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Abstract—It is well known that motor current is a nonsta- motor current analysis has been implemented using limited
tionary signal, the properties of which vary with respect to mathematical tools and computer capability. These methods
the time-varying normal operating conditions of the motor. AS 516 mostly deterministic and based on Fourier transformation

a result, Fourier analysis makes it difficult to recognize fault 11 21 H it i Il K that Eourier t f
conditions from the normal operating conditions of the motor. [1], [2]. However, it is well known that Fourier transform

Time—frequency analysis, on the other hand, unambiguously t€chniques are not sufficient to represent nonstationary signals.
represents the motor current which makes signal properties Moreover, the uncertainty involved in the system requires an
related to fault detection more evident in the transform domain. adaptive statistical framework to address the problem in an
In this paper, we present an adaptive, statistical, ime—frequency gfficient way. In recent years, advancement of statistical signal

method for the detection of broken bars and bearing faults. Due . thods h ided efficient and optimal tool
to the time-varying normal operating conditions of the motor and Processing menods nave provided etiicient and optmal 100is

the effect of motor geometry on the current, we employ a training- 0 process nonstationary signals. In particular, time—frequency
based approach in which the algorithm is trained to recognize the and time—scale transformations provide an optimal mathemat-
normal operating modes of the motor before the actual testing jcal framework for the analysis of time-varying, nonstationary
starts. During the training stage, features which are relevant to signals [3], [4]

fault detection are estimated using the torque and mechanical s ) . .
speed estimation. These features are then statistically analyzed . In this paper, we propose an adaptive stat|st|cgl
and segmented into normal operating modes of the motor. For time—frequency method to detect broken bars and bearing
each mode, a representative and a threshold are computed and faults. The key idea in the proposed method is to transform
stored in a data base to be used as a baseline during the testindmotor current into a time—frequency spectrum to capture the

stage. In the testing stage, the distance of the test featl_Jres Otime variation of the frequency components and to analyze
the mode representatives are computed and compared with the

thresholds. If it is larger than all the thresholds, the measurement the spectrum statlstlca!ly to d|§FlngU|sh fault COHdItI.OHS
is tagged as a potential fault signal. In the postprocessing stage,from the normal operating conditions of the motor. Since
the testing is repeated for multiple measurements to improve each motor has a distinct geometry, we adapt a supervised
the accuracy of the detection. The experimental results from our approach in which the algorithm is trained to recognize the

study suggest that the proposed method provides a powerful and 1y y5) gperating conditions of the motor prior to actual
a general approach to the motor-current-based fault detection. fault detection

_Index Terms—Bearing faults, broken bar detection, motor  The method consists of four stages: preprocessing, train-
diagnostics, statistical analysis. ing, testing, and postprocessing. In the preprocessing stage,
the analog data are subjected to typical signal conditioning

|. INTRODUCTION procedures. During the training stage, the time—frequency

AULT detection based on motor current relies on in§pectrum of the current is computed and features relevant

. . to[ fault conditions are extracted using torque and mechanical
terpretation of the frequency components in the curren

; -speed estimation. Next, the feature space is segmented into
spectrum that are related to rotor or bearing asymmetnefhg.

However, the current spectrum is influenced by many factor%e normal operating conditions of the motor, and a set

. . . . : . 0of representatives and thresholds are determined for each
including electric supply, static and dynamic load conditions,

noise, motor geometry, and fault conditions. Therefore, tﬁ'é)rmal operating mode. The segmentation is performed by

motor current can be best modeled as a nonstationary ranaEIH’]]er statistical segmentation or torque estimation. Once the

signal. Also, the dependency of motor current on the motor qa%gonthm is trained for all the normal operating conditions,

ometry requires a flexible, adaptive approach. For many years. testing stage starts. In this stage, the time-frequency
yreq ' P PP ' yy spectrum of the motor is acquired periodically and the features
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The remainder of this paper is organized as follows. IR , . ‘ , . } ,
Section Il, we introduce the time—frequency analysis from
a perspective relevant to our discussion. In Section IlI, we,,.
outline our approach and compare it with the existing motor
fault detection methods. In Section IV, we introduce th(;00
preprocessing and training stages. In Sections V and VI, we
discuss the testing and postprocessing stages. In Section VII,
we present experimental results. Finally, in Section VIII, we*”
briefly discuss further items of interest in this context and .
conclude our discussion. 6o~

Il. TIME—FREQUENCY ANALYSIS OF MOTOR CURRENT 4

The representation of a signal by means of its Fourier
spectrum is essential to solving many problems in applieégm
sciences. However, in some instances, Fourier transform is
not the most natural or useful way of representing a signal.% " soc ™ “ioco 1500 2000 2500, 3000 3500 4000 4500 5000
For example, we often think of music or speech as a signal in
which the spectrum evolves over time in a significant way'9- 1. Fourier spectrum of motor current.

