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ABSTRACT In this article, a novel adaptive super-twisting nonlinear Fractional-order PID sliding mode

control (ASTNLFOPIDSMC) strategy using extended state observer (ESO) for the speed operation of

permanent magnet synchronous motor (PMSM) is proposed. Firstly, this paper proposes a novel nonlinear

Fractional-order PID (NLFOPID) sliding surface with nonlinear proportion term, nonlinear integral term

and nonlinear differential term. Secondly, the novel NLFOPID switching manifold and an adaptive super-

twisting reaching law (ASTRL) are applied to obtain excellent control performance in the slidingmode phase

and the reaching phase, respectively. The novel ASTNLFOPIDSMC strategy is constructed by the ASTRL

and the NLFOPID sliding surface. Due to the utilization of NLFOPID switchingmanifold, the characteristics

of fast convergence, good robustness and small steady state error can be ensured in the sliding mode phase.

Due to the utilization of ASTRL, the chattering phenomenon can be weakened, and the characteristics of

high accuracy and strong robustness can be obtained in the reaching phase. Further, an ESO is designed to

achieve dynamic feedback compensation for external disturbance. Furthermore, Lyapunov stability theorem

and Fractional calculus are used to prove the stability of the system. Finally, comparison results under

different controllers demonstrate that the proposed control strategy not only achieves good stability and

dynamic properties, but also is robust to external disturbance.

INDEX TERMS Adaptive super-twisting nonlinear Fractional-order PID sliding mode control (ASTNL-

FOPIDSMC) strategy, extended state observer (ESO), permanent magnet synchronous motor (PMSM),

nonlinear Fractional-order PID (NLFOPID) sliding surface, adaptive super-twisting reaching law (ASTRL).

I. INTRODUCTION

Permanent magnet synchronous motor (PMSM) is widely

used in industry applications [1]–[3]. The traditional linear

controllers are widely used in the control of PMSM because

of their simple structure, but due to the unknown disturbance,

time-varying, strong coupling of PMSM, the traditional lin-

ear controllers cannot meet the high performance control

requirements [4], [5]. Therefore, many different advanced

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Shen .

control strategies have been proposed to improve the control

performance of PMSM, such as backstepping control [6], [7],

finite time control [8], model predictive control [9], fuzzy

logic control [10], sliding mode control (SMC) [11]–[13]

and robust control [14]. Among them, SMC has been widely

used for decades, because of its robustness and simplicity.

Several SMC strategies were proposed by many scholars,

such as event-triggered SMC [15], adaptive SMC [16], [17],

fuzzy SMC [18], [19], model free SMC [20], global SMC

[21], [22], complementary SMC [23], [24], et al. The per-

formance of SMC strategy mainly depends on the sliding
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mode surface and reaching law. The PID controller is a

classical feedback controller. Because the PID controller has

the advantages of simple structure and well-known parameter

adjustment rules, the PID sliding surface has been designed

by scholars to improve the control performance of the closed-

loop system. The PID sliding surface is defined as the

present, past and future functional forms of error signals.

The SMC strategies based on different forms of PID sliding

surface have been widely used in many practical systems.

In [25]–[28], SMC strategies based on the PID sliding sur-

face were developed to the process control systems, robotic

manipulators, quadcopter and semi-active vehicle suspen-

sion, respectively. For 300 years, Fractional-order theory

has been studied by scholars as pure mathematics theory.

In recent years, the combination of Fractional-order theory

and various control theories has been widely used in many

systems. In [29]–[31], nonsingular terminal SMC strategies

combined with the Fractional-order theory were designed

for cable-driven manipulators. Fuzzy sliding mode theory

combined with Fractional-order theory was proposed for

uncertain Fractional-order nonlinear systems in [32]. In [33],

[34], dynamic surface control strategies combined with the

Fractional-order theory were designed for Fractional-order

nonlinear systems. By combining the traditional PID sliding

surfacewith the Fractional-order theory, the linear Fractional-

order PID (LFOPID) sliding surface can be obtained. Com-

pared with Integer-order, the extra degrees of freedom from

using of Fractional-order integrator and differentiator made it

possible to further improve the control effect [35]. Recently,

many SMC strategies based on different forms of LFOPID

sliding surface have been widely used in many systems,

such as wind power generation system [36], wheeled mobile

robot [37], electro-hydraulic servo system [38] and PMSM

[39], et al. However the linear superposition of three basic

modules in the LFOPID can cause the contradiction between

the rapidity and the overshoot, and the LFOPID also has

the disadvantages of simplicity and tough, which makes it

difficult to meet the control requirements of high quality [40],

[41]. A nonlinear function fal(·) was proposed by Han in

[42]. It has the characteristics of fast convergence, reduce

steady state error and saturated error [43]- [45]. In order to

effectively settled above-mentioned issues of the LFOPID

sliding surface, the nonlinear function fal(·) is first introduced
into the conventional LFOPID sliding surface. Based on the

LFOPID sliding surface and the nonlinear function fal(·),
a novel nonlinear FOPID (NLFOPID) sliding surface is

proposed with nonlinear proportion term, nonlinear integral

term and nonlinear differential term in this study.

