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Abstract—It is well known that motor current is a nonsta-
tionary signal, the properties of which vary with respect to
the time-varying normal operating conditions of the motor. As
a result, Fourier analysis makes it difficult to recognize fault
conditions from the normal operating conditions of the motor.
Time–frequency analysis, on the other hand, unambiguously
represents the motor current which makes signal properties
related to fault detection more evident in the transform domain.
In this paper, we present an adaptive, statistical, time–frequency
method for the detection of broken bars and bearing faults. Due
to the time-varying normal operating conditions of the motor and
the effect of motor geometry on the current, we employ a training-
based approach in which the algorithm is trained to recognize the
normal operating modes of the motor before the actual testing
starts. During the training stage, features which are relevant to
fault detection are estimated using the torque and mechanical
speed estimation. These features are then statistically analyzed
and segmented into normal operating modes of the motor. For
each mode, a representative and a threshold are computed and
stored in a data base to be used as a baseline during the testing
stage. In the testing stage, the distance of the test features to
the mode representatives are computed and compared with the
thresholds. If it is larger than all the thresholds, the measurement
is tagged as a potential fault signal. In the postprocessing stage,
the testing is repeated for multiple measurements to improve
the accuracy of the detection. The experimental results from our
study suggest that the proposed method provides a powerful and
a general approach to the motor-current-based fault detection.

Index Terms—Bearing faults, broken bar detection, motor
diagnostics, statistical analysis.

I. INTRODUCTION

FAULT detection based on motor current relies on in-
terpretation of the frequency components in the current

spectrum that are related to rotor or bearing asymmetries.
However, the current spectrum is influenced by many factors,
including electric supply, static and dynamic load conditions,
noise, motor geometry, and fault conditions. Therefore, the
motor current can be best modeled as a nonstationary random
signal. Also, the dependency of motor current on the motor ge-
ometry requires a flexible, adaptive approach. For many years,
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motor current analysis has been implemented using limited
mathematical tools and computer capability. These methods
are mostly deterministic and based on Fourier transformation
[1], [2]. However, it is well known that Fourier transform
techniques are not sufficient to represent nonstationary signals.
Moreover, the uncertainty involved in the system requires an
adaptive statistical framework to address the problem in an
efficient way. In recent years, advancement of statistical signal
processing methods have provided efficient and optimal tools
to process nonstationary signals. In particular, time–frequency
and time–scale transformations provide an optimal mathemat-
ical framework for the analysis of time-varying, nonstationary
signals [3], [4].

In this paper, we propose an adaptive statistical
time–frequency method to detect broken bars and bearing
faults. The key idea in the proposed method is to transform
motor current into a time–frequency spectrum to capture the
time variation of the frequency components and to analyze
the spectrum statistically to distinguish fault conditions
from the normal operating conditions of the motor. Since
each motor has a distinct geometry, we adapt a supervised
approach in which the algorithm is trained to recognize the
normal operating conditions of the motor prior to actual
fault detection.

The method consists of four stages: preprocessing, train-
ing, testing, and postprocessing. In the preprocessing stage,
the analog data are subjected to typical signal conditioning
procedures. During the training stage, the time–frequency
spectrum of the current is computed and features relevant
to fault conditions are extracted using torque and mechanical
speed estimation. Next, the feature space is segmented into
the normal operating conditions of the motor, and a set
of representatives and thresholds are determined for each
normal operating mode. The segmentation is performed by
either statistical segmentation or torque estimation. Once the
algorithm is trained for all the normal operating conditions,
the testing stage starts. In this stage, the time–frequency
spectrum of the motor is acquired periodically and the features
relevant to the fault conditions are extracted. Next, the distance
between the test feature and the representative of each normal
operating condition is computed. If the test feature is beyond
the threshold of all the normal operating conditions, it is tagged
as a potential fault signal. During the postprocessing stage, the
testing is repeated a number of times to improve the accuracy
of the final decision.
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The remainder of this paper is organized as follows. In
Section II, we introduce the time–frequency analysis from
a perspective relevant to our discussion. In Section III, we
outline our approach and compare it with the existing motor
fault detection methods. In Section IV, we introduce the
preprocessing and training stages. In Sections V and VI, we
discuss the testing and postprocessing stages. In Section VII,
we present experimental results. Finally, in Section VIII, we
briefly discuss further items of interest in this context and
conclude our discussion.