We imagine that, at each instant, the ear hears a certain
combination of frequencies and that these frequencies @mcessing task in hand, appropriate choice of the window
constantly changing. This time evolution of frequencies is nfinction ¢ could yield sharp results.
reflected in the Fourier transform. In theory, a signal can belt is well known that motor current is a nonstationary signal.
reconstructed from its Fourier transform, but the transfortne properties of which vary with respect to the time varying
contains information about the frequencies of the signal ovetrmal operating conditions of the motor, particularly with
all times, instead of showing how the frequencies vary witlhe load. As a result, Fourier analysis makes it difficult to rec-
time. For a given a signaf, the standard Fourier transform ognize fault conditions from the normal operating conditions
1 ‘ of the motor because Fourier-spectrum-based fault detection
Flw) = o / f(t)er<t dt (2.1)  implicitly assumes that the motor current becomes nonstation-
7 ary only in the presence of fault conditions. Time—frequency
gives a representation of the frequency contenf averaged analysis, on the other hand, unambiguously represents the
over the entire duration of the Signal. Therefore, the infornotor Current’ which makes Signa' properties related to param_
mation concerning time localization of the frequency contegter estimation and recognition more evident in the transform
cannot be deduced fromfi(w). As a result, Fourier analysis gomain. To illustrate this situation, we acquired motor current
yields poor results for nonstationary signals, that is, signaiem a 3/4-hp motor operating under three different load
whose properties evolve over time. conditions The motor was first operating under 0.226N2

Time localization of nonstationary signals is typicallyb.m) of load torque, then 1.13 W (10 Ibin) and then 0.226
achieved by theGabor or short-time Fourier transforn{5].  N.m (2 Ibin) again. The analog signal was low-pass filtered
This transform works by first dividing the signal into short 800 Hz and digitized at 32 samples per 60-Hz voltage
consecutive or overlapping portions and then computing t8gpply. As seen in Fig. 1, the Fourier spectrum reveals no
Fourier transform of each portion. The idea is to introduGgformation about the load oscillations. The time variations of
local frequency parameter so that the local Fourier transfokfk frequency content are spread out over the entire frequency
looks at the signal through a window over which the signal P%mge. The time—frequency spectrum shown in Fig. 2, on the
approximately stationary. Such a transform results in a twgther hand, clearly unveils the load oscillations which are
dimensional description of the signal in time—frequency plaggportant for fault detection. The horizontal axis represents
composed of spectral characteristics depending on time.  the frequency with 0.2 Hz/bin resolution and the vertical axis

The mathematical description of short-time Fourier trangepresents the time with 5-s resolution. The color represents
form is given as follows: the intensity of the time—frequency spectrum in decibels.

1 it In the following sections, we shall discuss in more detall
Flam)= Ver / F(Dg(t = nto)e dt (22) how time—frequency spectrum can be utilized to devise an

. . . . . efficient fault detection system.
whereg is an ideal cut-off function. Dividing the current signal

into small portions amounts to multiplyinf by a translate of

g, 1.e., g(t — nto) wheret, is the length of the cutoff interval
and »n is an integer associated with the signal portion. The
parameterw is similar to the Fourier frequency and many In motor-current-based fault detection, there are two main
properties of Fourier transform carry over to the short timiéSUes:

Fourier transform. However, analysis here depends criticallye how to adapt the detection algorithm to the time varying
on the choice of the window;. Depending on the signal normal operating conditions of the motor;

Ill. FAULT DETECTION SYSTEM USING
TIME—FREQUENCY TRANSFORM
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space. Segmentation is performed either by a statistical method

w0 Or by digital torque estimation. Statistical segmentation is a

novel method which divides the time—frequency spectrum into

160 statistically homogenous regions along the time axis. Digital
torque estimator, on the other hand, divides the motor current
into loadwise constant regions. This is a compromise over the
statistical segmentation method to reduce the computational
load. The homogenous regions obtained from the segmentation
1o are defined as the normal operating modes of the motor. Next,

' the sample training data belonging to each normal operating
mode are statistically analyzed, and a mode representative and
a threshold are determined. After all possible normal operating
modes of the motor are learned, the testing stage starts. In this
40 Stage, the motor current data is periodically acquired and is
subjected to the preprocessing and feature extraction methods

140

120

tirme

80

80

e, 20 S Neo described in the training stage. The distance of the test feature
frequency vector to the representatives of each mode are computed and
Fig. 2. Time—frequency spectrum of motor current. the resulting distances are compared with the respective thresh-

olds. If any of the distances is larger than the threshold, the test

measurement is tagged as a potential fault signal. In the post-
Training Data

processing stage, the testing process is repeated for a number
—»_ Propocessing|—4{ Training | of measurements to increase the accuracy of the final decision.
* DataBase The proposed method has the following advantages.
—>| Preprocessing ]—>| Testing J * The method adapts itself to the varying operating condi-
Test Data + tions of the mot_or to be tested, thereby offering a more
. accurate detection of the faults.
[__PostProcessng | « By use of time-varying spectra in the analysis, difficult
+ cases, such as coal crushers where speed varies rapidly,
Decision may be efficiently handled.