The main disadvantage of the conventional SMC is chat-

tering phenomenon. The super-twisting (ST) scheme is one

of the high-order SMC which has been made to solve

the chattering problem, good control performance can be

ensured by the ST scheme simultaneously [46]. However,

the ST scheme requires upper bound information of the

lumped uncertainties to calculate the control parameters,

which is very difficult in reality. [47] proposed an adaptive

super-twisting (AST) scheme. The AST scheme has advan-

tages of addressing the unknown upper bound of the distur-

bance and the adaptability of control parameters. Because

of the superiorities, AST scheme has been widely used in

many practical systems, such as air vehicle [48], marine

vessels [49], vehicle steer-by-wire system [50], cable-driven

manipulators [51], rigid robotic manipulators [52], et al.

Since extended state observer (ESO) can effectively esti-

mate the total disturbance of the system and rarely rely on the

mathematical model of the system, it has been widely used to

estimate the external disturbance in various practical systems,

such as linear induction motor [45], test rocket control system

[53], spacecraft [43], et al.

In this study, a novel adaptive super-twisting nonlin-

ear Fractional-order PID sliding mode control (ASTNL-

FOPIDSMC) strategy using the ESO for the speed operation

of PMSM is proposed. In order to solve the contradiction

between the rapidity and the overshoot of the LFOPID sliding

surface, and to solve the disadvantages of simplicity and

tough of the LFOPID sliding surface, a novel NLFOPID

sliding surface combining the nonlinear function fal(·) is

proposed. Due to the utilization of the NLFOPID switch-

ing manifold, the characteristics of fast convergence, good

robustness and small steady state error can be ensured in the

sliding mode phase. An AST scheme is designed to suppress

the chattering phenomenon of the conventional SMC and

improve the control performance of the system in the reaching

phase. Then, in order to improve the ability of the system

to resist external disturbance, the novel ASTNLFOPIDSMC

strategy utilizes the ESO to achieve dynamic feedback com-

pensation for external disturbance.

The main contributions of this paper can be listed as fol-

lows:
1. The nonlinear function fal(·) is first introduced into the

conventional LFOPID sliding surface. We propose a

novel NLFOPID sliding surface, which includes non-

linear proportional term, nonlinear integral term and

nonlinear differential term.

2. An AST scheme is selected to improve the control

performance of the reaching phase. A novel ASTNL-

FOPIDSMC strategy is constructed by the AST scheme

and the novel NLFOPID sliding surface.

3. A novel ESO based the ASTNLFOPIDSMC strategy

is proposed. The ESO is designed to achieve dynamic

feedback compensation for external disturbance. The

proposed control strategy not only achieves good sta-

bility and dynamic properties, but also is robust to

external disturbance.

4. Lyapunov stability theorem and Fractional calculus are

used to prove the stability of the system.

5. The effectiveness and superiority of our proposed con-

trol scheme, compared to the existing theory, have been

verified by simulation results.

The rest of this paper is organized as follows: some def-

initions and properties of Fractional-order calculus are pre-

sented in Section II. In Section III, the control strategies and
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the stability analysis are given. The comparative results and

the analysis of results are given in Section IV. Section V gives

main conclusions and future work.

II. MATHEMATICAL PRELIMINARIES

This section presents some definitions and properties of

Fractional-order calculus.

The Riemann-Liouville Fractional derivative and integral

of function f (t) are given by [54], [55]:































t0D
ε
t f (t) = 1

Ŵ(1 − ε)

d

dt

∫ t

t0

f (τ )

(t − τ )ε
dτ

t0D
−u
t f (t) = 1

Ŵ(u)

∫ t

t0

f (τ )

(t − τ )1−u
dτ

Ŵ(z) =
∫ ∞

0

e−t tz−1dt

(1)

where z ∈ R; t and t0 represent the upper and lower bounds

of the Fractional derivative and integral; ε and u are the

Fractional derivative order and integral order, respectively;

0 < ε, u < 1.