II. TIME–FREQUENCY ANALYSIS OF MOTOR CURRENT

The representation of a signal by means of its Fourier
spectrum is essential to solving many problems in applied
sciences. However, in some instances, Fourier transform is
not the most natural or useful way of representing a signal.
For example, we often think of music or speech as a signal in
which the spectrum evolves over time in a significant way.
We imagine that, at each instant, the ear hears a certain
combination of frequencies and that these frequencies are
constantly changing. This time evolution of frequencies is not
reflected in the Fourier transform. In theory, a signal can be
reconstructed from its Fourier transform, but the transform
contains information about the frequencies of the signal over
all times, instead of showing how the frequencies vary with
time. For a given a signal, the standard Fourier transform

(2.1)

gives a representation of the frequency content ofaveraged
over the entire duration of the signal. Therefore, the infor-
mation concerning time localization of the frequency content
cannot be deduced from . As a result, Fourier analysis
yields poor results for nonstationary signals, that is, signals
whose properties evolve over time.

Time localization of nonstationary signals is typically
achieved by theGabor or short-time Fourier transform[5].
This transform works by first dividing the signal into short
consecutive or overlapping portions and then computing the
Fourier transform of each portion. The idea is to introduce
local frequency parameter so that the local Fourier transform
looks at the signal through a window over which the signal is
approximately stationary. Such a transform results in a two-
dimensional description of the signal in time–frequency plane
composed of spectral characteristics depending on time.

The mathematical description of short-time Fourier trans-
form is given as follows:

(2.2)

where is an ideal cut-off function. Dividing the current signal
into small portions amounts to multiplying by a translate of
, i.e., where is the length of the cutoff interval

and is an integer associated with the signal portion. The
parameter is similar to the Fourier frequency and many
properties of Fourier transform carry over to the short time
Fourier transform. However, analysis here depends critically
on the choice of the window . Depending on the signal

Fig. 1. Fourier spectrum of motor current.

processing task in hand, appropriate choice of the window
function could yield sharp results.

It is well known that motor current is a nonstationary signal.
the properties of which vary with respect to the time varying
normal operating conditions of the motor, particularly with
the load. As a result, Fourier analysis makes it difficult to rec-
ognize fault conditions from the normal operating conditions
of the motor because Fourier-spectrum-based fault detection
implicitly assumes that the motor current becomes nonstation-
ary only in the presence of fault conditions. Time–frequency
analysis, on the other hand, unambiguously represents the
motor current, which makes signal properties related to param-
eter estimation and recognition more evident in the transform
domain. To illustrate this situation, we acquired motor current
from a 3/4-hp motor operating under three different load
conditions The motor was first operating under 0.226 Nm (2
lb in) of load torque, then 1.13 Nm (10 lb in) and then 0.226
N m (2 lb in) again. The analog signal was low-pass filtered
at 800 Hz and digitized at 32 samples per 60-Hz voltage
supply. As seen in Fig. 1, the Fourier spectrum reveals no
information about the load oscillations. The time variations of
the frequency content are spread out over the entire frequency
range. The time–frequency spectrum shown in Fig. 2, on the
other hand, clearly unveils the load oscillations which are
important for fault detection. The horizontal axis represents
the frequency with 0.2 Hz/bin resolution and the vertical axis
represents the time with 5-s resolution. The color represents
the intensity of the time–frequency spectrum in decibels.

In the following sections, we shall discuss in more detail
how time–frequency spectrum can be utilized to devise an
efficient fault detection system.

