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AN ADAPTIVE STOCHASTIC GALERKIN METHOD FOR

RANDOM ELLIPTIC OPERATORS

CLAUDE JEFFREY GITTELSON

Abstract. We derive an adaptive solver for random elliptic boundary value
problems, using techniques from adaptive wavelet methods. Substituting wave-
lets by polynomials of the random parameters leads to a modular solver for the
parameter dependence of the random solution, which combines with any dis-
cretization on the spatial domain. In addition to selecting active polynomial
modes, this solver can adaptively construct a separate spatial discretization

for each of their coefficients. We show convergence of the solver in this general
setting, along with a computable bound for the mean square error, and an
optimality property in the case of a single spatial discretization. Numerical
computations demonstrate convergence of the solver and compare it to a sparse
tensor product construction.

Introduction

Stochastic Galerkin methods have emerged in the past decade as an efficient
solution procedure for boundary value problems depending on random data; see
[14, 32, 2, 30, 23, 18, 31, 28, 6, 5]. These methods approximate the random solution
by a Galerkin projection onto a finite-dimensional space of random fields. This
requires the solution of a single coupled system of deterministic equations for the
coefficients of the Galerkin projection with respect to a predefined set of basis
functions on the parameter domain.

A major remaining obstacle is the construction of suitable spaces in which to
compute approximate solutions. These should be adapted to the stochastic struc-
ture of the equation. Simple tensor product constructions are infeasible due to the
high dimensionality of the parameter domain in the case of input random fields
with low regularity.

Parallel to but independently from the development of stochastic Galerkin meth-
ods, a new class of adaptive methods has emerged, which are set not in the con-
tinuous framework of a boundary value problem, but rather on the level of coeffi-
cients with respect to a hierarchic Riesz basis, such as a wavelet basis. Due to the
norm equivalences constitutive of Riesz bases, errors and residuals in appropriate
sequence spaces are equivalent to those in physically meaningful function spaces.
This permits adaptive wavelet methods to be applied directly to a large class of
equations, provided that a suitable Riesz basis is available.
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For symmetric elliptic problems, the error of the Galerkin projection onto the
span of a set of coefficients can be estimated using a sufficiently accurate approxima-
tion of the residual of a previously computed approximate solution; see [8, 19, 16].
This results in a sequence of finite-dimensional linear equations with successively
larger sets of active coefficients.

We use techniques from these adaptive wavelet methods to derive an adaptive
solver for random symmetric elliptic boundary value problems. In place of wavelets,
we use an orthonormal polynomial basis on the parameter domain. The coefficients
of the random solution with respect to this basis are deterministic functions on the
spatial domain.

Adaptive wavelet methods extend to this vector setting, and lead to a modular
solver which can be coupled with any discretization of or solver for the deterministic
problem. We consider adaptive finite elements with a residual-based a posteriori
error estimator.

We review random operator equations in Section 1. In particular, we derive
the weak formulation of such equations, construct orthonormal polynomials on the
parameter domain, and recast the weak formulation as a bi-infinite operator matrix
equation for the coefficients of the random solution with respect to this polynomial
basis. We refer to [22] for further details.

A crucial ingredient in adaptive wavelet methods is the approximation of the
residual. We study this for the setting of stochastic operator equations in Section 2.
The resulting adaptive solver is presented in Section 3. We show convergence of the
method, and provide a reliable error bound. Optimality properties are discussed in
Section 4 for the special case of a fixed spatial discretization.

Finally, in Section 5, we apply the method to a simple elliptic equation. We
discuss a suitable a posteriori finite element error estimator, and present numeri-
cal computations. These demonstrate the convergence of our solver and compare
the adaptively constructed discretizations with the a priori adapted sparse tensor
product construction from [5]; we refer to [21] for a comparison with other adaptive
solvers. We discuss the empirical convergence behavior in the light of the theoretical
approximation results in [11, 10].

1. Stochastic operator equations

1.1. Pointwise definition. Let K ∈ {R,C} and let V be a separable Hilbert space
over K. We denote by V ∗ the space of all continuous antilinear functionals on V .
Furthermore, L(V, V ∗) is the Banach space of bounded linear maps from V to V ∗.

We consider operator equations depending on a parameter in Γ := [−1, 1]∞.
Given

(1.1) A : Γ → L(V, V ∗) and f : Γ → V ∗ ,

we wish to determine

(1.2) u : Γ → V , A(y)u(y) = f(y) ∀y ∈ Γ .

Let D ∈ L(V, V ∗) be the Riesz isomorphism, i.e., 〈D·, ·〉 is the scalar product in V .
We decompose A as

(1.3) A(y) = D + R(y) ∀y ∈ Γ
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and assume that R(y) is linear in y ∈ Γ ,

(1.4) R(y) =
∞∑

m=1

ymRm ∀y = (ym)∞m=1 ∈ Γ ;

e.g., as in [5, 6, 11, 10, 28]. Here, each Rm is in L(V, V ∗). We assume (Rm)m ∈
�1(N;L(V, V ∗)), and there is a γ ∈ [0, 1) such that ‖R(y)‖V→V ∗ ≤ γ for all y ∈
Γ . By [22, Proposition 1.2], this ensures existence and uniqueness of the solution
of (1.1). For simplicity, we also assume that the sequence (‖Rm‖V→V ∗)∞m=1 is
nonincreasing.

1.2. Weak formulation. Let π be a probability measure on the parameter domain
Γ with Borel σ-algebra B(Γ ). We assume that the map Γ 	 y 
→ A(y)v(y) is
measurable for any measurable v : Γ → V . Then

(1.5) A : L2
π(Γ ;V ) → L2

π(Γ ;V ∗) , v 
→ [y 
→ A(y)v(y)] ,

is well defined and continuous. We assume also that f ∈ L2
π(Γ ;V ∗).

The weak formulation of (1.2) is to find u ∈ L2
π(Γ ;V ) such that

(1.6)

∫
Γ

〈A(y)u(y), v(y)〉 dπ(y) =

∫
Γ

〈f(y), v(y)〉 dπ(y) ∀v ∈ L2
π(Γ ;V ) .

The left term in (1.6) is the duality pairing in L2
π(Γ ;V ) of Au with the test function

v, and the right term is the duality pairing of f with v. We follow the convention
that the duality pairing is linear in the first argument and antilinear in the second.

By [22, Theorem 1.4], the solution u of (1.2) is in L2
π(Γ ;V ), and it is the unique

solution of (1.6). In particular, the operator A is boundedly invertible.
We define the multiplication operators

(1.7) Km : L2
π(Γ ) → L2

π(Γ ) , v(y) 
→ ymv(y) , m ∈ N .

Since ym is real and |ym| is less than one, Km is symmetric and has norm at most
one.

By separability of V , the Lebesgue–Bochner space L2
π(Γ ;V ) is isometrically iso-

morphic to the Hilbert tensor product L2
π(Γ )⊗ V , and similarly for V ∗ in place of

V . Using these identifications, we expand A as A = D + R with

(1.8) D := idL2
π(Γ )⊗D and R :=

∞∑
m=1

Km ⊗Rm .

This sum converges in L(L2
π(Γ ;V ), L2

π(Γ ;V ∗)) due to the assumption that (Rm)m ∈
�1(N;L(V, V ∗)).

Lemma 1.1. ‖R‖L2
π(Γ ;V )→L2

π(Γ ;V ∗) ≤ γ < 1.

Proof. We note that, as in (1.5), (Rv)(y) = R(y)v(y) for all v ∈ L2
π(Γ ;V ) and

y ∈ Γ . Therefore, using the assumption ‖R(y)‖V→V ∗ ≤ γ,

‖Rv‖2L2
π(Γ ;V ∗) =

∫
Γ

‖R(y)v(y)‖2V ∗ dπ(y) ≤
∫
Γ

‖R(y)‖2V→V ∗ ‖v(y)‖2V dπ(y) ,

and the assertion follows using the assumption ‖R(y)‖V→V ∗ ≤ γ. �
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1.3. Orthonormal polynomial basis. In order to construct an orthonormal poly-
nomial basis of L2

π(Γ ), we assume that π is a product measure. Let

(1.9) π =
∞⊗

m=1

πm

for probability measures πm on ([−1, 1],B([−1, 1])); see e.g. [4, Section 9] for a
general construction of arbitrary products of probability measures. We assume
that the support of πm in [−1, 1] has infinite cardinality.

For all m ∈ N, let (Pm
n )∞n=0 be an orthonormal polynomial basis of L2

πm
([−1, 1]),

with degPm
n = n. Such a basis is given by the three term recursion Pm

−1 := 0,
Pm
0 := 1 and

(1.10) βm
n Pm

n (ξ) := (ξ − αm
n−1)P

m
n−1(ξ) − βm

n−1P
m
n−2(ξ) , n ∈ N ,

with

(1.11) αm
n :=

∫ 1

−1

ξPm
n (ξ)2 dπm(ξ) and βm

n :=
cmn−1

cmn
,

where cmn is the leading coefficient of Pm
n , βm

0 := 1, and Pm
n is chosen as normalized

in L2
πm

([0, 1]) with a positive leading coefficient.
We define the set of finitely supported sequences in N0 as

(1.12) Λ :=
{
ν ∈ N

N

0 ; # supp ν < ∞
}

,

where the support is defined by

(1.13) supp ν := {m ∈ N ; νm 
= 0} , ν ∈ N
N

0 .

