithm takes an
overall time of around 15 s for computing the spline coefficients,
with the number of iterations on (43) set to 500.

With the -spline coefficients obtained from (43), the
-spline surface can be obtained by evaluating (14)

at every location ( ). The INU compensated MR image can
be obtained by dividing by the exponential of the log bias
field .

The 3-D local spatial neighborhood that we used in this work
is a 3-D six-point neighborhood and is given by the neigh-
borhood on the plane, i.e., north, east, south, west of the center
voxel, plus the voxels immediately before and after the center
voxel.

During updating of the bias field, the membership values and
cluster centroids of the data are fixed. When the membership
values and cluster centroids are still changing rapidly between
FCM iterations, the bias field cannot be updated in a stable
manner. Therefore, we update the bias field when the
change in membership value between two iterations is less than

, where is the number of clusters in the data. The bias
field is also held fixed at least once between two successive
iterations to allow the updated results to propagate sufficiently
to the membership update and centroid update steps.

We initialize the ASFCM by specifying the initial locations
of the cluster centroids. Like the conventional FCM, the
ASFCM iterates to the final solution by a local optimization
of the objective function (17). Hence, proper selection of the
initial cluster centroids will generally improve accuracy and
convergence. Whenever the values of the true tissue class
intensities are approximately known, they can be used as initial

3We do not differentiate the type of computer operation here. One operation
could involve several logical and arithmetic operations. Our purpose here is to
illustrate the additional computer time in going from 2-D to 3-D.

cluster centroids. When such knowledge is not available, the
initial centroids can be estimated as follows. For scalar data,
we compute a smooth histogram of the data and use themost
prominent peaks as thecluster centroids. For vector-valued
data, we compute the smooth histogram for each dimension,
and record the location of the prominent peaks that are above
a certain threshold. The intersections of these locations specify
the possible concentration of data in the multi-dimensional
space. The data density within a local region around these
intersections is computed, and theintersections with the
highest data density are chosen as theinitial cluster centroids.

The procedure for carrying out adaptive spatial FCM segmen-
tation of MR images can now be stated as follows.

Adaptive Spatial FCM Segmentation
1) Set the number of clusters . Set

. Choose a value for the spline
smoothness weighting coefficient . Set
the number of splines knots in the and

dimensions. Set the maximum number of
iterations ITMAX. Initialize the log bias
field to zero.

2) Obtain initial estimates of the cluster
centroids as outlined above.

3) Compute using (8) –(10) .
4) Compute the initial membership for
every voxel using (22) .

5) Compute the regularizing matrices
and using (32)–(35) .

6) Repeat for to ITMAX or until max-
imum change in membership value is less
than a small threshold of 0.005:
i) When AND the maximum change
in membership value is less than
AND is not updated during the
last iteration, updates the by
solving, for every slice of -spline
surface in the direction, the -spline
coefficients using the two-stage al-
gorithm.
ii) Update the fuzzy cluster centroids
using (23) .
iii) Update the membership values using
(22) .

7) Perform a final hard classification by
assigning the data to the cluster with
the highest membership value.

V. MR BRAIN IMAGE SEGMENTATION

The algorithm is implemented in C and tested on both simu-
lated 3-D MR images obtained from the BrainWeb Simulated
Brain Database at the McConnell Brain Imaging Centre of
the Montreal Neurological Institute (MNI), McGill University
[25]–[28], and on real MRI data. Simulated brain data of
varying noise and INU levels are used to perform quantitative
assessment of the proposed algorithm since ground truths are
known for these data. In these data sets, the INU artifact was
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(a) (b) (c)

Fig. 1. A slice of the simulated 3-D brain image from MNI (z = 60). (a) True model. (b) Image corrupted with noise and INU artifact. (c) The corresponding
bias field.

(a) (b) (c)

Fig. 2. Segmentation result for the MRI image of Fig. 1(b). (a) The segmentation using the proposed algorithm. (b) The recovered bias field. (c) The segmentation
using the conventional FCM algorithm.

produced by multiplying the simulated MR image by a bias
field recovered from an actual MR scan according to the image
formation model of (1).4 Extra-cranial tissues were removed
from all images prior to segmentation. For real data, this can
be done using any of the techniques reported in the literature
[32]–[36]. Fig. 1 shows a slice of the simulated MRI brain data,
taken at . The brain image of Fig. 1(a) was generated
based on a discrete anatomical normal brain model, and serves
as the true model. The image of Fig. 1(b) was simulated from
the true model with the following settings: modality, ICBM
protocol [29], slice thickness of 1 mm (1 voxels), 3%
noise level and 40% INU. Fig. 1(c) shows the actual bias field
that produces the INU artifact. It was obtained by solving
for (1), using the noise-free, INU artifact-free data and the
noise-free, INU affected data, obtained also from MNI.

