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Abstract

Flash memory is now a critical component in build-
ing embedded or portable devices because of its non-
volatile, shock-resistant, and power-economic nature.
With the very different characteristics of flash mem-
ory, mechanisms proposed for many block-oriented
storage media cannot be directly applied to flash mem-
ory. Distinct from the past work, we propose an adap-
tive striping architecture to significantly boost the sys-
tem performance. The capability of the proposed mech-
anisms and architecture is demonstrated over realistic
prototypes and workloads.

1 Introduction

Flash memory is now a critical component in build-
ing embedded or portable devices because of its non-
volatile, shock-resistant, and power-economic nature.
Similar to many storage media, flash memory, es-
pecially NAND flash, is treated as ordinary block-
oriented storage media, and file systems are built over
flash memory in many cases [9, 10]. Although it has
been a very convenient way for engineers in build-
ing up application systems over a flash-memory-based
file system, the inherent characteristics of flash mem-
ory also introduce various unexpected system behav-
ior and overheads to engineers and users. Engineers
or users may suffer from degraded system performance
significantly and unpredictably after a certain period
of flash-memory usage. Such a phenomenon could be
exaggerated because of the mismanagement of erasing
activities over flash memory.

A flash memory chip is partitioned into blocks,
where each block has a fixed number of pages, and
each page is of a fixed size, e.g., 512B. The size of a
page fits the size of a disk sector. Due to the hardware
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architecture, data on a flash are written in an unit of
one page. No in-place update is allowed. Initially, all
pages on flash memory is considered as “free”. When
a piece of data on a page is modified, the new version
must be written to an available page somewhere. The
pages store the old versions of the data are considered
as “dead”, while the page stores the newest version of
data is considered as “live”. After a certain period of
time, the number of free pages would be low. As a
result, the system must reclaim free pages for further
writes. Because erasing is done in an unit of one block,
the live pages (if they exist) in a recycled block must
be copied to somewhere else. The block could then be
erased. Such a process is called garbage collection.
The concept of out-place update (and garbage col-
lection) is very similar to that used in log-structured
file-systems (LFS) [6] 1. How to smartly do garbage
collection may have a significant impact on the per-
formance a flash-memory-based storage system. On
the other hand, a block will be “worn-out” after a
specified number of erasing cycles. The typical cy-
cle limit is 1,000,000 under the current technology. A
poor garbage collection policy could also quickly wear
out a block and, thus, a flash memory chip. A strategy
called “wear-leveling” with the intention to erase all
blocks as evenly as possible should be adopted so that
a longer lifetime of flash memory could be achieved.

On the other hand, flash memory is still relatively
slow, compared to RAM. For example, the throughput
in writing to a “clean” (un-written) NAND flash mem-
ory could reach 400 ∼ 500KB per second. However,
it could be degraded by roughly 20% when garbage

1Note that there are several different approaches in man-
aging flash memory for storage systems. We must point out
that NAND flash prefers the block device emulation approach
because NAND flash is a block-oriented medium (Note that a
NAND flash page fits a disk sector in size). There is an alter-
native approach which builds an LFS-like file system over flash
memory without the block device emulation. We refer inter-
ested readers to [11] for more details.
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collection happens. If there is significant locality in
writes, the overheads of garbage collection could be
much higher because of wear-leveling. The through-
put could even deteriorate down to less than 50% of
the original performance. The performance under the
current flash memory technology might not satisfy ap-
plications which demand a higher write throughput.

The purpose of this paper is to investigate the per-
formance issue of flash-memory storage systems with
a striping architecture. The idea is to use I/O paral-
lelism in speeding up a flash-memory storage system.
As astute readers may notice, such an approach in I/O
parallelism could not succeed without further investi-
gation on garbage collection issues. In this paper, we
shall propose an adaptive striping mechanism designed
for flash-memory storage system with the considera-
tion of garbage collection.