¢ Unlike the prior art [2]-[6], the proposed method does
not require axial flux leakage data or refined guesses to

« how to estimate the fault frequencies in the absence of compute the relevant frequencies. Instead, it utilizes the

motor geometry and speed information. _(Ij_ir?ital torque destirtr;]atgr d[lO]. i . hiah luti
The prior methods reported in the literature differ mainly in © Proposed mewnog does Not require a nigh-resalion

the way they address these issues. They can be categorized frequency spectrum. The statistical measure adapted at the

. ) . testing stage takes into account the spread or the resolu-
into two classes; although the early methods recognized the i : h f ¢ Thi q th
nonstationary nature of the motor current, these methods 'on ot each Irequency component. This may reduce the
employed Fourier analysis, compromising the accuracy of the memory required to compute a high-resolution frequency
detection. In [1], the broken bar frequencies are estimated spectrum. . -
using speed estimation from the axial leakage flux data. In For the detection of broken bar_s onIy,. very I|m|teq
[6], the frequencies of interest are estimated directly from the frequency ranges are required, typlc_:ally within a few slip
current spectrum. With the recent advancement of new signal frequ_enmes arounq first few hgrmonlcs. C_Ionsequently, the
processing techniques, methods adaptable to time-varying nor- required computational load is substantially r(_educed for
mal operating conditions have been proposed [7]-[9]. These [réduency ranges set by the torque-based estimator.
methods utilize rule-based expert systems and neural networkd Restriction of the frequency range and the knowledge
to achieve adaptive detection. However, these operations are Of SPeed help exclude extraneous components, thus re-
performed in the Fourier transform domain, compromising the ducing the false alarms when load oscillations and other
nonstationary nature of the data. interference phenomena are present.

The block diagram of the proposed fault detection system® BY first identifying and isolating the broken bar and
is shown in Fig. 3. In the preprocessing stage, analog current bearing frequency components, they may be excluded
data are low-pass filtered to prevent aliasing and digitized. from further analysis, thus reducing the computational
Next, the time—frequency spectrum of the data is computed l0ad and simplifying the analysis of the rest of the
and fed into the training stage. In the training stage, fault frequency components when looking for other types of
frequencies are estimated, and a window of frequency com- faults.
ponents around the estimated fault frequencies are selected to Finally, the proposed framework is applicable to any
form a feature vector. Next, feature vectors are segmented into motor fault which causes rotor asymmetries.
homogenous sections along the time axis in time—frequenig. 4 illustrates the key idea in our fault detection method.

Fig. 3. Block diagram of the fault detection method.
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Fig. 6. Torque—speed curve for mechanical speed estimation.
Fig. 4. Three-dimensional illustration of the fault detection method.

load. We shall call the frequency components associated with

Time—fretquency the broken bars as thbroken bar feature vectorand the
spectrum . . .
i frequency components associated with the bearing faults as
Feature Extraction the bearing feature vector
- In motor theory, it is well known that broken bar faults
* yootor show up as sideband frequencies of the first, fifth, seventh,
and higher order harmonics [1], [7], [11]. These frequencies
: Torque ’ ’
Segmentation |4 £qfimation are given by the following formula:
Normal Operating
* Modes 1
— S
Statistical Analysis fbrk = fs |:k< p/2 ) + S:| ) k= 17 27 37 Tt (41)
Representatives ¢ ‘Thresho[ds
where f, is the electrical supply frequency is per-unit
Data Base slip, and p is the number of poles. Note that, due to the
normal winding conditions, only those frequencies for which

2k/p =1,5,7,11, 13, --- appear in the stator current with
significant amplitude.

From the nameplate of the motor, one can determine the
number of poles. However, the slip changes with the
mechanical speed of the motor, which is not readily available.

The block diagram of the training stage is shown in Fig. She relationship between the mechanical speed and the slip is
The first step in the training stage is the feature extractigfiyen by the following equations:

process, in which the frequencies relevant to fault detection

are estimated from the time—frequency spectrum. Next, the f of

training features are segmented into the constant operating s=1-—22 foy = s (4.2)
modes of the motor. Finally, the samples from each mode fsy p

are statistically analyzed to determine a mode representative

and threshold. These values are saved in a data base tavhere f,, is the mechanical speed arfig). is the synchronous
used as a baseline later in the testing stage. Note that $peed.

segmentation process and feature extraction process can behe digital torque estimator provides a simple solution for
interchanged. However, the computational load is much legg estimation of the mechanical speed and the slip frequency
if the feature extraction is performed prior to segmentatio[7]—[12]. The technique is illustrated by Fig. 6. The number of
because the size of the feature vector is much smaller than H@%S provides the means for estimating the synchronous speed

Fig. 5. Block diagram of the training stage.