Then countably infinite tensor product polynomials are given by

(1.14) P := (Pν)ν∈Λ , Pν :=

∞⊗
m=1

Pm
νm

, ν ∈ Λ .

Note that each of these functions depends on only finitely many dimensions,

(1.15) Pν(y) =

∞∏
m=1

Pm
νm

(ym) =
∏

m∈supp ν

Pm
νm

(ym) , ν ∈ Λ ,

since Pm
0 = 1 for all m ∈ N.

For example, by [22, Theorem 2.8], P is an orthonormal basis of L2
π(Γ ). By

Parseval’s identity, this is equivalent to the statement that the map

(1.16) T : �2(Λ) → L2
π(Γ ) , (cν)ν∈Λ 
→

∑
ν∈Λ

cνPν ,

is a unitary isomorphism. The inverse of T is

(1.17) T−1 = T ∗ : L2
π(Γ ) → �2(Λ) , g 
→

(∫
Γ

g(y)Pν(y) dπ(y)

)
ν∈Λ

.
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1.4. Bi-infinite operator matrix equation. We use the isomorphism T from
(1.16) to recast the weak stochastic operator equation (1.6) as an equivalent discrete
operator equation. Since T is a unitary map from �2(Λ) to L2

π(Γ ), the tensor
product operator TV := T ⊗ idV is an isometric isomorphism from �2(Λ;V ) to
L2
π(Γ ;V ). By definition, w ∈ L2

π(Γ ;V ) and w = (wν)ν∈Λ ∈ �2(Λ;V ) are related by
w = TV w if

(1.18) w(y) =
∑
ν∈Λ

wνPν(y) or wν =

∫
Γ

w(y)Pν(y) dπ(y) ∀ν ∈ Λ ,

and either of these properties implies the other. The series in (1.18) converges
unconditionally in L2

π(Γ ;V ), and the integral can be interpreted as a Bochner
integral in V .

Let A := T ∗
V ATV and f := T ∗

V f . Then u = TV u for u ∈ �2(Λ;V ) with

(1.19) Au = f

since u ∈ L2
π(Γ ;V ) satisfies Au = f .

By definition, A is a boundedly invertible linear map from �2(Λ;V ) to �2(Λ;V ∗).
It can be interpreted as a bi-infinite operator matrix

(1.20) A = [Aνμ]ν,μ∈Λ , Aνμ : V → V ∗ ,

with entries

Aνν = D +
∞∑

m=1

αm
νm

Rm , ν ∈ Λ ,

Aνμ = βm
max(νm,μm)Rm , ν, μ ∈ Λ , ν − μ = ±εm ,

(1.21)

and Aνμ = 0 otherwise, where εm denotes the Kronecker sequence with (εm)n =
δmn. If πm is a symmetric measure on [−1, 1] for all m ∈ N, then αm

n = 0 for all m
and n, and thus Aνν = D. We refer to [22, 20] for details.

Similarly, the operator R := T ∗
V RTV can be interpreted as a bi-infinite operator

matrix R = [Rνμ] with Rνν = Aνν −D and Rνμ = Aνμ for ν 
= μ.
Let Km = T ∗KmT ∈ L(�2(Λ)). Due to the three term recursion (1.10),

(1.22) (Kmc)μ = βm
μm+1cμ+εm + αm

μm
cμ + βm

μm
cμ−εm , μ ∈ Λ ,

for c = (cμ)μ∈Λ ∈ �2(Λ), where cμ := 0 if μm < 0 for any m ∈ N. Furthermore,
K∗

m = Km and ‖Km‖�2(Λ)→�2(Λ) ≤ 1.

Using the maps Km, R can be written succinctly as

(1.23) R =

∞∑
m=1

Km ⊗Rm ,

with unconditional convergence in L(�2(Λ;V ), �2(Λ;V ∗)). By Lemma 1.1,

(1.24) ‖R‖�2(Λ;V )→�2(Λ;V ∗) ≤ γ < 1 .

In particular, ‖A‖ ≤ (1 + γ) and
∥∥A−1

∥∥ ≤ (1 − γ)−1.
We also define the operator D := T ∗

V DTV . This is just the Riesz isomorphism
from �2(Λ;V ) to �2(Λ;V ∗). By [22, Proposition 2.10],

(1.25) (1 − γ)D ≤ A ≤ (1 + γ)D and
1

1 + γ
D−1 ≤ A−1 ≤ 1

1 − γ
D−1 .
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In particular, using A = AA−1A, we have

(1.26)
1

1 + γ
AD−1A ≤ A ≤ 1

1 − γ
AD−1A .

1.5. Galerkin projection. Let W be a closed subspace of L2
π(Γ ;V ). The Galerkin

solution ū ∈ W is defined through the linear variational problem

(1.27)

∫
Γ

〈A(y)ū(y), w(y)〉 dπ(y) =

∫
Γ

〈f(y), w(y)〉 dπ(y) ∀w ∈ W .

Existence, uniqueness and quasi-optimality of ū follow since A induces an inner
product on L2

π(Γ ;V ) that is equivalent to the standard inner product; see [22,
Proposition 1.5].

For all ν ∈ Λ, let Wν be a finite dimensional subspace of V , such that Wν 
= {0}
for only finitely many ν ∈ Λ. It is particularly useful to consider spaces W of the
form

(1.28) W :=
∑
ν∈Λ

WνPν .

The Galerkin operator on such a space has a similar structure to (1.20), with Aνμ

replaced by its representation on suitable subpsaces Wν of V ; see [22, Section 2].

2. Approximation of the residual

2.1. Adaptive application of the stochastic operator. We construct a se-
quence of approximations of R by truncating the series (1.23). For all M ∈ N,
let

(2.1) R[M ] :=

M∑
m=1

Km ⊗Rm ,

and R[0] := 0. For all M ∈ N, let ēRRR,M be given such that

(2.2)
∥∥R−R[M ]

∥∥
�2(Λ;V )→�2(Λ;V ∗)

≤ ēRRR,M .

For example, these bounds can be chosen as

(2.3) ēRRR,M :=

∞∑
m=M+1

‖Rm‖V→V ∗ .

We assume that (ēRRR,M )∞M=0 is nonincreasing and converges to 0, and also that the
sequence of differences (ēRRR,M − ēRRR,M+1)

∞
M=0 is nonincreasing.

We consider a partitioning of a vector w ∈ �2(Λ) into w[p] := w|Λp
, p = 1, . . . , P ,

for disjoint index sets Λp ⊂ Λ. This can be approximate in that w[1] + · · · + w[P ]

only approximates w in �2(Λ). We think of w[1] as containing the largest elements
of w, w[2] the next largest, and so on.

Such a partitioning can be constructed by the approximate sorting algorithm

(2.4) BucketSort[w, ε] 
→
[
(w[p])

P
p=1, (Λp)

P
p=1

]
,

which, given a finitely supported w ∈ �2(Λ) and a threshold ε > 0, returns index
sets

(2.5) Λp :=
{
μ ∈ Λ ; |wμ| ∈ (2−p/2 ‖w‖�∞ , 2−(p−1)/2 ‖w‖�∞ ]

}
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and w[p] := w|Λp
; see [24, 3, 19, 16]. The integer P is minimal with

(2.6) 2−P/2 ‖w‖�∞(Λ)

√
# suppw ≤ ε .

By [19, Rem. 2.3] or [16, Prop. 4.4], the number of operations and storage locations
required by a call of BucketSort[w, ε] is bounded by

(2.7) # suppw + max(1, �log(‖w‖�∞(Λ)

√
# suppw/ε)�) .

This analysis uses that every wμ, μ ∈ Λ, can be mapped to p with μ ∈ Λp in
constant time by evaluating

(2.8) p :=

⌊
1 + 2 log2

(
‖w‖�∞(Λ)

|wμ|

)⌋
.

Alternatively, any standard comparison-based sorting algorithm can be used to
construct the partitioning of w, albeit with an additional logarithmic factor in the
complexity.

ApplyRRR[v, ε] 
→ z

[·, (Λp)
P
p=1] ←− BucketSort

[
(‖vμ‖V )μ∈Λ,

ε

2ēRRR,0

]
for p = 1, . . . , P do v[p] ←− (vμ)μ∈Λp

Compute the minimal � ∈ {0, 1, . . . , P} s.t. δ := ēRRR,0

∥∥∥∥∥v −
�∑

p=1

v[p]

∥∥∥∥∥
�2(Λ;V )

≤ ε

2

for p = 1, . . . , � do Mp ←− 0

while
∑�

p=1 ēRRR,Mp

∥∥v[p]

∥∥
�2(Λ;V )

> ε− δ do

q ←− argmaxp=1,...,�(ēRRR,Mp
− ēRRR,Mp+1)

∥∥v[p]

∥∥
�2(Λ;V )

/#Λp

Mq ←− Mq + 1

z = (zν)ν∈Λ ←− 0

for p = 1, . . . , � do
forall the μ ∈ Λp do

for m = 1, . . . ,Mp do
w ←− Rmvμ
zμ+εm ←− zμ+εm + βm

μm+1w

if μm ≥ 1 then zμ−εm ←− zμ−εm + βm
μm

w

if αm
μm


= 0 then zμ ←− zμ + αm
μm

w

The routine ApplyRRR[v, ε] adaptively approximates Rv in three distinct steps.
First, the elements of v are grouped according to their norm. Elements smaller
than a certain tolerance are discarded. This truncation of the vector v produces
an error of at most δ ≤ ε/2.