In the past few years, researchers [1, 5, 7] have
started investigating the garbage collection problems
of flash-memory storage systems with a major ob-
jective in reducing both the number of erasings and
the number of live-page copyings. In particular,
Kawaguchi and Nishioka [1] proposed a greedy pol-
icy and a cost-benefit policy. The greedy policy al-
ways recycles the block with has the largest number
of dead pages. The cost-benefit policy assigns each
block a value and runs a value-driven garbage collec-
tion policy. Kawaguchi and Nishioka observed that
with the locality of the access pattern, garbage collec-
tion could be more efficient if live-hot data could be
avoided during the recycling process, where hot data
are data which are frequently updated. Chiang, et
al. [7] improved the garbage collection performance
by adopting a better hot-cold identification mecha-
nism. Douglis, et al. [4] observed that the overhead
of garbage collection could be significantly increased
when the capacity utilization of flash memory is high,
where the capacity utilization denotes the ratio of the
number of live pages and the number of total pages.
For example, when the capacity utilization was in-
creased from 40% to 95%, the response time of write
operations may drop by 30%, and the lifetime of a flash
memory chip may be reduced up to a third. Chang
and Kuo [3] investigated the performance guarantee of
garbage collection for flash memory for hard real-time
systems. A greedy-policy-based real-time garbage col-
lection mechanism was proposed to provide a deter-
ministic performance.

Distinct from the past work, we focus on the ar-
chitecture of a flash-memory storage system. A joint
striping and garbage-collection mechanism for a flash-

memory storage system is proposed with the objective
to significantly boost the performance. We propose to
adopt a striping architecture to introduce I/O paral-
lelism to flash-memory storage systems and an adap-
tive bank assignment policy to capture the character-
istics of flash memory. We formulate a simple and
effective garbage collection policy for striping-based
flash-memory storage systems and investigate the ef-
fects of striping on garbage collection. The contribu-
tions of this paper are as follows:

• We propose a striping architecture to introduce
I/O parallelism to flash-memory storage systems.
Note that storage systems are usually the slowest
systems for many embedded application systems.

• We propose an adaptive striping-aware bank as-
signment method to improve the performance of
garbage collection.

• We investigate the tradeoff of striping and
garbage collection to provide insight for system
design.

The rest of this paper is organized as follows: In
Section 2, the motivation of this paper is presented,
and the architecture of a striping NAND-flash storage
system is introduced. Section 3 presents our adaptive
striping architecture. The proposed policy is evalu-
ated by a series of experiments over realistic workloads
in Section 4. Section 5 briefly introduces our policy
for garbage collection. Section 6 is the conclusion.

2 Motivation and System Architecture

NAND flash is one kind of flash memory specially
designed for block storage systems of embedded sys-
tems. Most flash-memory storage systems, such as
SmartmediaTM , and CompactF lashTM , now adopt
NAND flash. The operation model of NAND flash,
in general, consists of two phases: setup and busy
phases. For example, the first phase (called “setup”
phase) of a write operation is for command setup and
data transfer. The command, the address, and the
data are written to proper registers of flash memory
in order. The second phase (called “busy” phase) is
for busy-waiting of the data being flushed into flash
memory. The operation of reads is similar to that of
writes, except that the sequence of data transfer and
busy-waiting is inverted. The phases of an erase is as
the same as those of a write, except that no data trans-
fer is needed in the setup phase. The control sequence
of read, write, and erase are illustrated in Figure 1(a).
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Figure 1: (a) Control Sequences of Read, Write, and
Erase. (b) Parallelism for Multiple Banks.

Interval Documented (µs) Measured (µs)

Esetup 0.25 31

Ebusy 2,000 1,850

Wsetup 26.65 616

Wbusy 200 303

Rsetup 26.55 348

Rbusy 10 Negligible

Table 1: NAND-Flash Performance (Samsung
K9F6408U0A 8MB NAND flash memory)

The purpose of this paper is to investigate the
performance issue of NAND-flash storage systems for
embedded applications because of the popularity of
NAND flash. While the setup phase of an operation
is done by a driver and consumes CPU time, CPU is
basically free during the busy phase. Because of the
design of NAND flash, the busy phase of a write (/
an erase) usually takes a significant portion of time
for each operation, compared to the elapsed time of
the first phase. The performance characteristics of a
typical NAND flash over an ISA bus is summarized in
Table 1, where Wsetup (/Rsetup /Esetup) and Wbusy(/
Rbusy / Ebusy) denote the setup time and the busy
time of a write (/read/erase), respectively.