III. FAULT DETECTION SYSTEM USING

TIME–FREQUENCY TRANSFORM

In motor-current-based fault detection, there are two main
issues:

• how to adapt the detection algorithm to the time varying
normal operating conditions of the motor;
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Fig. 2. Time–frequency spectrum of motor current.

Fig. 3. Block diagram of the fault detection method.

• how to estimate the fault frequencies in the absence of
motor geometry and speed information.

The prior methods reported in the literature differ mainly in
the way they address these issues. They can be categorized
into two classes; although the early methods recognized the
nonstationary nature of the motor current, these methods
employed Fourier analysis, compromising the accuracy of the
detection. In [1], the broken bar frequencies are estimated
using speed estimation from the axial leakage flux data. In
[6], the frequencies of interest are estimated directly from the
current spectrum. With the recent advancement of new signal
processing techniques, methods adaptable to time-varying nor-
mal operating conditions have been proposed [7]–[9]. These
methods utilize rule-based expert systems and neural networks
to achieve adaptive detection. However, these operations are
performed in the Fourier transform domain, compromising the
nonstationary nature of the data.

The block diagram of the proposed fault detection system
is shown in Fig. 3. In the preprocessing stage, analog current
data are low-pass filtered to prevent aliasing and digitized.
Next, the time–frequency spectrum of the data is computed
and fed into the training stage. In the training stage, fault
frequencies are estimated, and a window of frequency com-
ponents around the estimated fault frequencies are selected to
form a feature vector. Next, feature vectors are segmented into
homogenous sections along the time axis in time–frequency

space. Segmentation is performed either by a statistical method
or by digital torque estimation. Statistical segmentation is a
novel method which divides the time–frequency spectrum into
statistically homogenous regions along the time axis. Digital
torque estimator, on the other hand, divides the motor current
into loadwise constant regions. This is a compromise over the
statistical segmentation method to reduce the computational
load. The homogenous regions obtained from the segmentation
are defined as the normal operating modes of the motor. Next,
the sample training data belonging to each normal operating
mode are statistically analyzed, and a mode representative and
a threshold are determined. After all possible normal operating
modes of the motor are learned, the testing stage starts. In this
stage, the motor current data is periodically acquired and is
subjected to the preprocessing and feature extraction methods
described in the training stage. The distance of the test feature
vector to the representatives of each mode are computed and
the resulting distances are compared with the respective thresh-
olds. If any of the distances is larger than the threshold, the test
measurement is tagged as a potential fault signal. In the post-
processing stage, the testing process is repeated for a number
of measurements to increase the accuracy of the final decision.

The proposed method has the following advantages.

• The method adapts itself to the varying operating condi-
tions of the motor to be tested, thereby offering a more
accurate detection of the faults.

• By use of time-varying spectra in the analysis, difficult
cases, such as coal crushers where speed varies rapidly,
may be efficiently handled.

• Unlike the prior art [2]–[6], the proposed method does
not require axial flux leakage data or refined guesses to
compute the relevant frequencies. Instead, it utilizes the
digital torque estimator [10].

• The proposed method does not require a high-resolution
frequency spectrum. The statistical measure adapted at the
testing stage takes into account the spread or the resolu-
tion of each frequency component. This may reduce the
memory required to compute a high-resolution frequency
spectrum.

• For the detection of broken bars only, very limited
frequency ranges are required, typically within a few slip
frequencies around first few harmonics. Consequently, the
required computational load is substantially reduced for
frequency ranges set by the torque-based estimator.

• Restriction of the frequency range and the knowledge
of speed help exclude extraneous components, thus re-
ducing the false alarms when load oscillations and other
interference phenomena are present.

• By first identifying and isolating the broken bar and
bearing frequency components, they may be excluded
from further analysis, thus reducing the computational
load and simplifying the analysis of the rest of the
frequency components when looking for other types of
faults.

• Finally, the proposed framework is applicable to any
motor fault which causes rotor asymmetries.