Next, a greedy algorithm is used to assign to each segment v[p] of v an approxima-
tion R[Mp] of R. Starting with R[Mp] = 0 for all p = 1, . . . , �, these approximations
are refined iteratively until an estimate of the error is smaller than ε− δ.
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Finally, the operations determined by the previous two steps are performed.
Each multiplication Rmvμ is performed just once, and copied to the appropriate
entries of z.

Proposition 2.1. For any finitely supported v∈�2(Λ;V ) and any ε>0, ApplyRRR[v, ε]
produces a finitely supported z ∈ �2(Λ;V ∗) with

(2.9) # supp z ≤ 3
�∑

p=1

Mp#Λp

and

(2.10) ‖Rv − z‖�2(Λ;V ∗) ≤ δ + ηMMM ≤ ε , ηMMM :=

�∑
p=1

ēRRR,Mp

∥∥v[p]

∥∥
�2(Λ;V )

,

where Mp refers to the final value of this variable in the call of ApplyRRR. The

total number of products Rmvμ computed in ApplyRRR[v, ε] is σMMM :=
∑�

p=1 Mp#Λp.

Furthermore, the vector M = (Mp)
�
p=1 is optimal in the sense that if N = (Np)

�
p=1

with σNNN ≤ σMMM , then ηNNN ≥ ηMMM , and if ηNNN ≤ ηMMM , then σNNN ≥ σMMM .

Proof. The estimate (2.9) follows from the fact that each Km has at most three
nonzero entries per column; see (1.22). Since ‖R‖�2(Λ;V )→�2(Λ;V ∗) ≤ ēRRR,0,∥∥∥∥∥Rv −R

�∑
p=1

v[p]

∥∥∥∥∥
�2(Λ;V ∗)

≤ ēRRR,0

∥∥∥∥∥v −
�∑

p=1

v[p]

∥∥∥∥∥
�2(Λ;V )

= δ ≤ ε

2
.

Due to (2.2) and the termination criterion in the greedy subroutine of ApplyRRR,

�∑
p=1

∥∥Rv[p] −R[Mp]v[p]

∥∥
�2(Λ;V ∗)

≤
�∑

p=1

ēRRR,Mp

∥∥v[p]

∥∥
�2(Λ;V )

≤ ε− δ .

For the optimality property of the greedy algorithm, we refer to the more general
statement [20, Theorem 4.1.5]. �

2.2. Computation of the residual. We assume a solver for D is available such
that for any g ∈ V ∗ and any ε > 0,

(2.11) SolveD[g, ε] 
→ v ,
∥∥v −D−1g

∥∥
V
≤ ε .

For example, SolveD could be an adaptive wavelet method (see e.g. [8, 9, 19]), an
adaptive frame method (see e.g. [27, 12, 13]), or a finite element method with a
posteriori error estimation; see e.g. [17, 25, 7].

Furthermore, we assume that a routine

(2.12) RHSfff [ε] 
→ f̃

is available to compute approximations f̃ = (f̃ν)ν∈Λ of f with # supp f̃ < ∞ and

(2.13)
∥∥∥f − f̃

∥∥∥
�2(Λ;V ∗)

≤ ε

for any ε > 0.
The routine ResidualAAA,fff approximates the residual f −Av up to a prescribed

relative tolerance.
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ResidualAAA,fff [ε,v, η0, χ, ω, α, β] 
→ [w, η, ζ]

ζ ←− χη0
repeat

g = (gν)ν∈Λ ←− RHSfff [β(1 − α)ζ] − ApplyRRR[v, (1 − β)(1 − α)ζ]

w = (wν)ν∈Λ ←− (SolveD[gν , αζ(# supp g)−1/2])ν∈Λ

η ←− ‖w − v‖�2(Λ;V )

if ζ ≤ ωη or η + ζ ≤ ε then break

ζ ←− ω 1−ω
1+ω (η + ζ)

Proposition 2.2. For any finitely supported v = (vν)ν∈Λ ∈ �2(Λ;V ), ε > 0, η0 ≥
0, χ > 0, ω > 0, 0 < α < 1 and 0 < β < 1, a call of ResidualAAA,fff [ε,v, η0, χ, ω, α, β]
computes w ∈ �2(Λ;V ), η ≥ 0 and ζ ≥ 0 with
(2.14)∣∣∣η − ‖r‖�2(Λ;V ∗)

∣∣∣ ≤ ∥∥w − v −D−1r
∥∥
�2(Λ;V )

=
∥∥w −D−1(f −Rv)

∥∥
�2(Λ;V )

≤ ζ ,

where r = (rν)ν∈Λ ∈ �2(Λ;V ∗) is the residual r = f − Av, and ζ satisfies either
ζ ≤ ωη or η + ζ ≤ ε.

Proof. By construction,

‖g − (f −Rv)‖�2(Λ;V ∗) ≤ (1 − α)ζ .

Furthermore, using
∥∥w −D−1g

∥∥
�2(Λ;V )

≤ αζ,∥∥w −D−1(f −Rv)
∥∥
�2(Λ;V )

≤
∥∥w −D−1g

∥∥
�2(Λ;V )

+ ‖g − (f −Rv)‖�2(Λ;V ∗) ≤ ζ .

The rest of (2.14) follows by triangle inequality with

‖r‖�2(Λ;V ∗) =
∥∥D−1r

∥∥
�2(Λ;V )

. �

Remark 2.3. The tolerance ζ in ResidualAAA,fff is initialized as the product of an
initial estimate η0 of the residual and a parameter χ. The update

(2.15) ζ ←− ω
1 − ω

1 + ω
(η + ζ) =: ζ1

ensures a geometric decrease of ζ since if ζ > ωη, then

(2.16) ζ1 = ω
1 − ω

1 + ω
(η + ζ) <

1 − ω

1 + ω
(ζ + ωζ) = (1 − ω)ζ .

Therefore, the total computational cost of the routine is proportional to that of the
final iteration of the loop. Furthermore, if ζ > ωη, then also

(2.17) ζ1 = ω
1 − ω

1 + ω
(η + ζ) > ω(1 − ω)η > ω(η − ζ) .

The term η−ζ in the last expression of (2.17) is a lower bound for the true residual
‖r‖�2(Λ;V ∗

D). In this sense, the prescription (2.15) does not select an unnecessarily

small tolerance.
Finally, if ζ ≤ 2ω(1−ω)−1η, then ζ1 ≤ ωη. If the next value of η is greater than or

equal to the current value, this ensures that the termination criterion is met in the
next iteration. For example, under the mild condition ζ ≤ (1+4ω−ω2)(1−ω)−2η,
we have ζ1 ≤ 2ω(1−ω)−1η. The loop can therefore be expected to terminate within
three iterations.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1524 CLAUDE JEFFREY GITTELSON

Remark 2.4. In ResidualAAA,fff , the tolerances of SolveD are chosen such that the
error tolerance αζ is equidistributed among all the nonzero indices of w. This
property is not required anywhere; Proposition 2.2 only uses that the total error
in the computation of D−1g is no more than αζ. Indeed, other strategies for
selecting tolerances, e.g., based on additional a priori information, may be more
efficient. Equidistributing the error among all the indices is a simple, practical
starting point.

3. An adaptive solver

3.1. Refinement strategy. We use the approximation of the residual described in
Section 2 to refine a Galerkin subspace W ⊂ L2

π(Γ ;V ) of the form (1.28). For some
approximate solution v with TV v ∈ W , let w be the approximation of D−1(f−Rv)
computed by ResidualAAA,fff . We construct a space

(3.1) W̄ :=
∑
μ∈Λ

W̄μPμ ⊃ W ,

with W̄μ ⊂ V finite-dimensional, such that w can be approximated sufficiently in
W̄. A simple choice is W̄μ := Wμ + spanwμ, where W =

∑
μ WμPμ.

We consider a multilevel setting. For each μ ∈ suppw ⊂ Λ, let Wμ =: W 0
μ ⊂

W 1
μ ⊂ · · · be a scale of finite-dimensional subspaces of V such that

⋃∞
i=0 W

i
μ is dense

in V . To each space, we associate a cost dimW i
μ and an error

∥∥wμ −Πi
μwμ

∥∥2
V

,

where Πi
μ denotes the orthogonal projection in V onto W i

μ. In the construction of

W̄, we use a greedy algorithm to minimize the dimension of W̄ under a constraint
on the approximation error of w.