The motivation of this research is to investigate the
parallelism of multiple NAND banks to improve the
performance of flash-memory storage systems, where
a bank is a flash unit that can operate independently
(Note that a dedicated latch and a decode logic are
needed for each independent bank.). When a bank
operates at the busy phase, the system can switch im-
mediately to another bank such that multiple banks
can operate simultaneously, whenever needed, to in-
crease the system performance, as shown in Figure
1(b). For example, a write request, which consists of
3 pages writes, needs 3*(606+303) = 2,727 µs to com-
plete without striping. But it requires only 3*606+303
= 2,121 µs to complete if we have two independent
banks. As a result, the response time is reduced by
23%. Note that Ebusy is far more than Esetup over
an ISA-based NAND flash. When a higher speed bus
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Figure 2: System Architecture.

other than ISA is adopted, Wsetup and Esetup (and
Rsetup) could be much reduced, and we surmise that
the performance of the system can be further improved
under the idea of striping. As astute readers may no-
tice, performance improvement will be much more sig-
nificant if Wsetup < Wbusy, since a higher parallelism
can be achieved.

An ordinary NAND-flash storage system consists
of a NAND-flash bank, a Memory-Technology-Device
(MTD) driver, and a Flash-Translation-Layer (FTL)
driver, where a MTD driver provides functionality
such as read, write, and erase. A FTL driver provides
transparent access for file systems and user applica-
tions via block device emulation. When a striping
NAND-flash storage system is considered, the MTD
and FTL drivers must be re-designed accordingly to
take advantage of multiple banks. The system archi-
tecture is illustrated in Figure 2. The modification of a
MTD driver can be done straightforwardly: Basically,
a MTD driver may no longer block and wait for the
completion of any write or erase because several banks
are now available. We shall discuss it again later. The
major challenges of a striping architecture are on the
FTL driver. In this paper, we will address this issue
and propose our approaches for striping-aware garbage
collection.

3 An Adaptive Striping Architecture

In this section, a multi-bank address translation
scheme is presented, and then different striping poli-
cies for the proposed striping architecture are pre-
sented and discussed.
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Figure 3: Address Translation Mechanism.

3.1 Multi-Bank Address Translation

The flash-memory storage system provides the file
system a collection of logical blocks for reads/writes.
Each logical block is identified by a unique logical
block address (LBA). Note that each logical block is
stored in a page of flash memory. Because of the adop-
tion of out-place update and garbage collection, the
physical location of a logical block might change from
time to time. For the rest of this paper, when we use
the term “logical block”, it is for a logical block viewed
by the file system. When we say “block”, we mean the
block of flash memory, where a block consists of a fixed
number of pages, and each page can store one logical
block.

In order to provide transparent data access, a dy-
namic address translation mechanism is adopted in
the FTL driver. The dynamic address translation is
usually accomplished by using an address translation
table in main memory, e.g., [1, 5, 7, 9]. In our multi-
bank storage system, each entry in the table is a triple
(bank num, block num, page num), indexed by LBA.
Such a triple indicates that the corresponding logical
block resides at Page page num of Block block num of
Bank bank num. In a typical NAND flash memory, a
page consists of a user area and a spare area, where the
user area is for the storage of a logical block, and the
spare area stores the corresponding LBA, ECC, and
other information. The status of a page can be either
“live”, “dead”, or “free” (i.e., “available”). Whenever
a write is processed, the FTL driver first finds a free
page and then writes the written data and the cor-
responding LBA to the user area and the spare area,
respectively. The pages store the old versions of data
of the written logical block (if it exists) are considered
as “dead”. The address translation table is updated

accordingly. Whenever a system is powered up, the
address translation table is re-built by scanning the
spare area of all pages. As an example shown in Fig-
ure 3, when a logical block with LBA 3 is accessed, the
corresponding table entry (0,0,6) shows that the logi-
cal block resides at the 7th page (i.e., (6+1)th page)
of the first block on the first bank.