IV. TRAINING

size of the entire frequency spectrum. from torque—speed curve. This estimate is given by point #1
_ in Fig. 6. Also, the rated torque and the rated speed of the
A. Feature Extraction motor can be obtained from the nameplate, as shown by point

In this section, we shall discuss the estimation of broken b&2. A straight line connecting points 1 and 2 is a sufficient
and bearing fault frequencies. Next, we shall select a wind@pproximation of the motor torque—speed curve in the normal
of frequencies around the estimates to form a feature vecttange of loads. The torque estimator finds the actual steady-
A feature vector is highly informative compressed data whictate motor torque within 2% error, which is shown by point
facilitates reliable detection while reducing the computation&B. The mechanical speed of the motor then can be estimated
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by Similarly, the outer race bearing defect frequencies can be

T f estimated by [13]
' o 1——”) A 4.3
f (1= 2 ) (4.3)

whereT.., is the estimated torquéy, is the rated torque, and ~ fbxg = fo £71-0.4- fr,
fr¢ 1s the rated speed. This is now sufficient to establish the

slip frequency within 2% error. o ) )

n=6,7---,12. (4.7b)

following formula: of frequencies around the estimated bearing frequencies
fbrkgfsik'fnu k:]-a 2,3, . (44) Fbrg(t)
(56 7 o gl2
When the torque estimate is not available, the speed and slip =g (£); Frong (1), Py (1)] (4.82)
frequency may not be estimated accurately. As a result, tﬁag(t)
broken bar frquency estimate will be less accurate, since the =[S(f,, —w, 1), -, S(fixe 1), - S(fing + w0, B)],
nameplate provides the speed at full load only. n==6,7 12 (4.8b)

Rotor asymmetry, resulting from rotor ellipticity, misalign-

ment of the shaft with the cage, magnetic anisotropy, e, selected to form the bearing feature vector. Typically, the
shows up at the same frequency components as the broken R{§th of the window is chosen to be at least 1 Hz on each
and must be distinguished from the broken bar frequenciggje of the estimated frequency. If torque estimation is not
This can be achieved by examining the sidebands of thgajaple, all the frequency components between the rated
higher harmonics. An asymmetry results in low hlgh-frequen%eed and the synchronous speed can be included in the
content. In contrast, localized effects, such as a broken b@éaring feature vector.

result in large high-frequency content. Finally, the feature vector at time instantés formed by

After estimating the broken bar frequencies, a window mpining the broken bar and the bearing feature vectors
frequency components around the estimates is selected to

form the broken bar feature vector. Typically, the window is F(t) = [Frok(t), Borg(t)]. (4.9)
chosen such that at least 0.25 Hz on each side of the estimate ’ s
are included in the feature vector. Explicitly, the broken bar

feature vectotl,k(t) at time instant can be written as B. Segmentation
Boac(t) = [FLL(8), F2. (8), -] (4.53) A_s dlscussed _earlle_r, th_e motor current is a piecewise
P8y — [S( P ) S(fn 4 stationary signal in which different constant operating modes
betc(t) =[S (fl —w, 8); -5 S(fines 1), - correspond to different statistically homogenous segments.
S +w, )], n=1,5711, - Therefore, it is necessary to determine different baseline

(4.5b) thresholds for different operating modes of the motor. To do
so, we compute the time—frequency spectrum of the motor
where S is the magnitude of the time—frequency representgr all possible normal operating modes of the motor during
tion, i.e., S(f, t) = |F(f, t)|*, andw is the length of the the training stage and segment the spectrum into homogenous
window around the estimatef,, n = 1,5, 7,11, --- in  segments along the time axis. The segmentation process is
Hz/bin. Note that, forn = 1, the slip frequency componentsperformed either by a novel probabilistic method or by torque
are on both sides of the supply frequency due to the speggimation. First, we shall discuss the probabilistic approach.
oscillations, but for higher harmonics, they are only on the Let us assume a number of feature vectdtgt), ¢ =
lower side of the supply frequency. 1,---, N are available for the training process whehe
A bad rolling element bearing in a motor allows the shaf§ the total training duration. We assume that the normal
to move radially a small amount. For example, if there is @perating modes of the motor change slowly and contiguous
pit in the outer or the inner race, the balls encountering féature vectors are likely to fall into the same mode. Given
will fall in and move radially. Thus, the air-gap geometry wilkhese assumptions, the segmentation process can be viewed
be slightly disturbed, leading to a modulation of the currenis the detection of time instants at which F(¢), ¢ < t,