RefineD[W ,w, ε] 
→ [W̄, w̄, �]

forall the μ ∈ suppw do jμ ←− 0

while
∑

μ∈suppwww

∥∥∥wμ −Π
jμ
μ wμ

∥∥∥2
V
> ε2 do

ν ←− argmax
μ∈suppwww

∥∥∥Πjμ+1
μ wμ −Π

jμ
μ wμ

∥∥∥2
V

dim(W
jμ+1
μ \W jμ

μ )
jν ←− jν + 1

forall the μ ∈ suppw do

W̄μ ←− W
jμ
μ

w̄μ ←− Π
jμ
μ wμ

� ←−
(∑

μ∈suppwww ‖wμ − w̄μ‖2V
)1/2

Proposition 3.1. If for every μ ∈ suppw,

(3.2)

∥∥Πi+1
μ wμ −Πi

μwμ

∥∥2
V

dim(W i+1
μ \W i

μ)
≥
∥∥Πj+1

μ wμ −Πj
μwμ

∥∥2
V

dim(W j+1
μ \W j

μ)
∀i ≤ j ,
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then for any ε ≥ 0, a call of RefineD[W ,w, ε] constructs a space W̄ of the form
(3.1) and TV w̄ ∈ W̄ satisfying

(3.3) � = ‖w − w̄‖�2(Λ;V ) ≤ ε .

Furthermore, dim W̄ is minimal among all spaces of the form (3.1) with W̄μ = W i
μ

and satisfying (3.3).

Proof. Equation (3.3) follows from the termination criterion in RefineD. Conver-
gence is ensured by (3.2) and W i

μ ↑ V for all μ. For the optimality property of the
greedy algorithm, we refer to the more general statement [20, Theorem 4.1.5]. �

3.2. Adaptive Galerkin method. Let ‖·‖AAA denote the energy norm on �2(Λ;V ),

i.e., ‖v‖AAA :=
√
〈Av,v〉. We assume that a routine

(3.4) GalerkinAAA,fff [W , ũ0, ε] 
→ [ũ, τ ]

is available which, given a finite-dimensional subspace W of L2
π(Γ ;V ) of the form

(1.28), and starting from the initial approximation ũ0, iteratively computes ũ ∈
�2(Λ;V ) with TV ũ ∈ W and

(3.5) ‖ũ− ū‖AAA ≤ τ ≤ ε ,

where TV ū is the Galerkin projection of u onto W . An example of such a routine,
based on a preconditioned conjugate gradient iteration, is given in [22].

We combine the method ResidualAAA,fff for approximating the residual, RefineD
for refining the Galerkin subspace and GalerkinAAA,fff for approximating the Galerkin
projection, to an adaptive solver SolveGalerkinAAA,fff similar to [8, 19, 16].

SolveGalerkinAAA,fff [ε, γ, χ, ϑ, ω, σ, α, β] 
→ uε

W(0) ←− {0}
ũ(0) ←− 0

δ0 ←−
√

(1 − γ)−1 ‖f‖�2(Λ;V ∗)

for k = 0, 1, 2, . . . do

[wk, ηk, ζk] ←− ResidualAAA,fff [ε
√

1 − γ, ũ(k), δk, χ, ω, α, β]

δ̄k ←− (ηk + ζk)/
√

1 − γ

if min(δk, δ̄k) ≤ ε then break

[W(k+1), w̄k, �k] ←− RefineD[W(k),wk,
√
η2k − (ζk + ϑ(ηk + ζk))2]

ϑ̄k ←− (
√
η2k − �2k − ζk)/(ηk + ζk)

[ũ(k+1), τk+1] ←− GalerkinAAA,fff [W(k+1), w̄k, σmin(δk, δ̄k)]

δk+1 ←− τk+1 +
√

1 − ϑ̄2
k(1 − γ)(1 + γ)−1 min(δk, δ̄k)

uε ←− ũ(k)

3.3. Convergence of the adaptive solver. The convergence analysis of the
method SolveGalerkinAAA,fff is based on [8, Lemma 4.1], which generalizes to our
vector setting for Galerkin spaces W of the form (1.28). Let ΠW denote the or-

thogonal projection in �2(Λ;V ) onto T−1
V W , and let Π̂W := DΠWD−1 be the

orthogonal projection in �2(Λ;V ∗) onto DT−1
V W = T ∗

V DW .
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Proposition 3.2. Let W be as in (1.28), and ϑ ∈ [0, 1]. Let v ∈ W with

(3.6)
∥∥∥Π̂W(f −Av)

∥∥∥
�2(Λ;V ∗)

≥ ϑ ‖f −Av‖�2(Λ;V ∗) .

Then the Galerkin projection ū of u onto W satisfies

(3.7) ‖u− ū‖AAA ≤
√

1 − ϑ2
1 − γ

1 + γ
‖u− v‖AAA .

Proof. Due to (3.6),

‖ū− v‖AAA ≥ ‖A‖−1/2 ‖A(ū− v)‖�2(Λ;V ∗) ≥ ‖A‖−1/2
∥∥∥Π̂W(f −Av)

∥∥∥
�2(Λ;V ∗)

≥ ‖A‖−1/2
ϑ ‖f −Av‖�2(Λ;V ∗) ≥ ‖A‖−1/2 ∥∥A−1

∥∥−1/2
ϑ ‖u− v‖AAA .

By Galerkin orthogonality,

‖u− ū‖2AAA = ‖u− v‖2AAA − ‖ū− v‖2AAA ≤ (1 − ϑ2 ‖A‖−1 ∥∥A−1
∥∥−1

) ‖u− v‖2AAA .

The assertion follows using the estimates ‖A‖ ≤ (1 + γ) and
∥∥A−1

∥∥ ≤ (1 − γ)−1,
which follow from (1.24). �

Lemma 3.3. Let ε > 0, χ > 0 and α, β ∈ (0, 1). If ϑ > 0, ω > 0, and ω+ϑ+ωϑ ≤
1, then the space W(k+1) in SolveGalerkinAAA,fff is such that

(3.8)
∥∥∥Π̂W(k+1)rk

∥∥∥
�2(Λ;V ∗)

≥ ϑ̄k ‖rk‖�2(Λ;V ∗)

where rk := f −Aũ(k) is the residual at iteration k ∈ N0, and ϑ̄k ≥ ϑ.

Proof. We abbreviate z := wk−ũ(k). Due to ζk ≤ ωηk, the assumption ω+ϑ+ωϑ ≤
1 implies ζk+ϑ(ηk+ζk) ≤ ηk. Thus the tolerance in RefineD is nonnegative. Since

ũ(k) ∈ W(k) ⊂ W(k+1), Proposition 3.1 implies

�k = ‖wk − w̄k‖�2(Λ;V ) = ‖wk −ΠW(k+1)wk‖�2(Λ;V ) = ‖z −ΠW(k+1)z‖�2(Λ;V ) .

Consequently,

‖ΠW(k+1)z‖2�2(Λ;V ) = ‖z‖2�2(Λ;V ) − ‖z −ΠW(k+1)z‖2�2(Λ;V ) = η2k − �2k .

Furthermore, since ΠW(k+1) has norm one, Proposition 2.2 implies

‖ΠW(k+1)z‖�2(Λ;V ) −
∥∥∥Π̂W(k+1)rk

∥∥∥
�2(Λ;V ∗)

≤
∥∥ΠW(k+1)(z −D−1rk)

∥∥
�2(Λ;V )

≤
∥∥z −D−1rk

∥∥
�2(Λ;V )

≤ ζk .

Combining these estimates, we have∥∥∥Π̂W(k+1)rk

∥∥∥
�2(Λ;V ∗)

≥ ‖ΠW(k+1)z‖�2(Λ;V ) − ζk =
√
η2k − �2k − ζk ,

and (3.8) follows using ‖rk‖�2(Λ;V ∗) ≤ ηk + ζk. Finally, �2k ≤ η2k − (ζk +ϑ(ηk + ζk))
2

implies
√
η2k − �2k ≥ ζk+ϑ(ηk+ζk), and therefore ϑ̄k = (

√
η2k − �2k−ζk)/(ηk+ζk) ≥

ϑ. �

Theorem 3.4. If ε > 0, χ > 0, ϑ > 0, ω > 0, ω+ϑ+ωϑ ≤ 1, 0 < α < 1, 0 < β < 1
and 0<σ<1−

√
1 − ϑ2(1 − γ)(1 + γ)−1, then SolveGalerkinAAA,fff [ε, γ, χ, ϑ, ω, σ, α, β]

constructs a finitely supported uε ∈ �2(Λ;V ) with

(3.9) ‖u− uε‖AAA ≤ ε .
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Moreover,

(3.10)

√
1 − γ

1 + γ

1 − ω

1 + ω
δ̄k ≤

∥∥∥u− ũ(k)
∥∥∥
AAA
≤ min(δk, δ̄k)

for all k ∈ N0 reached by SolveGalerkinAAA,fff .

Proof. Due to the termination criterion of SolveGalerkinAAA,fff , it suffices to show

(3.10). For k = 0, since ‖u‖�2(Λ;V ) ≤
∥∥A−1

∥∥1/2 ‖u‖AAA,∥∥∥u− ũ(0)
∥∥∥2
AAA

= ‖u‖2AAA = 〈f ,u〉�2(Λ;V ) ≤ ‖f‖�2(Λ;V ∗) ‖u‖�2(Λ;V ) ≤ δ0 ‖u‖AAA .

Let
∥∥∥u− ũ(k)

∥∥∥
AAA
≤ δk for some k ∈ N0. Abbreviating rk := f−Aũ(k), using (1.26)

then (2.14), we have∥∥∥u− ũ(k)
∥∥∥
AAA
≤ 1√

1 − γ
‖rk‖�2(Λ;V ∗) ≤

ζk + ηk√
1 − γ

= δ̄k .