3.2 Bank Assignment Policies

Three kinds of operations are supported on flash
memory: read, write, and erase. Reads and erases do
not need any bank assignment because they are al-
ready stored in specific locations. Writes would need
a proper bank assignment policy to utilize the paral-
lelism of multiple banks. When the FTL driver re-
ceives a write request, it will break the write into
a number of page writes. There are basically two
types of striping for write requests: static and dy-
namic striping:

Under the static striping, the bank number of each
page write is derived based on the corresponding LBA
of the page as follows:

Bank address = LBA % (number of banks)

The formula is close to the definition of RAID-0.
Each sizable write is striped across banks “evenly”.
However, the static bank assignment policy could not
actually provide even usages of banks, as shown in the
experimental results in Section 4.2. As a result, a sys-
tem adopts the static bank assignment policy might
suffer from a large number of data copyings (and thus
a degraded performance level) and different wearing-
out time for banks because of the characteristics of
flash. The phenomenon is caused by two reasons: (1)
the locality of write requests, and (2) the uneven ca-
pacity utilization distribution among banks.

To explain the above phenomenon, we shall first
define that an LBA is “hot” if it is frequently written;
otherwise the LBA is “cold” (we may refer written
data as hot data if their corresponding LBA’s are hot
for the rest of this paper). Obviously, hot data will be
invalidated sooner than cold data do, and they usu-
ally left dead pages on their residing banks. Since a
static bank assignment policy always dispatches write
requests to their statically assigned banks, some par-
ticular banks might have many hot data on them. As
a result, those banks would need to do a lot of garbage
collecting. On the other hand, the banks which have
a lot of cold data on them would have a high capacity
utilization, since cold data would reside on their as-
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signed banks for a longer period of time. Due to the
uneven capacity distribution among banks, the per-
formance of garbage collection on each bank may also
vary since the performance highly depends on the ca-
pacity utilization [4, 6].

To resolve the above issue, we propose a dynamic
bank assignment policy as follows: When a write re-
quest is received by the FTL driver, we propose to
scatter page writes of the write request over banks
which are idle and have free pages. The parallelism
of multiple banks is achieved by switching over banks
without having to wait for the completion of issued
page-writes. The general mechanism is to choose an
idle bank that has free pages to store the written data.
One important guideline is to further achieve the “fair-
ness” of bank usages by analyzing the attributes (hot
or cold) of the written data: Before a page write is
assigned a bank address, the attributes of the written
data must be identified. We propose to write hot data
to the bank that has the smallest erase-count (which
is number of erases ever performed on the bank) for
the consideration of wear-leveling, since hot data will
contribute more live page copyings and erases to the
bank. The strategy in writing hot data prevents hot
data from clustering on some particular banks. On the
other hand, cold data are written to the bank that has
the lowest capacity utilization to achieve a more even
capacity utilization over banks. The strategy in writ-
ing cold data intends to achieve a more even capac-
ity utilization distribution since cold data will reside
at their written locations for a longer period of time.
Because flash memory management already adopts a
dynamic address translation scheme, it is very easy
and intuitive to implement a dynamic bank assign-
ment policy in FTL. We shall explore the performance
issues of the above two policies in Section 4.2.

3.3 Hot-Cold Identification

As we mentioned in the pervious section, we need
to identify the attributes of the written data. The pur-
pose of this section is to propose a hot-cold identifica-
tion mechanism. Note that the hot-cold identification
mechanism does not intend to capture the whole work-
ing set. Instead, the mechanism aims at analyzing if
the requested LBA’s are frequently written (updated).