Fig. 4 illustrates the key idea in our fault detection method.
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Fig. 4. Three-dimensional illustration of the fault detection method.

Fig. 5. Block diagram of the training stage.

IV. TRAINING

The block diagram of the training stage is shown in Fig. 5.
The first step in the training stage is the feature extraction
process, in which the frequencies relevant to fault detection
are estimated from the time–frequency spectrum. Next, the
training features are segmented into the constant operating
modes of the motor. Finally, the samples from each mode
are statistically analyzed to determine a mode representative
and threshold. These values are saved in a data base to be
used as a baseline later in the testing stage. Note that the
segmentation process and feature extraction process can be
interchanged. However, the computational load is much less
if the feature extraction is performed prior to segmentation,
because the size of the feature vector is much smaller than the
size of the entire frequency spectrum.

A. Feature Extraction

In this section, we shall discuss the estimation of broken bar
and bearing fault frequencies. Next, we shall select a window
of frequencies around the estimates to form a feature vector.
A feature vector is highly informative compressed data which
facilitates reliable detection while reducing the computational

Fig. 6. Torque–speed curve for mechanical speed estimation.

load. We shall call the frequency components associated with
the broken bars as thebroken bar feature vector, and the
frequency components associated with the bearing faults as
the bearing feature vector.

In motor theory, it is well known that broken bar faults
show up as sideband frequencies of the first, fifth, seventh,
and higher order harmonics [1], [7], [11]. These frequencies
are given by the following formula:

(4.1)

where is the electrical supply frequency, is per-unit
slip, and is the number of poles. Note that, due to the
normal winding conditions, only those frequencies for which

appear in the stator current with
significant amplitude.

From the nameplate of the motor, one can determine the
number of poles. However, the slip changes with the
mechanical speed of the motor, which is not readily available.
The relationship between the mechanical speed and the slip is
given by the following equations:

(4.2)

where is the mechanical speed and is the synchronous
speed.

The digital torque estimator provides a simple solution for
the estimation of the mechanical speed and the slip frequency
[7]–[12]. The technique is illustrated by Fig. 6. The number of
poles provides the means for estimating the synchronous speed
from torque–speed curve. This estimate is given by point #1
in Fig. 6. Also, the rated torque and the rated speed of the
motor can be obtained from the nameplate, as shown by point
#2. A straight line connecting points 1 and 2 is a sufficient
approximation of the motor torque–speed curve in the normal
range of loads. The torque estimator finds the actual steady-
state motor torque within 2% error, which is shown by point
#3. The mechanical speed of the motor then can be estimated
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by

(4.3)

where is the estimated torque, is the rated torque, and
is the rated speed. This is now sufficient to establish the

slip frequency within 2% error.
In the absence of a torque estimator, the broken bar fre-

quencies can be estimated as in [7], which are given by the
following formula:

(4.4)

When the torque estimate is not available, the speed and slip
frequency may not be estimated accurately. As a result, the
broken bar frequency estimate will be less accurate, since the
nameplate provides the speed at full load only.

Rotor asymmetry, resulting from rotor ellipticity, misalign-
ment of the shaft with the cage, magnetic anisotropy, etc.,
shows up at the same frequency components as the broken bars
and must be distinguished from the broken bar frequencies.
This can be achieved by examining the sidebands of the
higher harmonics. An asymmetry results in low high-frequency
content. In contrast, localized effects, such as a broken bar,
result in large high-frequency content.

After estimating the broken bar frequencies, a window of
frequency components around the estimates is selected to
form the broken bar feature vector. Typically, the window is
chosen such that at least 0.25 Hz on each side of the estimate
are included in the feature vector. Explicitly, the broken bar
feature vector at time instant can be written as

(4.5a)

(4.5b)

where is the magnitude of the time–frequency representa-
tion, i.e., , and is the length of the
window around the estimates , in
Hz/bin. Note that, for , the slip frequency components
are on both sides of the supply frequency due to the speed
oscillations, but for higher harmonics, they are only on the
lower side of the supply frequency.