These modulation effects will show up at frequencies and F(t), t > t, exhibit different statistical properties. We
_ _ shall call this instansplit point To implement the detection
Jirg = fs £ fu, n=123 (4.6) process, we divide the feature vectd§t), t = 1, ---, N into

where f, is the mechanical vibration frequency, the value diontiguous windows along the time axis. The length of the time
which depends on the type of the race defect and geome‘f‘f- dow T is chosen so that the motor can exhibit at most two
of the bearing. If the bearings have 6-12 rolling elements, tH&ferent operating modes during units of time. Within each

inner race bearing defect frequencies can be estimated by [#8]e window, the location of the split point is detected by
maximizing the conditional joint probability density function

fog =faE£n-06- f,, n==6,7 ---,12. (4.7a) of the feature vectors within the window, given the location



YAZICI AND KLIMAN: METHOD FOR DETECTION OF BROKEN BARS AND BEARING FAULTS 447

X KKRAKEKKKKX and covariance matrix of a mode as mode representative and

KXXXXXXXXXXXX denote it by
XXXXXXXXXXXXX i
XXXXXXXKKXX . .
split point  <@— XXXXXXXXXXXXX g7 P R; = (M;, C; j=1,---, L. 4.12
PiEp 0000000000000 i = My, Cj), J ’ ’ ( )
0000003000000 )
000000000000 } merge Recall that the feature vectdt(t;) is composed of the bro-
0000000000000 ken bar feature vectaF,,,x(¢;) and the bearing feature vector
_ 0000000000000 Fig(ti). Therefore, the mode representative is composed of
time 0000000000000

broken bar and bearing mode representatives

0000000000000

frequency Ry = (R}’rk, R}Jrg), j=1,---, L (4.13a)

Fig. 7. Probabilistic segmentation for the time—frequency spectrum. in which

brk brk brk brg __ br br,
of the split point. This can be mathematically expressed as Ry = (M7, O7), B8 = (M), C%) (4.13D)

R where
ts = argmax Pr(F(tg+1), 1=0, -, T—1li =t;)
ts=0, -, T—1 o brk br
(4.10) M; = [M{) o M;"®] (4.14a)
where t, is the beginning of the time window, is the C. = oy Oy (4.14b)
candidate location for the split point, anbl(tg + %), i = ’ Cs C}’rg '
0, ..., T —1 are the feature vectors within the time window, . . .
Note thatf, = T'— 1 is interpreted as no mode change durin nd C5 is the covariance matrix between the broken bar and

e bearing feature vectors.
t is important to note that, once the bearing and broken
r mode representatives are obtained, the distance between

the time windowZ". Once all the time windows are studied an
the locations of all the split points are estimated, segments ttéa

are similar are merged using the Bhattacharyya distance [14]. .. ) X
Fig. 7 illustrates the probabilistic method of forming dif“ferenvj’(la distinct operating modes with respect to the broken bars

normal operating modes. For more details on the probabilisﬁgg db.?] atrrl]negsoasrte r%ilgglsaéeds?;desﬁrr]eedéEattTaec(rj]Ztra gazitfngg
segmentation process, please refer to [15]. u ! postp Ing stage. yya di

In the torque-based segmentation, the time instants béa[tween two modes is given by

which significant load changes occur are recorded and the 1 C.+C:\ "t
time—frequency spectrum in each loadwise constant segmentB(R;, R;) = g(Mi - M)" <%) (M; — M;)

is computed. Next, the feature vectors for each segment are

computed and utilized to determine a statistical representative det <M)

and threshold for each loadwise constant mode of the motor. 4o lr (4.15)
Although this approach is computationally less expensive as 2 det(C;Cy)

compared to the previous one, it cannot identify many of the

subtle statistical changes that occur, such as the ones du (t)?e that the first term in the summation measures the distance

shaft misalignments, in the current spectrum. As a result, the .
In,_terms of mean values, and the second term measures in

accuracy of detection may be less than the previous approatcérpms of the covariance matrices

We now want to define broken bar and bearing fault
C. Selection of Mode Representatives and Thresholds thresholds for each normal operating mode of the motor. To do

For each constant operating mode of the motor, the sampfe We first define a statistical distance between each member
mean and the covariance matrix of the feature vectors &kthe mode and its representative
chosen as the representatives of the mode. Mathematlcally,DRr’lj = d(Fom(th), R}’rk)

these representatives are given by e k1 -
= (Fbrk(tk) — Mjr ) er N (Fbrk(tk) - Mjr )7