The proposed hot-cold identification mechanism
consists of two fixed-length LRU lists of LBA’s, as
shown in Figure 4. When the FTL driver receives a
write request, the two-level list will examine each LBA
associates with the write to determine the “hotness”
of the written data: If a LBA already exists in the

New element with LBA is added if
the LBA does not exist in any list.

Element is discarded if the
candidate list is full.

Element is promoted if the
LBA already exists in the

candidate list.

Element is demoted if
the hot list is full.

Candidate list

Hot list

Figure 4: Two-Level LRU Lists.

first-level LRU list, i.e., the hot list, then the data is
considered hot. If the LBA does not exist in the hot
list, then the data is considered cold. The second-
level list, called the candidate list, stores the LBA’s
of recently written data. If a recently written LBA is
written again in a short period of time, the LBA is
considered hot, and it is promoted from the candidate
list to the hot list. If the hot list is already full (when
a LBA is promoted from the candidate list to the hot
list), then the last element of the hot list is demoted to
the candidate list. If the promoted LBA already ex-
ists in the hot list, it will be moved to the head of the
hot list. Under the two-level list mechanism, we only
need to keep tracks of hot LBA’s, which is a relatively
small subset of all possible LBA’s [2]. This mecha-
nism is very efficient and the overhead is very low,
compared with the mechanism proposed in [7] which
always keeps the last access time of all LBA’s.

4 Experimental Results

A multi-bank NAND-flash prototype was built to
evaluate the proposed adaptive striping architecture.
Since the performance of garbage collection highly de-
pends on the locality of access pattern, we evaluated
the prototype under three different access patterns:
trace-driven, sequential, and random. The traces of
the trace-driven access pattern were collected by emu-
lating web-surfing applications over a portable device,
and the characteristics of the traces are shown in Ta-
ble 2. Sequential and random access patterns were
generated by modifying the requested LBA’s of the
gathered traces. Other parameters (arrival time, re-
quest size, etc.) remained the same. In the following
experiments, the trace-driven access pattern was used
unless we explicitly specified which one was used. The
capacity of the NAND-flash-based storage system was
set as 8MB, the block size of the flash memory chips
was 16KB, and the number of banks varied over ex-
periments. The performance of the evaluated NAND
flash memory (e.g., the setup time and the busy time
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of operations) is summarized in Table 1. Note that
some of the experiments were performed over a soft-
ware simulator when the hardware was not available.
For example, those experiments require a NAND flash
memory which had a block size equal to 8KB.

The primary performance metrics of the experi-
ments is on the soft real-time performance of the flash-
memory embedded systems, e.g., the average response
time of write requests. We shall measure the effi-
ciency of striping, although the average response time
of writes also indirectly reflects that of reads. As as-
tute readers may point out, the performance improve-
ment of striping could be even more significant if the
performance metrics also consider the response time
of reads because the intervals of Rsetup and Rbusy

are more close (see documented figures in Table 1),
compared to those of Wsetup and Wbusy. The ratio-
nale behind this measurement is to provide an explicit
impacts of striping on the system performance over
writes (which are much slower than reads) and also to
reflect the efficiency of garbage collection, because it
introduces live page copyings.

Another performance metric is the number of live
page copyings because it directly reflects the perfor-
mance of garbage collection. A fewer number of live
page copyings indicates the better efficiency of garbage
collection and a smaller number of block erasings. A
small number of block erasings implies the better en-
durance of flash memory and a less impact on writes’
response time. Note that we did not measure the
blocking time of flash-memory access here because the
performance of the systems in handling flash-memory
access could be observed by the primary performance
metrics, i.e., response time of write requests.

The performance evaluation consisted of two parts:
The first part evaluated the performance improvement
of the proposed striping architecture under different
bank configurations. The second part evaluated the
performance of the proposed dynamic bank assign-
ment policy versus a RAID-similar static bank assign-
ment policy.