A bad rolling element bearing in a motor allows the shaft
to move radially a small amount. For example, if there is a
pit in the outer or the inner race, the balls encountering it
will fall in and move radially. Thus, the air-gap geometry will
be slightly disturbed, leading to a modulation of the current.
These modulation effects will show up at frequencies

(4.6)

where is the mechanical vibration frequency, the value of
which depends on the type of the race defect and geometry
of the bearing. If the bearings have 6–12 rolling elements, the
inner race bearing defect frequencies can be estimated by [13]

(4.7a)

Similarly, the outer race bearing defect frequencies can be
estimated by [13]

(4.7b)

If torque estimation is available, the mechanical speed of the
motor can be estimated as described in (4.3), and a window
of frequencies around the estimated bearing frequencies

(4.8a)

(4.8b)

is selected to form the bearing feature vector. Typically, the
length of the window is chosen to be at least 1 Hz on each
side of the estimated frequency. If torque estimation is not
available, all the frequency components between the rated
speed and the synchronous speed can be included in the
bearing feature vector.

Finally, the feature vector at time instanceis formed by
combining the broken bar and the bearing feature vectors

(4.9)

B. Segmentation

As discussed earlier, the motor current is a piecewise
stationary signal in which different constant operating modes
correspond to different statistically homogenous segments.
Therefore, it is necessary to determine different baseline
thresholds for different operating modes of the motor. To do
so, we compute the time–frequency spectrum of the motor
for all possible normal operating modes of the motor during
the training stage and segment the spectrum into homogenous
segments along the time axis. The segmentation process is
performed either by a novel probabilistic method or by torque
estimation. First, we shall discuss the probabilistic approach.

Let us assume a number of feature vectors ,
are available for the training process where

is the total training duration. We assume that the normal
operating modes of the motor change slowly and contiguous
feature vectors are likely to fall into the same mode. Given
these assumptions, the segmentation process can be viewed
as the detection of time instants at which ,
and , exhibit different statistical properties. We
shall call this instantsplit point. To implement the detection
process, we divide the feature vectors , into
contiguous windows along the time axis. The length of the time
window is chosen so that the motor can exhibit at most two
different operating modes during units of time. Within each
time window, the location of the split point is detected by
maximizing the conditional joint probability density function
of the feature vectors within the window, given the location



YAZICI AND KLIMAN: METHOD FOR DETECTION OF BROKEN BARS AND BEARING FAULTS 447

Fig. 7. Probabilistic segmentation for the time–frequency spectrum.

of the split point. This can be mathematically expressed as

(4.10)
where is the beginning of the time window, is the
candidate location for the split point, and ,

are the feature vectors within the time window.
Note that is interpreted as no mode change during
the time window . Once all the time windows are studied and
the locations of all the split points are estimated, segments that
are similar are merged using the Bhattacharyya distance [14].
Fig. 7 illustrates the probabilistic method of forming different
normal operating modes. For more details on the probabilistic
segmentation process, please refer to [15].

In the torque-based segmentation, the time instants at
which significant load changes occur are recorded and the
time–frequency spectrum in each loadwise constant segment
is computed. Next, the feature vectors for each segment are
computed and utilized to determine a statistical representative
and threshold for each loadwise constant mode of the motor.
Although this approach is computationally less expensive as
compared to the previous one, it cannot identify many of the
subtle statistical changes that occur, such as the ones due to
shaft misalignments, in the current spectrum. As a result, the
accuracy of detection may be less than the previous approach.