The number of tissue classes in the segmentation was set to
three, which corresponds to gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF). Background pixels are ig-
nored in the computation. For all the segmentation experiments,
the default parameter values used are: , ,
number of spline intervals in the and dimensions,

, maximum number of iterations . The
algorithm usually converges in around 6–7 iterations. For the
simulated 3-D MRI brain image of dimension 217181 181
[row ( ) column ( ) depth ( )], the total computation time
is around 1.5–2 min on a Pentium 4 2-GHz PC.

A. Visual Evaluation

Fig. 2(a) shows the segmented image. The segmentation can
be observed to correspond well to the true model in Fig. 1(a).

4This was done by MNI. However, we have verified experimentally, through
the computation of the actual bias field shown Fig. 1(c), that they actually used
the multiplicative model of (1) in simulating the INU artifact.

(a) (b)

Fig. 3. Segmentation result for the slice near the base of the brain (z = 35).
(a) True model. (b) Segmented result.

Fig. 2(b) shows the recovered bias field, which resembles very
closely the actual bias field of Fig. 1(c). In comparison, we also
show in Fig. 2(c) the segmentation by the conventional FCM al-
gorithm, whose accuracy is severely affected by noise and INU.
The results clearly indicate that the proposed algorithm is able
to compensate for noise and INU artifact in the input image.
Figs. 3 and 4 show the ground truth and the segmentation re-
sult for slices taken at (near the base of the brain) and

(near the top of the skull), respectively. Although they
are more difficult to segment than slices from the center of the
brain, the results show that accurate segmentation can still be
achieved.

Fig. 5(a) shows an across-slice view of the actual bias field,
taken at , for the same data set. Fig. 5(b) shows the esti-
mated bias field taken at the same location. As can be seen, the
estimated bias field has captured accurately the intensity inho-
mogeneity across slices without exhibiting between-slice dis-
continuity in spite of the modeling of the 3-D bias field by a
stack of 2-D spline surfaces. The second regularizing term of
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(a) (b)

Fig. 4. Segmentation result for the slice near the top of the skull (z = 140).
(a) True model. (b) Segmented result.

(a) (b)

Fig. 5. (a) Actual, and (b) computed bias field fory = 110. Thex coordinate
increases from left to right and thez coordinate increases from bottom to top.

(20) has successfully constrained the estimated 3-D field to be
smooth in the direction. To show the effectiveness of the bias
correction method, Fig. 6 shows the mean intensity value of the
WM from the base of the brain to the top of the brain. The uncor-
rected data with 40% INU (dashed line) shows significant vari-
ation in intensity value whereas the INU corrected data (solid
line) has a more uniform WM intensity value. For comparison,
the WM mean intensity value for the data with no INU (dotted
line) is also shown. Besides a constant offset, the remarkable
similarity in the shape of the two curves indicates that INU has
been correctly compensated for. Note that the mean intensity
value for the data with no INU is not a constant straight line.
This is due largely to partial volume effect, where a voxel is
partially shared by two or more tissue types. This phenomenon
is particularly noticeable at the two extremes of the brain, where
boundaries between tissue types become less defined. The pro-
posed algorithm is also able to correctly take that into account
as reflected in the closely matched shape around the two ends
of the curve.

B. Quantitative Evaluation

For a quantitative evaluation of the performance of the
algorithm, we compute the misclassification rate (MCR) for the
segmentation of the simulated MRI data (weighted, 1
voxels, 3% noise) with varying level of INU inhomogeneity
(i.e., 0% INU, 20% INU, 40% INU). The MCR is defined as the
number of pixels misclassified by the algorithm divided by the
total number of pixels in the image. For comparison, we quote
the MCR of the different INU estimation algorithms as reported
in [15]. The results are presented in Table I. FCM denotes the

Fig. 6. Mean intensity value of WM as a function ofz-coordinate, from the
base of the brain to the top of the brain. The dashed line is for the uncorrected
data (INU = 40%); the solid line is for the INU corrected data. The dotted line
is for the data with no INU.