4.1 Performance of the Striping Architec-
ture

Under a striping architecture, the performance im-
provement depended on the degree of parallelism be-
cause a higher degree indicated a higher concurrency
of operations and a better throughput. This part of
the experiments evaluated the performance improve-
ment of the proposed striping architecture under dif-

File system FAT32
Applications Web Browser & Email Client

Sector Size/Page Size 512 Bytes
Duration 3.3 Hours

Final Capacity Utilization 71% (Initially Empty)
Total Data Written 18.284 MB
Read / Write Ratio 48% / 52%
Mean Read Size 8.2 Sectors
Mean Write Size 5.7 Sectors
Inter-Arrival Time Mean: 32 ms

Standard Deviation: 229 ms
Locality 74-26 (74% of Total Requests

Access 26% of Total LBA’s)
Length of the Two- 512 (Hot) / 1024 (Candidate)
Level LRU List

Table 2: Characteristics of Traces.

ferent bank configurations. We must point out that
the setup time of an operation implied the best par-
allelism we can achieve under a striping architecture.
The setup time depended on the hardware interface
we used to communicate with the flash memory, and
a shorter setup time implied a potentially higher de-
gree of parallelism because the system could switch
over banks quickly. In this part of performance eval-
uation, we used typical NAND-flash over an ISA bus
with characteristics shown in Table 1. When a higher
performance bus such as PCI is used, we surmise that
the performance improvement of a striping architec-
ture could be even more significant.

Figure 7(a) shows the average response time of
writes under various numbers of banks of an 8MB-
flash storage system. The X-axis reflects the number
of write requests processed so far in the experiments.
The first experiment measured the performance im-
provement by increasing the numbers of banks in the
experiments. Figure 7(a) shows that the system per-
formance was substantially improved when the num-
ber of banks increased from one to two because of
more parallelism in processing operations. However,
when the number of banks increased from two to four,
the improvement was not so significant becauseWsetup

was larger than Wbusy. Note that the garbage collec-
tion started happening after 3,200 write requests were
processed in the experiments (due to the exhaustion
of free pages). As a result, there was a significant
performance degradation after the garbage collection
activities began. Additionally, we also evaluated the
performance of the cost-benefit policy [1] in the one-
bank (not striped) experiments to make a performance
comparison. The results showed that our system had
a shorter response time than the cost-benefit policy
did after the garbage collection activities began, even
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Figure 5: An Example of 10-Sector Writes
with/without Striping.

the striping mechanism was not activated. It demon-
strated that our garbage collection policy was also very
efficient. We shall discuss our garbage collection pol-
icy in Section 5.

Figure 7(b) shows the number of live page copy-
ings during garbage collection. The larger number of
live page copyings, the more system overheads were.
Note that a write request might consist of one or more
page writes. Therefore, in the one-bank experiment
(as shown in Figure 7(b)), the system wrote 37,445
pages (≈ 18MB, please see Table 2) , and made copies
of 5,333 pages for garbage collecting. We should point
out that Figure 7(b) reveals the tradeoff between strip-
ing and garbage collection: We observed that a system
with a large number of banks could have a large num-
ber of live page copyings. The tradeoff had a direct im-
pact on the performance of the 4-banks experiments,
as shown in Figure 7(a): That is, the average response
time of the 4-bank system was a little bit longer than
that of the 2-bank system after 8,000 write requests
were performed. To identify the cause of the phe-
nomenon, we provide an example as shown in Figure
5 for explanation:

In Figure 5(a), 10 pages were written to a 8MB flash
bank called Ba. If the 8MB flash bank was split into
two 4MB flash banks, and a striping architecture was
adopted, 5 pages would be written to each of Bb0 and
Bb1 , as shown in Figure 5(b). Although the bank size
(and the amount of data written to Bb0 and Bb1) were
reduced by a half, however, the block size remained
16KB. Theoretically, we could consider that the block
size of Bb0 and Bb1 as being doubled. The garbage
collection performance would be degraded when the
block size increased, as reported in [4, 7], since poten-
tially more live pages could be involved in the recy-
cling of blocks. Such a conjecture could be proved by
observing the live-page copyings under striping when
the page size was 8KB (a half of 16KB), as shown in
Figure 7(b).