C. Selection of Mode Representatives and Thresholds

For each constant operating mode of the motor, the sample
mean and the covariance matrix of the feature vectors are
chosen as the representatives of the mode. Mathematically,
these representatives are given by

(4.11a)

(4.11b)

where is the total number of distinct operating modes of
the motor, is the number of feature vectors belonging to
the mode , and is the time instance of a feature vector
in a given homogenous mode. We shall refer to the mean

and covariance matrix of a mode as mode representative and
denote it by

(4.12)

Recall that the feature vector is composed of the bro-
ken bar feature vector and the bearing feature vector

. Therefore, the mode representative is composed of
broken bar and bearing mode representatives

(4.13a)

in which

(4.13b)

where

(4.14a)

(4.14b)

and is the covariance matrix between the broken bar and
the bearing feature vectors.

It is important to note that, once the bearing and broken
bar mode representatives are obtained, the distance between
the distinct operating modes with respect to the broken bars
and bearings are calculated and stored in the data base to be
used in the postprocessing stage. The Bhattacharyya distance
between two modes is given by

(4.15)

Note that the first term in the summation measures the distance
in terms of mean values, and the second term measures in
terms of the covariance matrices.

We now want to define broken bar and bearing fault
thresholds for each normal operating mode of the motor. To do
so, we first define a statistical distance between each member
of the mode and its representative

(4.16a)

Similarly,

(4.16b)

Note that the distance measure is chosen to be the well-known
Mahalanobis distance, in which each entry in the Euclidean
distance is downweighted by the variance of the entry [16].
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Fig. 8. Block diagram of the testing stage.

In order to obtain an optimal broken bar and bearing
fault threshold for each mode, the sample mean and standard
deviation of the intramode distances are calculated

(4.17a)

(4.17b)

Similarly,

(4.18a)

(4.18b)

The broken bar and bearing fault thresholds and
for each operating mode are setunit standard deviation away
from the mean distances, i.e.,

(4.19a)

(4.19b)

Note that, in the case of normal distribution of the intramode
distances, is typically chosen to be 2 to provide a 99%
confidence interval. However, in our approach, it is kept as an
input parameter to allow the user to utilize one’s engineering
judgment.

V. TESTING

The major steps of the testing stage are illustrated in Fig. 8.
Similar to the training process, the test data are first subject
to the operations discussed in the preprocessing stage and
feature extraction process discussed above. Next, using the
Mahalanobis distance introduced in (4.15), the distance be-
tween the test feature and the representatives of the normal
operating modes is computed. Depending on whether we
want to check the condition of the broken bars or bearings,
appropriate portions of the feature vector and representatives

are used. For example, in the case of broken bars, the distance
is computed as

(5.1)

Next, we check if the distance between the test feature
and the representatives of each mode is less than the mode
threshold . If the distance is greater than all the mode
thresholds, , , then the test measurement is
tagged as potentially faulty.

To improve the accuracy of our decision making, we repeat
this testing process for multiple test features. The decisions
obtained from each test feature and the distances are fed to
the postprocessor to finalize the decision on the bars or the
bearings of the motor.

VI. POSTPROCESSING

The assumption in the postprocessing stage is that, if there
is a broken bar or bearing fault, consecutive test samples
are expected to be potential fault features and will eventually
form a mode which is statistically distinct from all the normal
operating modes of the motor. Therefore, as the potential fault
features are identified by the testing stage, the meanand
the covariance matrix of the potential fault features are
computed. Note that these feature vectors could be broken bar
or bearing fault feature vectors. Next, the distance
between the normal operating modes of the motor and the
representatives of the faulty features are com-
puted using the Bhattacharyya distance. The normal operating
mode to which the potential fault representative is closest is
identified, i.e.,

(6.1)

The shortest Bhattacharyya distance,, of the mode is re-
trieved from the data base and compared with the .
If the distance is greater than the distance , the
final alarm for the broken bars or faulty bearings is triggered.