TABLE I
MISCLASSIFICATION RATE FOR DIFFERENT INU CORRECTION AND

SEGMENTATION METHODS AT DIFFERENTINU LEVEL

conventional FCM algorithm. FM -AFCM and TM-AFCM
denote the full multigrid adaptive FCM algorithm and the
truncated multigrid adaptive FCM algorithm, respectively [15].
EM1 and EM2 denote the unsupervised EM algorithm for finite
Gaussian mixture models, where EM1 refers to the standard
model and EM2 refers to the model where variances and
mixture coefficients of the Gaussian components are assumed
equal [30]. AMRF denotes the adaptive Markov random field
algorithm [31], [32]. MNI-FCM denotes the method where
the inhomogeneity correction technique [9] from MNI is
applied first, followed by FCM segmentation.

From Table I, we see that the MCR generally increases with
an increase in the INU level. Also, our method has significantly
better performance than other methods and is more robust to
increased inhomogeneity. For the 40% INU level, our method
shows an improvement of 58% over the FCM method, 24% over
the FM -AFCM method, 22% over the TM-AFCM method, 72%
over the EM1 method, 60% over the EM2 method, 44% over the
AMRF method and 32% over the MNI-FCM method.

We also compare our results with the results obtained by
the EM-MRF algorithm of Leemputet al. [39], [40].5 In the
EM-MRF algorithm, the MRI brain tissue classes are modeled

5Downloaded from http://bilbo.esat.kuleuven.ac.be/web-pages/down-
loads/ems/ems.html
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TABLE II
COMPARISONBETWEEN OURALGORITHM AND THE EM-MRF ALGORITHM: IN TERMS OFOVERLAP METRIC (IN %) FOR DIFFERENTTISSUECLASS, AND THE

MCR (IN %), FOR DIFFERENT INU LEVEL. “NO MRF” DENOTES THEEM-MRF ALGORITHM WITHOUT MRF REGULARIZATION, “WITH

MRF” DENOTES THEEM-MRF ALGORITHM WITH MRF REGULARIZATION

as finite Gaussian mixtures with Markov random field regular-
ization and digital brain atlas initialization, and the bias field is
modeled as a fourth order least square polynomial fit. For the
EM-MRF method, we calculated both the MCR and the overlap
metric [41]. The overlap metric is define as ,
where denotes the number of voxels assigned to class
by both the ground truth and the algorithm, and de-
note the number of voxels assigned to classby the algorithm
and the ground truth, respectively, for the three tissue classes.
The overlap metric attains the value of one if both segmenta-
tions are in full agreement and zero if there is no overlap at all.
We run both our algorithm and the EM-MRF algorithm on the
three simulated MRI datasets. The comparison results are tab-
ulated in Table II. For the EM-MRF algorithm, we used two
different settings: one with MRF regularization and the other
one without MRF regularization. The results show that our al-
gorithm has performed well over all three tissue types compared
to the EM-MRF algorithm, even though the EM-MRF algorithm
uses a prior classification derived from a digital brain atlas that
contains spatially varying prior probability maps for the loca-
tion of CSF, GM, and WM.

It is also remarkable that the performance of our method, even
at 40% INU, is still better than the FCM method at 0% INU.
Our method has a slightly inferior performance at 0% INU than
at 20% INU. This is due to the additional degree of freedom
associated with the bias field. This effect is also observed in
the MNI-FCM method. One can easily reduce the error by in-
creasing if the amount of inhomogeneity is known to be low.
It is interesting to note that at 0% INU, our method, with the ad-
ditional degree of freedom, still performs better than the FCM
method. This is due to the spatial continuity constraint in our
algorithm, which smoothes out noise and reduces classification
ambiguity. To see the advantage of incorporating the spatial con-
tinuity constraint, we set the bias field in our algorithm to zero
and carried out the segmentation on 0% INU data with just the
spatial continuity constraint. The MCR for this case is 3.474%,
an improvement of over 13% over the FCM method. If we just
have the bias field correction but not the spatial continuity con-
straint, we get an MCR of 4.003% at 0% INU, which is inferior
to the FCM method, as expected. The difference, however, is
small, indicating that our method performs well on images of
varying inhomogeneity, without the need for tedious adjustment
of the regularizing parameters. The advantage of having a noise
smoothing property is also observed in the AMRF method at
0% INU, which has a slightly better performance than the FCM
method.