If min(δk, δ̄k) > ε, then ζk ≤ ωηk by Proposition 2.2. Due to Lemma 3.3, Proposi-
tion 3.2 implies

‖u− ū‖AAA ≤
√

1 − ϑ̄2
k

1 − γ

1 + γ
min(δk, δ̄k) ,

where ū is the exact Galerkin projection of u onto W(k+1). By (3.5), ũ(k+1)

approximates ū up to an error of at most τk+1 ≤ σmin(δk, δ̄k) in the norm ‖·‖AAA.

It follows by triangle inequality that
∥∥∥u− ũ(k+1)

∥∥∥
AAA
≤ δk+1.

To show the other inequality in (3.10), we note that for any k ∈ N0,∥∥∥u− ũ(k)
∥∥∥
AAA
≥ 1√

1 + γ
‖rk‖�2(Λ;V ∗) ≥

ηk − ζk√
1 + γ

=

√
1 − γ

1 + γ

ηk − ζk
ηk + ζk

δ̄k ,

and (ηk − ζk)(ηk + ζk)
−1 ≥ (1 − ω)(1 + ω)−1.

Finally, since

δk ≤
(
σ +

√
1 − ϑ2(1 − γ)(1 + γ)−1

)k
δ0

and σ+
√

1 − ϑ2(1 − γ)(1 + γ)−1 < 1 by assumption, the iteration does terminate.
�

4. Optimality properties

4.1. A semidiscrete algorithm. The algorithm SolveGalerkinAAA,fff is derived in
Section 3 with arbitrary Galerkin subspaces of the form (1.28). We consider opti-
mality properties of this method in the special case of a single spatial discretization,
where a Galerkin subspace W ⊂ �2(Λ;V ) is fully determined by its set of active
indices Ξ ⊂ Λ.

Since the spatial discretization is fixed throughout, only the part of the residual
pertaining to the random part of the error needs to be computed to construct refine-
ments. In particular, no adaptive solver is needed to invert D, making this a viable
approach if no such solver is available, or whenever only a single spatial discretiza-
tion is desired. It is not our intent to suggest that such spaces should generally
be used in practice. The adaptive method SolveGalerkinAAA,fff in its full generality
has the potential to construct much sparser approximations of u. However, the
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heuristic distribution of tolerances in ResidualAAA,fff precludes provable optimality
statements in this setting; see Remark 2.4.

In this section, we think of the operator A from (1.1) as being already discretized
in space, and V is, e.g., a finite element space. Thus, abstractly, we consider a
semidiscrete version of the algorithm SolveGalerkinAAA,fff .

The Galerkin subspaces W(k) have the form �2(Ξ(k);V ) for finite sets Ξ(k) ⊂ Λ.
In the subroutine ResidualAAA,fff , we assume that SolveD inverts D exactly in V .
The parameter α can thus be set to zero.

In the subsequent refinement step, Ξ(k) is augmented by sufficiently many ele-
ments of suppwk to represent wk to the desired accuracy. The method RefineD
reduces to ordering suppwk according to ‖wk,ν‖V and selecting the most important
contributions.

In GalerkinAAA,fff , an iterative solver such as a conjugate gradient iteration is used

to approximate the Galerkin projection of u onto �2(Ξ(k+1);V ). Operations within
V are assumed to be exact.

4.2. Optimal choice of subspaces. For v ∈ �2(Λ;V ) and N ∈ N0, let PN (v)
be a best N -term approximation of v, that is, PN (v) is an element of �2(Λ;V )
that minimizes ‖v − vN‖�2(Λ;V ) over vN ∈ �2(Λ;V ) with # supp vN ≤ N . For

s ∈ (0,∞), we define

(4.1) ‖v‖As(Λ;V ) := sup
N∈N0

(N + 1)s ‖v − PN (v)‖�2(Λ;V )

and

(4.2) As(Λ;V ) :=
{
v ∈ �2(Λ;V ) ; ‖v‖As(Λ;V ) < ∞

}
.

By definition, an optimal approximation in �2(Λ;V ) of v ∈ As(Λ;V ) with error
tolerance ε > 0 consists of O(ε−1/s) nonzero coefficients in V .

For any Ξ ⊂ Λ, let ΠΞ denote the orthogonal projection in �2(Λ;V ∗) onto
�2(Ξ;V ∗). The following statement is adapted from [19, Lemma 2.1] and [16,
Lemma 4.1].

Lemma 4.1. Let Ξ(0) be a finite subset of Λ and v ∈ �2(Ξ(0);V ). If

(4.3) 0 ≤ ϑ̂ <

√
1 − γ

1 + γ

and Ξ(0) ⊂ Ξ(1) ⊂ Λ with
(4.4)

#Ξ(1) ≤ c̄min
{
#Ξ ; Ξ(0) ⊂ Ξ , ‖ΠΞ(f −Av)‖�2(Λ;V ∗) ≥ ϑ̂ ‖f −Av‖�2(Λ;V ∗)

}
for a c̄ ≥ 1, then

(4.5) #(Ξ(1) \ Ξ(0)) ≤ c̄min
{

#Ξ̂ ; Ξ̂ ⊂ Λ , ‖u− û‖AAA ≤ τ ‖u− v‖AAA
}

for τ =

√
1 − ϑ̂2(1 + γ)(1 − γ)−1, where û denotes the Galerkin projection of u

onto �2(Ξ̂;V ).

Proof. Let Ξ̂ be as in (4.5) and Ξ̆ := Ξ(0) ∪ Ξ̂. Furthermore, let û and ŭ de-

note the Galerkin solutions in �2(Ξ̂;V ) and �2(Ξ̆;V ), respectively. Since Ξ̂ ⊂ Ξ̆,
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‖u− ŭ‖AAA ≤ ‖u− û‖AAA, and by Galerkin orthogonality,

‖ŭ− v‖2AAA = ‖u− v‖2AAA − ‖u− ŭ‖2AAA ≥ (1 − τ2) ‖u− v‖2AAA = ϑ̂2 1 + γ

1 − γ
‖u− v‖2AAA .

Therefore, using κ(A) = ‖A‖
∥∥A−1

∥∥ ≤ (1 + γ)(1 − γ)−1,∥∥ΠΞ̆(f −Av)
∥∥
�2(Λ;V ∗)

= ‖A(ŭ− v)‖�2(Λ;V ∗) ≥
∥∥A−1

∥∥−1/2 ‖ŭ− v‖AAA
≥ ϑ̂ ‖A‖1/2 ‖u− v‖AAA ≥ ϑ̂ ‖f −Av‖�2(Λ;V ∗) .

By (4.4), #Ξ(1) ≤ c̄#Ξ̆ and, consequently,

#(Ξ(1) \ Ξ(0)) ≤ c̄#(Ξ̆ \ Ξ(0)) ≤ c̄#Ξ̂ . �

We use Lemma 4.1 to show that, under additional assumptions on the parame-
ters, the index sets Ξ(k) generated by the semidiscrete version of SolveGalerkinAAA,fff

are of optimal size, up to a constant factor.

Theorem 4.2. If the conditions of Theorem 3.4 are satisfied,

(4.6) ϑ̂ :=
ϑ(1 + ω) + 2ω

1 − ω
<

√
1 − γ

1 + γ
,

and u ∈ As(Λ;V ) for an s > 0, then for all k ∈ N0 reached by SolveGalerkinAAA,fff ,

(4.7) #Ξ(k) ≤ 2
(�/τ )1/s

1 − �1/s

(
(1 + γ)(1 + ω)

(1 − γ)(1 − ω)

)1/s ∥∥∥u− ũ(k)
∥∥∥−1/s

�2(Λ;V )
‖u‖1/sAs(Λ;V )

with � = σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1 and τ =

√
1 − ϑ̂2(1 + γ)(1 − γ)−1.

Proof. Let k ∈ N0, rk = f−Aũ(k). Also, let � = (�ν)ν∈Λ, �ν :=
∥∥∥wk,ν − ũ

(k)
ν

∥∥∥
V

for

the approximation wk−ũ(k)=(wk,ν−ũ
(k)
ν )ν∈Λ of D−1rk computed in ResidualAAA,fff ,

and let Δ ⊂ suppwk denote the active indices selected by RefineD.

We note that for α := ω + ϑ + ωϑ, we have ϑ = α−ω
1+ω and ϑ̂ = α+ω

1−ω . Let

Ξ(k) ⊂ Ξ̄ ⊂ Λ satisfy ‖ΠΞ̄rk‖�2(Λ;V ∗) ≥ ϑ̂ ‖rk‖�2(Λ;V ∗). Also, if ũ(k) is used to

refine the discretization, then the tolerance ε is not yet reached, and thus ‖�‖�2(Λ)−
‖rk‖�2(Λ;V ∗) ≤ ω ‖�‖�2(Λ) by Proposition 2.2. Therefore,

ϑ̂ ‖�‖�2(Λ) ≤ ϑ̂ ‖rk‖�2(Λ;V ∗) + ϑ̂ω ‖�‖�2(Λ)

≤ ‖ΠΞ̄rk‖�2(Λ;V ∗) + ϑ̂ω ‖�‖�2(Λ) ≤ ‖ΠΞ̄�‖�2(Λ) + (1 + ϑ̂)ω ‖�‖�2(Λ)

and since ϑ̂ − (1 + ϑ̂)ω = α, it follows that ‖ΠΞ̄�‖�2(Λ) ≥ α ‖�‖�2(Λ). By con-

struction, Δ is a set of minimal cardinality with ‖ΠΔ�‖�2(Λ) ≥ ᾱ ‖�‖�2(Λ) for

ᾱ := ζkη
−1
k + ϑ(1 + ζkη

−1
k ) ≤ α. Consequently, #(Ξ(k+1) \ Ξ(k)) ≤ #Δ ≤ #Ξ̄.