VII. EXPERIMENTAL RESULTS

For broken bar detection experiments, the raw data from
a 35-hp inside-out motor were generated and archived
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TABLE I
TRAINING DATA FROM 3/4-HP MOTOR WITH GOOD BEARING

for Electric Power Research Institute (EPRI) Broken Bar
Project—EPRI RP2331-1 in 1986 [2]. For bearing fault
detection experiments, a 3/4-hp motor was used. In both
cases, the analog current data were low-pass filtered at 800
Hz and digitized at 32 samples per power cycle. However, as
we shall discuss, the algorithm does not require frequencies
larger than 300 Hz, and sampling frequency can be as low as
six samples per power cycle. Each data file in the experiments
contains eight channels which include three phase currents,
three phase voltages, 60-Hz notch-filtered first phase current,
and accelerometer data. Notch-filtered data were collected
in anticipation of improving the dynamic range of the A/D
converter. Accelerometer data were used in the bearing tests
to validate the location of the fault frequencies.

A. Bearing Fault Experiments

The bearing fault experiments were performed using the
first, sixth, and the eighth channels to evaluate the significance
of notch filtering and the accelerometer data. The data were
collected for about 40 s, yielding 80 000 points per chan-
nel. Later, these data sets were downsampled to study the
effect of lower rate sampling. The length of the windowing
function was selected so that the time–frequency spectrum
has 0.2 Hz/bin resolution, which resulted in eight contiguous
frequency spectra for each data set.

Table I shows the data sets used during the training stage of
the bearing fault detection algorithm. The data were collected
at different loads and speed. The bearing C2 is a healthy
ball bearing which was pressed on the motor shaft and then
soaked with oil before it was installed. The motor was run
continuously for about 5 min during the various tests. In
one case, an artificial turn fault was induced to check if the
algorithm would be able to distinguish between the turn faults
and bearing faults. Note that, for the healthy modes, a nonzero
label is used; the label 0 is reserved for the fault modes.

Table II shows the data sets acquired from the same motor
with faulty bearings. The inner and outer race defects were
simulated by mounting the faulty bearing in different configu-
rations. In the first case, the ball bearing with a hole mounted
toward the outer part of the rotor shaft induced a severe outer
race defect. In the second case, the bearing mounted toward the
inner part of the rotor shaft induced a mild outer race defect.
Fig. 9 illustrates the time–frequency spectrum of the motor
current with healthy bearings around the bearing frequency.
Ideally, the estimated frequency has to be at the middle of the
window. However, the true bearing frequency usually shows

TABLE II
TESTING DATA FROM A 3/4-HP MOTOR WITH DAMAGED BEARINGS

Fig. 9. Time–frequency spectrum of a normal mode.

Fig. 10. Time–frequency spectrum of the motor with faulty bearings.

up 2–5 bins off the estimated frequency. Fig. 10 illustrates
the time–frequency spectrum of the same motor with faulty
bearings. In the case of faulty bearings, the bearing frequency
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TABLE III
RESULTS OF THEDETECTION TESTS FOR THENOTCH-FILTERED

DATA DIGITIZED AT 32 SAMPLES PER POWER SUPPLY

components are shifted downwards, since the bearing defect
decreases the speed of the motor.

During the testing process, data from both Tables I and
II were used. The training data were included in testing to
validate the threshold selection criteria. The threshold was
set as two unit standard deviations. Out of 112 samples
from the sixth channel, 110 samples were correctly identified.
Two samples from a normal operating mode with healthy
bearings were misclassified as potential fault signals, yielding
98% accuracy and 2% false positive error. Samples from
a normal operating mode were mostly within two standard
deviations of the representatives. The false positive error is
produced by those samples which are beyond two standard
deviations. Nevertheless, these samples were still within at
most 3.5 standard deviations of the representatives, which is
very small as compared to the distance of even the closest
fault signal. The detailed results of this test are tabulated in
Table III. The diagonal entries in the matrix show the number
of correctly classified samples and the off-diagonal entries
show the number of misclassifications. For example, the entry
at the th row and th column shows the number of samples
from mode which are classified as mode. In the case
of perfect classification, the matrix becomes diagonal. The
average distance of the first three fault data sets to the normal
operating modes are shown in Table IV(a)–(c). These distances
are at least in the order of tens. As we shall explain in the
next section, these misclassifications can be easily avoided by
analyzing the threshold setting further, which was arbitrarily
chosen as two standard deviations. Therefore, the thresholds
of the normal operating modes can be relaxed to reduce the
rate of false positive error without decreasing the detection
accuracy.