TABLE III
MISCLASSIFICATION RATE FOR THESAME DATASET REFORMATTED AT

DIFFERENTSLICE PLANES

TABLE IV
MISCLASSIFICATIONRATE AS A FUNCTION OFREGULARIZATION PARAMETER �

AND THE NUMBER OF SPLINE INTERVALS nx WITH 
 = 2� 10

TABLE V
MISCLASSIFICATION RATE AS A FUNCTION OF REGULARIZATION PARAMETERS

� AND 
 WITH nx = 2

As a mean of quantitatively validating the two-stage approach
for 3-D bias field estimation for slices taken at different planes,
we computed the MCR for the same dataset (which is originally
in transverse slices) reformatted as coronal slices and sagittal
slices. The results are presented in Table III. The results show
that the two-stage approach for estimating the 3-D bias field is
insensitive to the slice plane. We remark that if the bias field
estimation is required to be totally invariant to the slice plane,
one possible approach is to compute a bias field for each slice
plane, and then average the three bias fields to get the slice-plane
invariant bias field in each iteration.

C. Variation of Algorithmic Parameters

Table IV shows the MCR after applying the proposed
ASFCM algorithm to the simulated data set (1 voxels,
3% noise, and 40% INU) when varying the regularizing
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Segmentation of real MRI image. (a) Original image. (b) INU corrected image. (c) Proposed ASFCM segmentation. (d) FCM segmentation. (e) Estimated
bias field. (f) Intensity histogram before (dashed line) and after (solid line) INU correction.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Segmentation of another real MRI image. (a) Original image. (b) INU corrected image. (c) Proposed ASFCM segmentation. (d) FCM segmentation. (e)
Estimated bias field. (f) Intensity histogram before (dashed line) and after (solid line) INU correction.

parameter and the number of spline intervals, while setting
. As can be seen, the algorithm is insensitive to

both parameters. The bias field can adequately be modeled by
-spline surfaces with very few intervals since the bias field

is knowna priori to be smooth. We observe that fewer spline
intervals generally give better results. This can be explained
by the fewer degree-of-freedom, which implicitly imposes
a strong constraint on the smoothness of the spline surface.
Nevertheless, if the bias field were known to have large spatial
variation, more spline intervals would be needed to ensure an
adequate fit. Even so, would suffice
in most cases. Table V shows the MCR when varyingand

, while setting the number of spline intervals to two. Again,

the proposed algorithm is insensitive to the parameter settings.
Finally, we observe that the different parameter combinations
in Tables IV and V all have an MCR of less than the seven other
methods we compare in Table I (see last column in Table I),
and even the FCM at 0% INU, indicating the robustness and
efficacy of our algorithm.

D. Performance on Actual MRI Data

Figs. 7 and 8 show one slice of the segmentation results for
two real -weighted MR images using the proposed algorithm.
Figs. 7(a) and 8(a) are the original images. Figs. 7(b) and 8(b)
are the INU corrected images. The INU artifact has largely been
suppressed and one can see a fairly uniform image compared
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to the original image. Figs. 7(c) and 8(c) show the segmenta-
tions using our method. Figs. 7(d) and 8(d) show the segmenta-
tions using the FCM algorithm. Visual inspection shows that our
method produces better segmentations than the FCM algorithm.
In particular, the GM and WM in the top region of both images
can be better separated by our method. Figs. 7(e) and 8(e) show
the estimated bias fields. The bias field has successfully cap-
tured the different shading in the original images. Figs. 7(f) and
8(f) show the intensity histogram of the slices before and after
INU correction. One can see that there is less spread in the his-
togram after INU correction. Also, the two prominent peaks,
which correspond to the GM and WM are sharper and better re-
solved in the INU corrected images.

VI. CONCLUSION

We have presented an adaptive spatial FCM segmentation al-
gorithm that takes into account a local spatial continuity con-
straint, as well as the suppression of the INU artifact in 3-D
MR images. The algorithm employs a novel dissimilarity index
that considers the local influence of neighboring pixels in an
adaptive manner. If the neighborhood window is in a nonho-
mogeneous region, the influence of the neighboring voxels on
the center voxel is suppressed; otherwise, the center voxel is
smoothed by its neighboring voxels during membership and
cluster centroid computation. To suppress the INU artifact, a
multiplicative MR image formation model is used. The estima-
tion of the 3-D multiplicative bias field is formulated as the esti-
mation of a stack of 2-D smoothing spline surfaces, with conti-
nuity enforced across slices, minimizing the 3-D residual signal
between the actual data and a piecewise constant FCM solution.
The -spline coefficients of the spline surfaces are obtained by
a computationally efficient two-stage algorithm. Extensive ex-
periment results and comparative studies with several existing
methods on the segmentation of both simulated and real MR
brain images illustrate the effectiveness and robustness of our
algorithm.
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