As shown in Figure 7(b), the extra live page copy-
ings could be removed by using a NAND flash memory
which has a smaller block size. However, the block size
of a typical NAND flash memory currently in market is
16KB. Another approach to remove the extra live page
copyings is to lower the overall capacity utilization of
the flash memory. For example, with 1MB extra free
space added, the number of live page copying of a 4-
bank system is significantly reduced. As a result, we
concluded that when several banks were adopted to-
gether without fixing the size of a flash-based storage
system, the system performance improvement would
be much more significant because the number of live
page copyings might not increase under the new con-
figuration.

Figure 7(c) shows the software-simulated perfor-
mance improvement of striping when a more efficient
bus was adopted for NAND-flash storage systems. We
reduced the Wsetup from 606us to 50us and remained
Wbusy as 303us (as shown in Table 1), where the doc-
umented Wsetup was those shown on the data sheet
[8], and 606us was that measured on our prototype.
It was shown that the performance improvement of 4-
bank striping was now much more than that of 2-bank
striping, as shown in Figure 7(a), because a higher
parallelism was possible.

4.2 Performance under Different Bank
Assignment Policies and Workloads

The second part evaluated the performance of the
proposed dynamic bank assignment policy versus a
RAID-similar static bank assignment policy under dif-
ferent numbers of banks.

Figure 7(d) shows the performance of the flash
memory storage system under the static bank assign-
ment policy and the dynamic bank assignment pol-
icy. The X-axis reflects the number of write requests
processed so far in the experiments. The garbage col-
lection started happening after 3,200 writes were pro-
cessed in the experiments. When garbage collection
started happening (after 3,200 write requests), the dy-
namic bank assignment policy greatly outperformed
the static bank assignment policy. The rapid perfor-
mance deterioration of the static bank assignment pol-
icy was because of the uneven usages of banks. Figure
7(e) shows the erase count and the capacity utilization
of each bank of a 4-bank system. We could observe
that the dynamic bank assignment policy could pro-
vide a more even usages of banks. A better perfor-
mance was delivered, and a longer overall lifetime of
flash memory banks could be provided.
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Experiments were also performed to compare the
performance of different policies under different ac-
cess patterns. Two additional access patterns were
evaluated: a random access pattern and a sequential
access pattern. The experiments were performed on a
4-bank system, and the results are presented in Fig-
ure 7(f). Under the sequential access pattern, there
was no noticeable performance difference between the
dynamic bank assignment policy and the static bank
assignment policy. That was because data were se-
quentially written and invalidated. Under the random
access pattern, since data were written and invalidated
randomly, the performance of the garbage collection
was pretty poor. But the dynamic bank assignment
policy flexibly dispatched page writes among banks, as
a result, the dynamic bank assignment policy outper-
formed the static bank assignment policy under the
random access pattern.

5 Remark: Garbage Collection Issues

A flash memory storage system could not succeed
without the support of a good garbage collection pol-
icy. In our system, we implemented a hot-cold aware
garbage collection policy to incorporate with the pro-
posed striping mechanism, by fully utilizing the hot-
cold identification mechanism described in Section 3.3.
We shall discuss important issues for garbage collec-
tion in this section.

5.1 Hot-Cold Separation

Any block in flash memory may be erased to recy-
cle dead pages in the block if any available space is
needed. During the recycling process, any live pages
in the block must be copied to some available space.
Pages that store hot data usually have a high chance
to become dead in the near future. As a result, an
efficient garbage collection policy must prevent from
copying hot-live data. It is necessary to identify the
“hotness” of data and store them at proper place so
that the copying of hot-live pages can be minimized.
An improper placement of hot data could result in
a serious degradation of the system performance. In
this section, we shall introduce a separation policy in
locating pages for hot and cold data.