Since this holds for any Ξ̄, using #Ξ(k) ≤ Ξ̄, it follows that

#Ξ(k+1) ≤ 2 min
{

#Ξ̄ ; Ξ(k) ⊂ Ξ̄ ⊂ Λ , ‖ΠΞ̄rk‖�2(Λ;V ∗) ≥ ϑ̂ ‖rk‖�2(Λ;V ∗)

}
.

Lemma 4.1 implies

#(Ξ(k+1) \ Ξ(k)) ≤ 2 min
{
#Ξ̂ ; Ξ̂ ⊂ Λ , ‖u− û‖AAA ≤ τ

∥∥∥u− ũ(k)
∥∥∥
AAA

}
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with τ =

√
1 − ϑ̂2(1 + γ)(1 − γ)−1 , where û denotes the Galerkin projection of u

onto �2(Ξ̂;V ).

Let N ∈ N0 be maximal with ‖u− PN (u)‖�2(Λ;V ) > τ (1 + γ)−1/2
∥∥∥u− ũ(k)

∥∥∥
AAA

,

where PN (u) is a best N -term approximation of u. By (4.1),

N + 1 ≤ ‖u− PN (u)‖−1/s
�2(Λ;V ) ‖u‖

1/s
As(Λ;V )

≤ τ−1/s(1 + γ)1/2s
∥∥∥u− ũ(k)

∥∥∥−1/s

AAA
‖u‖1/sAs(Λ;V ) .

For ΞN+1 := suppPN+1(u), by maximality of N ,

‖u− ūN+1‖AAA ≤ ‖u− PN+1(u)‖AAA
≤ (1 + γ)1/2 ‖u− PN+1(u)‖�2(Λ;V ) ≤ τ

∥∥∥u− ũ(k)
∥∥∥
AAA

for the Galerkin solution ūN+1 in �2(ΞN+1;V ), and thus

#(Ξ(k+1) \ Ξ(k)) ≤ 2(N + 1) ≤ 2τ−1/s(1 + γ)1/2s
∥∥∥u− ũ(k)

∥∥∥−1/s

AAA
‖u‖1/sAs(Λ;V ) .

Furthermore, by Theorem 3.4,

∥∥∥u− ũ(k)
∥∥∥−1/s

AAA
≤
(√

1 − γ

1 + γ

1 − ω

1 + ω
δ̄k

)−1/s

.

We estimate the cardinality of Ξ(k) by slicing it into increments and applying
the above estimates,

#Ξ(k) =

k−1∑
j=0

#(Ξ(j+1) \ Ξ(j)) ≤ 2τ−1/s(1 + γ)1/2s ‖u‖1/sAs(Λ;V )

k−1∑
j=0

∥∥∥u− ũ(j)
∥∥∥−1/s

AAA

≤ 2

(
τ (1 − γ)1/2(1 − ω)

(1 + γ)(1 + ω)

)−1/s

‖u‖1/sAs(Λ;V )

k−1∑
j=0

δ̄
−1/s
j .

By definition, δk ≤ �k−j δ̄j . Therefore,

k−1∑
j=0

δ̄
−1/s
j ≤ δ

−1/s
k

k−1∑
j=0

�(k−j)/s = δ
−1/s
k

k∑
i=1

�i/s =
�1/sδ

−1/s
k

1 − �1/s
.

The assertion follows using

(1 − γ)1/2
∥∥∥u− ũ(k)

∥∥∥
�2(Λ;V )

≤
∥∥∥u− ũ(k)

∥∥∥
AAA
≤ δk . �

4.3. Complexity estimate. We first cite an elementary result due to Stechkin
connecting the order of summability of a sequence to the convergence of best N -term
approximations in a weaker sequence norm; see e.g. [11, 15]. Note that, although
it is formulated only for nonnegative sequences, Lemma 4.3 applies directly to,
e.g., Lebesgue–Bochner spaces of Banach space valued sequences by passing to the
norms of the elements of such sequences. Also, it applies to sequences with arbitrary
countable index sets by choosing a decreasing rearrangement.
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Lemma 4.3. Let 0 < p ≤ q and let c = (cn)∞n=1 ∈ �2 with 0 ≤ cn+1 ≤ cn for all
n ∈ N. Then

(4.8)

( ∞∑
n=N+1

cqn

)1/q

≤ (N + 1)−r ‖c‖�p , r :=
1

p
− 1

q
≥ 0

for all N ∈ N0.

Proposition 4.4. Let s > 0. If either

(4.9) ‖Rm‖V→V ∗ ≤ sδRRR,s(m + 1)−s−1 ∀m ∈ N

or

(4.10)

( ∞∑
m=1

‖Rm‖
1

s+1

V→V ∗

)s+1

≤ δRRR,s ,

then

(4.11)
∥∥R−R[M ]

∥∥
�2(Λ;V )→�2(Λ;V ∗)

≤ δRRR,s(M + 1)−s ∀M ∈ N0 .

Proof. By (1.23) and (2.1), using ‖Km‖�2(Λ)→�2(Λ) ≤ 1,

∥∥R−R[M ]

∥∥
�2(Λ;V )→�2(Λ;V ∗)

≤
∞∑

m=M+1

‖Rm‖V→V ∗ .

If (4.9) holds, then (4.11) follows using
∞∑

m=M+1

(m + 1)−s−1 ≤
∫ ∞

M+1

t−s−1 dt =
1

s
(M + 1)−s .

If (4.10) is satisfied, then

∞∑
m=M+1

‖Rm‖V→V ∗ ≤
( ∞∑

m=1

‖Rm‖
1

s+1

V→V ∗

)s+1

(M + 1)−s

by Lemma 4.3. �

Remark 4.5. If the assumptions of Proposition 4.4 are satisfied for all s ∈ (0, s∗),
then the operator R is s∗-compressible with sparse approximations R[M ]. In this
case, R is a bounded linear map from As(Λ;V ) to As(Λ;V ∗) for all s ∈ (0, s∗); see
[8, Prop. 3.8]. This carries over to the routine ApplyRRR in that if v ∈ As(Λ;V ) and
z is the output of ApplyRRR[v, ε] for an ε > 0, then

# supp z � ‖v‖1/sAs(Λ;V ) ε
−1/s ,(4.12)

‖z‖As(Λ;V ∗) � ‖v‖As(Λ;V )(4.13)

with constants depending only on s and R. Moreover, (4.12) is an upper bound for
the total number of applications of operators Rm in ApplyRRR[v, ε]. This follows as
in the scalar case (see e.g. [16, Prop. 4.6]), where the additional term 1 + # supp v
is only due to the approximate sorting of v.

We make further assumptions on the routine RHSfff . If f ∈ As(Λ;V ∗) and f̃ is

the output of RHSfff [ε] for an ε > 0, then f̃ should satisfy

(4.14) # supp f̃ � ‖f‖1/sAs(Λ;V ∗) ε
−1/s .
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This is clearly satisfied for deterministic f , and is achieved for the right-hand sides of
the form Rw for a finitely supported w, stemming for example from inhomogeneous
essential boundary conditions, by using ApplyRRR to approximate this product. Note
that if u ∈ As(Λ;V ) and R is s∗-compressible with s < s∗, then also A is s∗-
compressible, and therefore ‖f‖As(Λ;V ∗) � ‖u‖As(Λ;V ).

Lemma 4.6. Under the conditions of Theorem 4.2,

(4.15)
∥∥∥ũ(k)

∥∥∥
As(Λ;V )

≤ C ‖u‖As(Λ;V ) ∀k ∈ N0 ,

with

(4.16) C = 1 +
21+s�(1 + γ)(1 + ω)

τ (1 − �1/s)s(1 − γ)(1 − ω)
,

� = σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1 and τ =

√
1 − ϑ̂2(1 + γ)(1 − γ)−1.

Proof. Let k ∈ N0. For any N ≥ #Ξ(k),
∥∥∥ũ(k) − PN (ũ(k))

∥∥∥
�2(Λ;V )

= 0. For

N ≤ #Ξ(k) − 1,∥∥∥ũ(k) − PN (ũ(k))
∥∥∥
�2(Λ;V )

≤
∥∥∥ũ(k) −ΠΞN

ũ(k)
∥∥∥
�2(Λ;V )

≤ ‖u−ΠΞN
u‖�2(Λ;V ) + 2

∥∥∥u− ũ(k)
∥∥∥
�2(Λ;V )

,

where ΞN := suppPN (u), such that ΠΞN
u = PN (u) and

‖u−ΠΞN
u‖�2(Λ;V ) ≤ (N + 1)−s ‖u‖As(Λ;V ) .