L.
! j j = e C = cee . .
My == Flt) (4.11a) j=1 L, k=1, L (4.16a)
’ le:1 Similarly,
1 < .
Cj=1 2 FW) = MYEM) = M), j=1,, L DI =d(Fglta), R}™)
J k=1 i - r
(4.11b) = (Fhog(tr) — M) 7™ (Fug(t) — M),
j=1,---, L, k:l’...’Lj. (4.16b)

where L is the total number of distinct operating modes of

the motor,L; is the number of feature vectors belonging tdote that the distance measure is chosen to be the well-known
the modej, and ¢, is the time instance of a feature vectoMahalanobis distance, in which each entry in the Euclidean
in a given homogenous mode. We shall refer to the medistance is downweighted by the variance of the entry [16].
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Data Base

Test Representatives ¢ ‘Thresholds
Spectrum

; i Compare with the
Feature Extraction Compute Distances Thresholds
Distances Measurement Tag

Fig. 8. Block diagram of the testing stage.

In order to obtain an optimal broken bar and bearingre used. For example, in the case of broken bars, the distance
fault threshold for each mode, the sample mean and standgrddomputed as
deviation of the intramode distances are calculated

L AP = d(FP, RP™), j=1,---, L. (5.1)
Db = Z Db (4.17a)
L k=1 Next, we check if the distancA*™* between the test feature
L; and the representatives of each mode is less than the mode
bk = 1 (Dbk—Dbkyz i1 ... L threshold 7%, If the distance is greater than all the mode
Ly £~ thresholds; ™, j = 1, ---, L, then the test measurement is

(4.17b) tagged as potentially faulty.
To improve the accuracy of our decision making, we repeat
Similarly, this testing process for multiple test features. The decisions
obtained from each test feature and the distances are fed to

L;
the postprocessor to finalize the decision on the bars or the
brg brg
D" = L kz_: (4.18a) bearings of the motor.
rL;
1 — .
brg L_ Z Dbrg Dl;rg)27 =1, L VI. POSTPROCESSING

The assumption in the postprocessing stage is that, if there
(4.18b) is a broken bar or bearing fault, consecutive test samples
are expected to be potential fault features and will eventually

The broken bar and bearing fault threshokj‘!’§k, andTbrg form a mode which is statistically distinct from all the normal
for each operating mode are setinit standard deviation away operating modes of the motor. Therefore, as the potential fault

from the mean distances, i.e., features are identified by the testing stage, the m@anand
_ the covariance matriXCr of the potential fault features are
R = DY + aol® (4.19a)
J computed. Note that these feature vectors could be broken bar
P = Dbrg + ao—brg, j=1,---, L. (4.19b) or bearing fault feature vectors. Next, the distantidir, ;)

’ between the normal operating modes of the motor and the

Note that, in the case of normal distribution of the intramodepresentative§ My, Cr) of the faulty features are com-
distances,« is typically chosen to be 2 to provide a 99%puted using the Bhattacharyya distance. The normal operating
confidence interval. However, in our approach, it is kept as amode to which the potential fault representative is closest is
input parameter to allow the user to utilize one’s engineeringentified, i.e.,
judgment.

7 = argmin B(Rp, R;). (6.1)
V. TESTING =L

The major steps of the testing stage are illustrated in Fig. ‘ﬁﬁe shortest Bhattacharyya distang, of the modej is re-
Similar to the training process, the test data are first suquﬁ ed from the data base and compared withB{&, R )_
to the operations discussed in the preprocessing stage ﬁ/e distanceB(Ry, R )|s greater than the dlstanﬂ’a fhe

feature extraction process discussed above. Next, usmg]tI &l
alarm for the broken bars or faulty bearings is tr| ered.
Mahalanobis distance introduced in (4.15), the distance be- y g 99

tween the test featurk; and the representatives of the normal
operating moded?; is computed. Depending on whether we
want to check the condition of the broken bars or bearings,For broken bar detection experiments, the raw data from
appropriate portions of the feature vector and representaties35-hp inside-out motor were generated and archived