The experiments with the unfiltered data yielded the same
result as the filtered data. In fact, visual inspection of feature
vectors from both data sets did not reveal significant differ-
ence. The tests were repeated with the data downsampled to
12 samples per power cycle. The notch-filtered data resulted in
95% accuracy and 5% false positive rate. The unfiltered data
resulted in 93% accuracy and 7% false positive rate. These
results suggest that the proposed method does not require a
high sampling rate.

Bearing experiments were also carried out with defective
bearings of one, two, and three scratches on the outer race, one,
two, and three scratches on the balls, and one, two, and three
cage defects. All the defective measurements were correctly
classified as defective.

TABLE IV
AVERAGE DISTANCE OF THE TEST SAMPLES WITH DEFECTIVE

BEARINGS TO THE NORMAL OPERATING MODES

(a)

(b)

(c)

B. Broken Bar Experiments

For the training stage, a 35-hp inside-out motor operating
in three different load and operating conditions was used.
These data sets are tabulated in Table V. The time–frequency
spectrum was computed so that the frequency resolution
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TABLE V
TRAINING DATA FROM THE 35-HP MOTOR WITH BROKEN BAR

Fig. 11. Time–frequency spectrum of the normal operating modes of the
broken bar motor.

Fig. 12. The representatives of the normal operating modes of the broken
bar motor around the fifth harmonic and a test feature from the motor with
broken bars.

TABLE VI
TEST DATA FROM THE 35-HP MOTOR WITH BROKEN BARS

would be at least 0.2 Hz/bin. This yielded six strips of
frequency spectra per data set. The time–frequency spectrum
of the normal operating modes of the motor is shown in
Fig. 11. The broken bar feature vector was formed by a
window of frequency components around the first, fifth, and
seventh harmonic sidebands, as described in Section IV-A.
The representatives of the normal operating modes and a test
feature around the fifth harmonic are shown in Fig. 12.

TABLE VII
RESULTS OF THEBROKEN BAR DETECTION TESTS FOR THE

UNFILTERED DATA DIGITIZED AT 32 SAMPLES PER POWER CYCLE

In the testing stage, seven different sets of data, three of
which were from a nondefective motor and four from motors
with varying degrees of broken bars, load conditions, and
rotating asymmetries were used. The specifics of these data
sets are tabulated in Table VI. Out of 42 tests, all were
correctly classified, resulting in 100% accuracy. The results
are tabulated in detail in Table VII.

VIII. C ONCLUSIONS

In this paper, we have discussed an adaptive time–frequency
method to detect broken bar and bearing defects. It was shown
that the time–frequency spectrum reveals the properties rele-
vant to fault detection better than the Fourier spectrum in the
transform domain. The method is based on a training approach
in which all the distinct normal operating modes of the motor
are learned before the actual testing starts. Our study suggests
that segmenting the data into homogenous normal operating
modes is necessary, because different operating modes exhibit
different statistical properties due to nonstationary nature of
the motor current. Overlooking this fact will deteriorate the
performance of the detection. We showed that signals from
faulty motors are several hundred standard deviations away
from the normal operating modes, which indicates the power
of the proposed statistical approach.

Also, we proposed new methods of estimating fault fre-
quencies based on torque and mechanical speed estimations.
We showed that a window of frequency components around
the estimated fault frequencies has to be monitored, because
the estimates, even in the case of exact knowledge of the motor
geometry and the operating conditions, are never accurate.
This approach also allows us to efficiently process frequency
components which are spread due to low-frequency resolution.

Our study suggests that the proposed method is a mathe-
matically general and powerful one which can be utilized to
detect any fault that could show up in the motor current.
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