Furthermore, Theorem 4.2 implies∥∥∥u− ũ(k)
∥∥∥
�2(Λ;V )

≤ 2s�(1 + γ)(1 + ω)

τ (1 − �1/s)s(1 − γ)(1 − ω)
(#Ξ(k))−s ‖u‖As(Λ;V ) ,

and (N + 1)s ≤ (#Ξ(k))s by the definition of N . Consequently,∥∥∥ũ(k)
∥∥∥
As(Λ;V )

= sup
N∈N0

(N + 1)s
∥∥∥ũ(k) − PN (ũ(k))

∥∥∥
�2(Λ;V )

≤ C ‖u‖As(Λ;V )

with C from (4.16). �

Theorem 4.7. Let the conditions of Theorem 4.2 be satisfied. If (4.14) and
the assumptions of Proposition 4.4 hold for all s ∈ (0, s∗), then for any ε > 0
and any s ∈ (0, s∗), the total number of applications of D, Aνν and D−1 in

SolveGalerkinAAA,fff [ε, γ, χ, ϑ, ω, σ, 0, β] is bounded by ‖u‖1/sAs(Λ;V ) ε
−1/s up to a con-

stant factor depending only on the input arguments other than ε. The same bound
holds for the total number of applications of Rm, m ∈ N, up to an additional factor
of maxμ∈suppuuuε

# suppμ.

Proof. Let k ∈ N0; we consider the k-th iteration of the loop in SolveGalerkinAAA,fff .

The routine ResidualAAA,fff [ε
√

1 − γ, ũ(Ξ(k)), δk, χ, ω, β] begins with #Ξ(k) applica-
tions of D. Due to the geometric decrease in tolerances, the complexity of the
loop in ResidualAAA,fff is dominated by that of its last iteration. By Remark 4.5 and
Lemma 4.6, up to a constant factor, the number of applications of D−1 and Rm is

bounded by ‖u‖1/sAs(Λ;V ) ζ
−1/s
k , and ζk � δ̄k.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN ADAPTIVE STOCHASTIC GALERKIN METHOD 1533

Next, assuming the termination criterion of SolveGalerkinAAA,fff is not satisfied,

the routine GalerkinAAA,fff [Ξ(k+1),w, σmin(δk, δ̄k)] is called to iteratively approxi-

mate the Galerkin projection onto �2(Ξ(k+1);V ). Since only a fixed relative error
reduction is required, the number of iterations remains bounded. Therefore, the
number of applications of D−1 and Aνν is bounded by #Ξ(k+1) and the total
number of applications of Rm, m ∈ N, is bounded by 2λ̄(Ξ(k+1))#Ξ(k+1), where
λ̄(Ξ(k+1)) denote the average length of indices in Ξ(k+1); see [22, Proposition 3.5].
Since the sets Ξ(k) are nested, λ̄(Ξ(k+1)) ≤ maxμ∈suppuuuε

# suppμ. Furthermore,

by Theorems 3.4 and 4.2, #Ξ(k+1) � ‖u‖1/sAs(Λ;V ) δ̄
−1/s
k+1 .

Let k be such that uε = ũ(k). Due to the different termination criterion, the

complexity of the last call of ResidualAAA,fff can be estimated by ‖u‖1/sAs(Λ;V ) ζ
−1/s
k

with ζk � ε. This bound obviously also holds for #Ξ(k), and thus for the complexity
of the final call of GalerkinAAA,fff .

Combining all of the above estimates, the number of applications of D−1, D,
Aνν and Rm, m ∈ N, in SolveGalerkinAAA,fff is bounded by

‖u‖1/sAs(Λ;V )

⎛
⎝ε−1/s +

k−1∑
j=0

δ̄
−1/s
j

⎞
⎠ .

Furthermore, δ̄k−1 ≥ ε, and using δk−1 ≤ �k−1−j δ̄j ,

k−2∑
j=0

δ̄
−1/s
j ≤ δ

−1/s
k−1

k−2∑
j=0

�(k−1−j)/s = δ
−1/s
k−1

k−1∑
i=1

�i/s ≤ δ
−1/s
k−1

�1/s

1 − �1/s
,

where � = σ +
√

1 − ϑ2(1 − γ)(1 + γ)−1 < 1. The assertion follows since δk−1 ≥
ε. �

5. Computational examples

5.1. Application to isotropic diffusion. We consider the isotropic diffusion
equation on a bounded Lipschitz domain G ⊂ R

d with homogeneous Dirichlet
boundary conditions. For any uniformly positive a ∈ L∞(G) and any f ∈ L2(G),
we have

(5.1)
−∇ · (a(x)∇u(x)) = f(x) , x ∈ G ,

u(x) = 0 , x ∈ ∂G .

We view f as fixed, but allow a to vary, giving rise to a parametric operator

(5.2) A0(a) : H1
0 (G) → H−1(G) , v 
→ −∇ · (a∇v) ,

which depends continuously on a ∈ L∞(G).
We model the coefficient a as a bounded random field, which we expand as a

series

(5.3) a(y, x) := ā(x) +
∞∑

m=1

ymam(x) .

Since a is bounded, am can be scaled such that ym ∈ [−1, 1] for all m ∈ N. There-
fore, a depends on a parameter y = (ym)∞m=1 in Γ = [−1, 1]∞.
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We define the parametric operator A(y) := A0(a(y)) for y ∈ Γ . Due to the
linearity of A0,

(5.4) A(y) = D + R(y) , R(y) :=

∞∑
m=1

ymRm ∀y ∈ Γ

with convergence in L(H1
0 (G), H−1(G)), for

D := A0(ā) : H1
0 (G) → H−1(G) , v 
→ −∇ · (ā∇v) ,

Rm := A0(am) : H1
0 (G) → H−1(G) , v 
→ −∇ · (am∇v) , m ∈ N .

To ensure bounded invertibility of D, we assume there is a constant δ > 0 such that

(5.5) ess inf
x∈G

ā(x) ≥ δ−1 .

We refer, e.g., to [22, 20, 26] for further details.

5.2. A posteriori error estimation. Let the spaces Wν from Section 1.5 be
finite element spaces of continuous, piecewise smooth functions on meshes Tν which
contain at least the piecewise linear functions on Tν . We assume that these meshes
are compatible in the sense that for any Tμ ∈ Tμ and Tν ∈ Tν , the intersection
Tμ∩Tν is either empty, equal to Tμ, or equal to Tν . We denote the set of faces of Tν

by Fν and define hT and hF as the diameters of T ∈ Tν and F ∈ Fν , respectively.
In ResidualAAA,fff , a generic solver SolveD is used to approximate D−1gν up to a

prescribed tolerance. In the present finite element setting, this requires a reliable a
posteriori error estimator to verify that the desired accuracy is attained.

The vector g = (gν)ν∈Λ is the approximation of f − Rv computed with RHSfff
and ApplyRRR. For the call of ResidualAAA,fff inside SolveGalerkinAAA,fff , v is the ap-

proximate solution ũ(k). Thus gν has the form

(5.6) gν = f̃ν −
k∑

i=1

κiRmi
vi ,

where f̃ν is the approximation of fν generated by RHSfff , vi = vμi
for some μi =

ν ± εmi
selected by ApplyRRR, and κi refer to the constants αmi

νmi
and βmi

max(νmi
,μmi

)

from (1.22). We abbreviate Ti := Tμi
.

Standard error estimators have difficulties on faces of Ti that are not in the
skeleton of Tν since gν is singular on these faces. For all i, let v̄i be an approximation
of vi that is piecewise smooth on Tν . Replacing gν by

(5.7) ḡν := f̃ν −
k∑

i=1

κiRmi
v̄i

induces an error

(5.8)
∥∥D−1gν −D−1ḡν

∥∥
V
≤

k∑
i=1

|κi|
∥∥∥ami

ā

∥∥∥
L∞(G)

‖vi − v̄i‖V =: ESTP
ν

since

sup
‖z‖V =1

∣∣∣∣
∫
G

am∇v · ∇z dx

∣∣∣∣ ≤
∥∥∥am

ā

∥∥∥
L∞(G)

sup
‖z‖V =1

∫
G

|ā∇v · ∇z| dx

=
∥∥∥am

ā

∥∥∥
L∞(G)

‖v‖V
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for all m ∈ N and all v ∈ H1
0 (G).

Let w̄ν ∈ Wν be the Galerkin projection of D−1ḡν , i.e.,

(5.9)

∫
G

ā∇w̄ν · ∇z dx =

∫
G

f̃νz dx−
k∑

i=1

κi

∫
G

ami
∇v̄i · ∇z dx ∀z ∈ Wν .

Abbreviating

(5.10) σν := ā∇w̄μ +
k∑

i=1

κiami
∇v̄i ,

the residual of w̄ν is the functional

(5.11) rν(w̄ν ; z) =

∫
G

ḡνz − ā∇w̄ν · ∇z dx =

∫
G

f̃νz − σν · ∇z dx , z ∈ H1
0 (G) .