The bank assignment policy (please see Section 3.2)
determines which bank the write will be used, and the
block assignment policy determines which block the
write will be used. The purpose of the hot-cold separa-
tion policy is to propose a hot-cold aware block assign-
ment policy. In order to reduce the possibility in mix-

Hot
pointer

Cold
pointer

Hot
pointer

Cold
pointer

Hot
pointer

Cold
pointer

Hot
pointer

Cold
pointer

A write request consists of 4 page writes

1 Grid = 1 Block, 32 Pages

= Block has no free pages = Block has free pages

Figure 6: Hot-Cold Data Separation with Hot/Cold
Pointers.

Page Attribute Cost Benefit

Hot (live) 2 0

Cold (live) 2 1

Dead 0 1

Free N/A N/A

Table 3: The Cost and Benefit Functions of Pages

ing hot and cold data inside the same block, we pro-
pose to store hot data and cold data separately. Each
bank is associated with two pointers: “hot pointer”
and “cold pointer”. The hot pointer points to a block
(called hot block) that is currently being used to store
hot data. The cold pointer points to the block (called
cold block) that is currently being used to store cold
data. The proposed method in the separation of hot
and cold data is illustrated in Figure 6. An experiment
was performed over a 4-bank system without the the
hot-cold identification and separation mechanism. As
shown in Figure 7(b), the mechanism did substantially
reduce the number of live page copyings for garbage
collection.

5.2 A Block-Recycling Policy

A highly efficient cost-benefit policy for block re-
claiming is proposed in this section. Distinct from the
cost-benefit policies proposed in the previous work,
e.g., [1, 7] 2 , the value (called “weight” in our system)
of each block is only calculated by integer operations
in this paper. The adoption of integer operations in
a cost-benefit policy is very useful in some embedded
system without any floating-point support.

When a run of garbage collection begins, the weight

2The cost-benefit value is calculated by
age∗(1−u)

2u
in [1] and

u+c
1−u

in [7].
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of each block is calculated by the attributes of each
page in the block. The weight is calculated by the
following formula:

weight =
∑n

i=1(benefit(pi)− cost(pi))
The block with the largest weight should be recy-

cled first, where n is the number of pages in a block,
and Pi is the i−th page in the block. Functions Cost()
and Benefit() of pages are shown in Table 3. During
block recycling, the handling of a live page consists of
one read and one write, and the cost of a live page
is defined as 2, regardless of whether the data on the
page is hot or cold. Here 2 stands for the cost of
the read and the write of live page copying. As we
pointed out earlier, the copying of a live-hot page is
far uneconomic than the copying of a live-cold page.
As a result, we set the benefit of copying a live-cold
page and a live-hot page as 1 and 0, respectively. The
benefit of the reclaiming of a dead page is one because
one free page is reclaimed. It’s cost is zero because
no page copying is needed. Note that a free page is
not entitled for reclaiming. The weight calculation of
blocks can be done incrementally when the attribute
of pages changes (e.g., from live to dead).

6 Conclusion

This paper proposed a dynamic striping architec-
ture for flash memory storage systems with the ob-
jective to significantly boost the performance. Dis-
tinct from the past work, we focus on the architec-
ture of a flash memory storage system. We propose to
adopt a striping architecture to introduce I/O paral-
lelism to flash-memory storage systems and an adap-
tive bank assignment policy to capture the charac-
teristics of flash memory. We formulate a simple but
effective garbage collection policy with an objective to
reduce the overheads of value-driven approaches and
to investigate the tradeoff of striping and garbage col-
lection to provide insight for further system design.
The capability of the proposed methodology was eval-
uated over a multi-bank NAND flash prototype, for
which we have very encouraging results.

For future work, we shall further explore flash mem-
ory storage architectures, especially over interrupt-
driven frameworks. With interrupt-driven flash con-
trollers, an even more independent and large scale
system architecture is possible in the future. More
research in these directions may be proved very re-
warding.
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Figure 7: Experimental Results.
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