VII. EXPERIMENTAL RESULTS
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TABLE | TABLE 1
TRAINING DATA FrROM 3/4-HP MOTOR WITH GOOD BEARING TESTING DATA FROM A 3/4+P MOTOR WITH DAMAGED BEARINGS
Mode File Name” Torque Speed Bearing and Mode File Name Torque Speed Bearing and
data ID Data 1D
1 H0895001.asc -0.339 N-m- 1789 Rpm | C2 0 HO995001.as¢ +0.339 N-m 1789 Rpm | H1 with hole out.™
2 HO0895002.asc 0.3164 N-m 1790 Rpm c2 0 H0995002.as¢ +1.378 N-m 1762 Rpm | H1 with hole out.
3 H0895003.asc +1.356 N-m 1762 Rpm Cc2 0 H0995003.asc +2.825 N-m 1720 Rpm | H1 with hole out
4 H0895004.asc +2.845 N-m 1718 Rpm Cc2 0 H0995004.asc +1.356 N-m 1762 Rpm H1"hole out & turn fault.
5 HO895005.asc +1.356 N-m 1762 Rpm | C2 with turn faults 0 H0995005.asc +0.332 N-m 1790 Rpm | H1 with hole out.
' 0 H0995006.asc +1.367 N-m 1762 Rpm | H1 with hole out.
0 H0995007.asc +2.825 N-m 1719 Rpm | H1 with hole out.
for Electric Power Research Institute (EPRI) Broken Bar o 11595001.as¢ +1.366 N-m 1761 Rpm | H1 with hole in.""
Project—EPRI RP2331-1 in 1986 [2]. For bearing fault o 11595002.as¢ +2.825 N-m 1717 Rom | H1 with hole in.

detection experiments, a 3/4-hp motor was used. In both
cases, the analog current data were low-pass filtered at 800
Hz and digitized at 32 samples per power cycle. However, &
we shall discuss, the algorithm does not require frequencie
larger than 300 Hz, and sampling frequency can be as low
six samples per power cycle. Each data file in the experiment
contains eight channels which include three phase curren
three phase voltages, 60-Hz notch-filtered first phase curren
and accelerometer data. Notch-filtered data were collectg
in anticipation of improving the dynamic range of the A/D
converter. Accelerometer data were used in the bearing tes
to validate the location of the fault frequencies.

A. Bearing Fault Experiments 60

The bearing fault experiments were performed using t 55

first, sixth, and the eighth channels to evaluate the significanc

of notch filtering and the accelerometer data. The data wer v -

collected for about 40 s, yielding 80000 points per chan- 5 w2 25 80 3 40
Freq. from 25.658 Hz to 33.658 Hz

nel. Later, these data sets were downsampled to study the
ef‘feCt of lower rate Sampling. The |ength of the W|ndOW|ng|g 9. Time_frequency spectrum of a normal mode.
function was selected so that the time—frequency spectrum
has 0.2 Hz/bin resolution, which resulted in eight contiguoug
frequency spectra for each data set.

Table | shows the data sets used during the training stage g
the bearing fault detection algorithm. The data were collectet
at different loads and speed. The bearing C2 is a health
ball bearing which was pressed on the motor shaft and the
soaked with oil before it was installed. The motor was run
continuously for about 5 min during the various tests. Inf
one case, an artificial turn fault was induced to check if the
algorithm would be able to distinguish between the turn faults
and bearing faults. Note that, for the healthy modes, a nonzer
label is used; the label O is reserved for the fault modes. s

Table Il shows the data sets acquired from the same moto
with faulty bearings. The inner and outer race defects wersg
simulated by mounting the faulty bearing in different configu- |
rations. In the first case, the ball bearing with a hole mountedg » '
toward the outer part of the rotor shaft induced a severe outer 5 0 ° 2 Caaesie 0
race defect. In the second case, the bearing mounted toward the
inner part of the rotor shaft induced a mild outer race defeétg- 10. Time—frequency spectrum of the motor with faulty bearings.

Fig. 9 illustrates the time—frequency spectrum of the motor

current with healthy bearings around the bearing frequendip 2-5 bins off the estimated frequency. Fig. 10 illustrates

Ideally, the estimated frequency has to be at the middle of tiie time—frequency spectrum of the same motor with faulty

window. However, the true bearing frequency usually shoviearings. In the case of faulty bearings, the bearing frequency
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TABLE I TABLE IV
REsuLTS oF THEDETECTION TESTS FOR THENOTCH-FILTERED AVERAGE DISTANCE OF THE TEST SAMPLES WITH DEFECTIVE
DATA DiGITIZED AT 32 SaMPLES PER POWER SuppLY BEARINGS TO THE NORMAL OPERATING MODES
400 P T T T T T T T TY
Mode | 1 2 3 4 5 0 3 ! ! ! !
(=]
! 8 e 1995003
2 7 1 g h995007
3 8 k= 11595002
4 8 3
=
5 7 1 2
0 72 =
=
5
]
components are shifted downwards, since the bearing defectg
decreases the speed of the motor. A