Due to the Riesz isomorphism,

(5.12)
∥∥D−1ḡν − wν

∥∥
V

= sup
z∈H1

0 (G)\{0}

|rν(w̄ν ; z)|
‖z‖V

≤
√
δ sup
z∈H1

0 (G)\{0}

|rν(w̄ν ; z)|
|z|H1(G)

,

with δ from (5.5).
For all T ∈ Tν , let

(5.13) Rν,T (w̄ν) := hT

∥∥∥f̃ν + ∇ · σν

∥∥∥
L2(T )

,

where the dependence on w̄ν is implicit in σν . Also, let

(5.14) Rν,F (ūν) := h
1/2
F ‖[[σν ]]‖L2(F ) ,

where [[·]] is the normal jump over the face F ∈ Fν . These terms combine to

(5.15) ESTR
ν (w̄ν) :=

(∑
T∈Tν

Rν,T (w̄ν)
2 +

∑
F∈Fν

Rν,F (w̄ν)
2

)1/2

.

The following statement is a straightforward adaptation of the standard result
from, e.g., [29, 25, 1] on reliability of residual error estimators.

Theorem 5.1. For all z ∈ H1
0 (G),

(5.16) |rν(w̄ν ; z)| ≤ C ESTR
ν (w̄ν) |z|H1(G)

with a constant C depending only on the shape regularity of Tν .

Corollary 5.2. The Galerkin projection w̄ν from (5.9) satisfies

(5.17)
∥∥D−1gν − w̄ν

∥∥
V
≤ ESTP

ν +
√
δC ESTR

ν (w̄ν)

for δ from (5.5) and C from Theorem 5.1.

Proof. The assertion follows by triangle inequality using (5.8), (5.12) and (5.16).
�
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5.3. Numerical computations. We consider as a model problem the diffusion
equation (5.1) on the one-dimensional domain G = (0, 1). For two parameters k
and γ, the diffusion coefficient has the form

(5.18) a(y, x) = 1 +
1

c

∞∑
m=1

ym
1

mk
sin(mπx) , x ∈ (0, 1) , y ∈ Γ = [−1, 1]∞ ,

where c is chosen as

(5.19) c = γ
∞∑

m=1

1

mk
,

such that |a(y, x) − 1| is always less than γ. For the distribution of y ∈ Γ , we con-
sider the countable product of uniform distributions on [−1, 1]; the corresponding
family of orthonormal polynomials is the Legendre polynomial basis.

In all of the following computations, the parameters are k = 2 and γ = 1/2.
A few realizations of a(y) and the resulting solutions u(y) of (5.1) are plotted in
Figure 1.

Figure 1. Realizations of a(y, x) (left) and u(y, x) (right).

The parameters of SolveGalerkinAAA,fff are set to χ = 1/8, ϑ = 0.57, ω = 1/4,
σ = 0.01114, α = 1/20 and β = 0. These values do not satisfy the assumptions of
Theorem 4.2; however, the method executes substantially faster than with parame-
ters for which the theorem applies. All computations were performed in Matlab on
a workstation with an AMD AthlonTM 64 X2 5200+ processor and 4GB of memory.

We consider a multilevel discretization in which the a posteriori error estimator
from Section 5.2 is used to determine an appropriate discretization level indepen-
dently for each coefficient. A discretization level jμ, which represents linear finite
elements on a uniform mesh with 2jμ cells, is assigned to each index μ with the
goal of equidistributing the estimated error among all coefficients. In particular,
different refinement levels are used to approximate different coefficients uμ.

In Figure 2, on the left, the errors are plotted against the number of degrees
of freedom, which refers to the total number of basis functions used in the dis-
cretization, i.e., the sum of 2jμ − 1 over all μ. On the right, we plot the errors
against an estimate of the computational cost. This estimate takes scalar products,
matrix-vector multiplications and linear solves into account. The total number of
each of these operations on each discretization level is tabulated during the com-
putation, weighted by the number of degrees of freedom on the discretization level,
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Figure 2. Convergence of SolveGalerkinAAA,fff .
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Figure 3. Comparison of SolveGalerkinAAA,fff and the sparse ten-
sor construction, for a multilevel discretization (left) and with a
fixed finite element mesh (right).

and summed over all levels. The estimate is equal to seven times the resulting sum
for linear solves, plus three times the value for matrix-vector multiplications, plus
the sum for scalar products. These weights were determined empirically by timing
the operations for tridiagonal sparse matrices in Matlab.

The errors were computed by comparison with a reference solution, which has
an error of approximately 5 · 10−5. The plots show that the error bounds δk are
good approximations of the actual error, and only overestimate it by a small factor.

We compare the discretizations generated adaptively by SolveGalerkinAAA,fff with
the heuristic a priori adapted sparse tensor product construction from [5]. Using

the notation of [26, Section 4], we set γ = 2 and ηm = 1/(rm +
√

1 + r2m) for
rm = cm2/2 and c from (5.19). These values are similar to those used in the
computational examples of [5]. The coarsest spatial discretization used in the sparse
tensor product contains 16 elements.

In order to isolate the stochastic discretization, we also consider a fixed spatial
discretization, using linear finite elements on a uniform mesh of (0, 1) with 1024
elements to approximate all coefficients. This mesh is sufficiently fine such that
the finite element error is negligible compared to the total error. We refer to these
simpler versions of the numerical methods as single level discretizations.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1538 CLAUDE JEFFREY GITTELSON

0

0

1

2

3

4

2 4 6 8 10
m=1

m
=

2

0

0

1

2

3

4

2 4 6 8 10

m=1

m
=2

� � �

�

�
�

�

�

�

	

	




�

� � 
 ��

� � �

�

�
�

�

�

�

	

	




�

� � 
 ��

Figure 4. Slices of index sets generated by SolveGalerkinAAA,fff

(left) and [5] (right) with single level discretization (top) and mul-
tilevel discretization (bottom). All sets correspond to the right-
most points in Figure 3. Active indices with support in {1, 2} are
plotted; the level of the finite element discretization is proportional
to the radius of the circle.

The single level versions of SolveGalerkinAAA,fff and the sparse tensor method con-
struct discretizations of equal quality, with only a slight advantage for the adaptive
algorithm. However, with a multilevel discretization, SolveGalerkinAAA,fff converges
faster than the sparse tensor method, with respect to the number of degrees of
freedom. At least in this example, the adaptively constructed discretizations are
more efficient than sparse tensor products.

As index sets Ξ ⊂ Λ are infinite dimensional in the sense that they can contain
indices of arbitrary length, they are difficult to visualize in only two dimensions. In
Figure 4, we plot two-dimensional slices of sets generated by SolveGalerkinAAA,fff and
the sparse tensor construction from [5]. We consider only those indices which are
zero in all dimensions after the second, and plot their values in the first two dimen-
sions. The upper plots depict index sets generated using single level discretizations;
dots refer to active indices. The lower plots illustrate the discretizations generated
with multilevel finite element discretizations. The radii of the circles are propor-
tional to the discretization level.

The bottom two plots in Figure 4 illustrate differences between the discretizations
generated by SolveGalerkinAAA,fff and the sparse tensor construction. The former
has many fewer active indices, but higher discretization levels for some of these.
For example, the coefficient of the constant polynomial is approximated on meshes
with 4096 and 256 elements, respectively. Also, while the sets constructed by sparse
tensorization appear triangular in this figure, the adaptively generated index sets
are somewhat more convex. All of the sets are anisotropic in the sense that the
first dimension is discretized more finely than the second.

We use the convergence curves in Figures 2 and 3 to empirically determine con-
vergence rates of SolveGalerkinAAA,fff . The convergence rate with respect to the
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total number of degrees of freedom is 2/3, which is faster than the approximation
rate of 1/2 shown in [11, 10]. It also compares favorably to the sparse tensor con-
struction, which converges with rate 1/2. However, when considering convergence
with respect to the computational cost, the rate of SolveGalerkinAAA,fff reduces to
1/2 also. We suspect that this is due to the approximation of the residual, which
is performed on a larger set of active indices than the subsequent approximation of
the Galerkin projection.

For the case of a single finite element mesh, [11, 10] show an approximation
rate of 3/2, wheras we observe a rate of 1 for both SolveGalerkinAAA,fff and sparse
tensorization. In principle, it is possible that SolveGalerkinAAA,fff does not converge
with the optimal rate in this example, since the parameters used in the computa-
tions do not satisfy the assumptions of Theorem 4.2. Alternatively, due to large
constants in the approximation estimates, the asymptotic rate may not be perceiv-
able for computationally accessible tolerances.

Conclusion

The adaptive method SolveGalerkinAAA,fff efficiently constructs Galerkin spaces
and approximations of the corresponding Galerkin projections for elliptic boudary
value problems with random coefficients. It is proven to converge, and provides a
reliable and efficient bound for the mean square error. In the case of a fixed spatial
discretization, the Galerkin subspaces are shown to be optimal, and the algorithm
has linear complexity with respect to the number of active polynomial modes, up
to a logarithmic term in the computation of the Galerkin projection.

This solver has a modular structure, which allows any discretization of the spatial
domain. For a model problem, we consider finite elements with a residual-based a
posteriori error estimator. A minor modification of standard estimators is needed
to account for finite element functions in the source term.

Numerical computations show that adaptively computed approximate solutions
can be sparser than a sparse tensor product construction. Convergence with respect
to the total number of degrees of freedom or the total computational cost agrees
with or surpasses approximation estimates shown by nonconstructive means in the
case of a multilevel spatial discretization.
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