During the testing process, data from both Tables | and
Il were used. The training data were included in testing to
validate the threshold selection criteria. The threshold was
set as two unit standard deviations. Out of 112 samples (@)
from the sixth channel, 110 samples were correctly identified.
Two samples from a normal operating mode with healthy 2000

bearings were misclassified as potential fault signals, yielding §
98% accuracy and 2% false positive error. Samples from § W 1995002 7
a normal operating mode were mostly within two standard .g 1500 @ 1995004 ]

deviations of the representatives. The false positive error is & 11595001
produced by those samples which are beyond two standard'f:l
deviations. Nevertheless, these samples were still within at E
most 3.5 standard deviations of the representatives, which is §
very small as compared to the distance of even the closest £
fault signal. The detailed results of this test are tabulated in
Table lll. The diagonal entries in the matrix show the number
of correctly classified samples and the off-diagonal entries
show the number of misclassifications. For example, the entry
at theith row andjth column shows the number of samples Modes
from mode ¢ which are classified as modg In the case

of perfect classification, the matrix becomes diagonal. The
average distance of the first three fault data sets to the normal ; g0 1¢t
operating modes are shown in Table 1V(a)—(c). These distances_

are at least in the order of tens. As we shall explain in the '%1.000 1
next section, these misclassifications can be easily avoided byS
analyzing the threshold setting further, which was arbitrarily o 8000
chosen as two standard deviations. Therefore, the thresholdg

of the normal operating modes can be relaxed to reduce thes 6000
rate of false positive error without decreasing the detection -
accuracy.

The experiments with the unfiltered data yielded the same
result as the filtered data. In fact, visual inspection of feature
vectors from both data sets did not reveal significant differ-
ence. The tests were repeated with the data downsampled to 0
12 samples per power cycle. The notch-filtered data resulted in
95% accuracy and 5% false positive rate. The unfiltered data
resulted in 93% accuracy and 7% false positive rate. These ©
results suggest that the proposed method does not require a
high sampling rate.

Bearing experiments were also carried out with defecti® Broken Bar Experiments
bearings of one, two, and three scratches on the outer race, on&or the training stage, a 35-hp inside-out motor operating
two, and three scratches on the balls, and one, two, and thireghree different load and operating conditions was used.
cage defects. All the defective measurements were correcllyese data sets are tabulated in Table V. The time—frequency
classified as defective. spectrum was computed so that the frequency resolution
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TABLE V TABLE VII
TRAINING DATA FROM THE 35-HP MOTOR WITH BROKEN BAR RESULTS OF THEBROKEN BAR DETECTION TESTS FOR THE
UNFILTERED DATA DiGITIZED AT 32 SAMPLES PER POWER CYCLE
Mode Torque Alighment
1 Over load 10 mil offset Mode 1 2 3 0
2 Full load Aligned 1 6
3 No load Aligned 2 6
3 6
0 24
Mode3
In the testing stage, seven different sets of data, three of
which were from a nondefective motor and four from motors
Mods2 with varying degrees of broken bars, load conditions, and
rotating asymmetries were used. The specifics of these data
sets are tabulated in Table VI. Out of 42 tests, all were
correctly classified, resulting in 100% accuracy. The results
are tabulated in detail in Table VII.
Mode1
o - , , ) ; VIIl. CONCLUSIONS
0 100 200 300 400 500

In this paper, we have discussed an adaptive time—frequency

Fig. 11. Time—frequency spectrum of the normal operating modes of thgethod to detect broken bar and bearing defects. It was shown
broken bar motor. that the time—frequency spectrum reveals the properties rele-
vant to fault detection better than the Fourier spectrum in the

%0 e tost transform domain. The method is based on a training approach

8o yelMode1 | in which all the distinct normal operating modes of the motor
gm:Mode2 are learned before the actual testing starts. Our study suggests

701 blu:Mode3 1 that segmenting the data into homogenous normal operating

modes is necessary, because different operating modes exhibit
different statistical properties due to nonstationary nature of
the motor current. Overlooking this fact will deteriorate the
performance of the detection. We showed that signals from
faulty motors are several hundred standard deviations away

60+
80t

aof /

30l ‘ Y \f from the normal operating modes, which indicates the power
of the proposed statistical approach.
20, 5 10 15 20 25 Also, we proposed new methods of estimating fault fre-

quencies based on torque and mechanical speed estimations.
Fig. 12. The representatives of the normal operating modes of the bro showed that a window of frequency components around
bar motor around the fifth harmonic and a test feature from the motor wi . . )
broken bars. the estimated fault frequencies has to be monitored, because
the estimates, even in the case of exact knowledge of the motor

TABLE VI geometry and the operating conditions, are never accurate.
TesT DATA FROM THE 35-HP MOTOR WITH BROKEN BARS This approach also allows us to efficiently process frequency
components which are spread due to low-frequency resolution.
Mode Torque Alignment | Broken Bars Our study suggests that the proposed method is a mathe-
0 No load Aligned 1 cut matically general and powerful one which can be utilized to
0 Full load Aligned 2 adjacent cuts detect any fault that could show up in the motor current.
0 No load Aligned 2 adjacent cuts
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