The Caputo Fractional derivative of order a of function f (t)

is defined as follows [54], [55]:

t0D
a
t f (t) =



































1

Ŵ(m− a)
t
∫

t0

f (m)(τ )

(t − τ )a−m+1
dτ m− 1 < a < m

dm

dtm
f (t) a = m

(2)

where m is the first integer larger than a.

Riemann-Liouville Fractional-order definition is selected

in this article.

The Fractional order derivative and integral have the fol-

lowing properties [54], [55]:

dn

dtn

(

t0D
ε
t f (t)

)

= t0D
ε+n
t f (t) (3)

dn

dtn

(

t0D
−u
t f (t)

)

= t0D
n−u
t f (t) (4)

The Fractional order derivative has the property of linear

operation [54], [55]:

t0D
ε
t (af (t) + bf (t)) = at0D

ε
t f (t) + bt0D

ε
t f (t) (5)

The following autonomous system [56]:

t0D
ε
t f (t) = Zf (t) f (0) = f0 (6)

where f (t) ∈ Rn,Z ∈ Rn×n, 0 < ε < 1, (6) is asymptotically

stable if and only if:

|arg(eig(Z ))| > ε
π

2
(7)

Then, the components of the state decay towards 0 like t−ε.

III. CONTROL STRATEGIES DESIGN

A. CONTROLLERS DESIGN

Equation of electromagnetic torque for PMSM can be

described as follows:
Te = pn(ϕf iq + (Ld − Lq)iqid ) (8)

where Te is the electromagnetic torque; ϕf is the flux linkage;

pn is the number of pole pairs; Ld , Lq represent the d− and

q− axis inductances, respectively; id , iq are the components

of armature currents of dq− axes, respectively.

For surface mount PMSM, Ld = Lq = L in this paper,

equation of mechanical torque for PMSM can be expressed

as in (9), the dynamics of PMSM can be expressed as in (10).

The motor tracking speed error is defined as in (11).






Te − TL = J

pn
ω̇ + Bω

Te = pnϕf iq

(9)

ω̇ = 3pnϕf

2J
iq − B

J
ω − 1

J
TL (10)

e = ωr − ω (11)

where e is the tracking error;ω is themechanical rotor angular

speed of PMSM; J is the rotational inertia; TL is the load

torque; B is the viscous friction coefficient; ωr is the desired

speed.

The conventional LFOPID sliding surface was defined

as [38], [39]:

s = Kpe+ KiD
−u
t e+ KdD

ε
t e (12)

where Kp > 0,Ki > 0,Kd > 0.

The structure diagram of the conventional LFOPID sliding

surface (12) is shown in Fig. 1.

FIGURE 1. Structure diagram of traditional LFOPID sliding surface.

The following exponential reaching law (ERL) was usually

chosen [38], [39]:

ṡ = −ks− ηsign(s) (13)

sign(s) =











1 s > 0

0 s = 0

−1 s < 0

(14)

where k ∈ R+, η ∈ R+.
According to (3), (4), (12) and (13), we can obtain:

Kpė+ KiD
1−u
t e+ KdD

ε+1
t e = −ks− ηsign(s) (15)
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Sequentially, substituting (10) into (15), then the following

formula can be derived.

Kp(ω̇r − 3pnϕf

2J
iq + TL

J
+ B

J
ω)

+KiD1−u
t e+ KdD

1+ε
t e = −ks− ηsign(s) (16)

Afterwards, the conventional control law of SMC based

on the conventional LFOPID sliding surface (12) and the

ERL (13) (LFOPIDSMC) can be given as follows:

iq = 2J

3pnϕf Kp
((Kp(ω̇r + TL

J
+ B

J
ω) + KiD

1−u
t e

+KdD1+ε
t e+ ks+ ηsign(s)) (17)

The proposed NLFOPID sliding surface can be defined as:

s=Kpfal(e, α, δ)+KiD−u
t (fal(e, α, δ))+KdDε

t (fal(e, α, δ))

(18)

where Kp > 0,Ki > 0,Kd > 0 and u = ε.

The nonlinear function fal(x, α, δ) was proposed by Han

[42], the nonlinear function defined as:

fal(x, α, δ) =
{

|x|α sign(x) if |x| > δ
x

δ1−α
if |x| ≤ δ

(19)

where 0 < δ < 1 and 0 < α < 1.

The nonlinear function fal(x, α, δ) has the following char-

acteristics: when 0 < α < 1, the nonlinearity degree of

fal(x, α, δ) is influenced by the value of α, which can also

help to reduce steady state error significantly; fal(x, α, δ)

shows that a larger error corresponds to a lower gain

(|fal(x, α, δ)| < |x|), so the function has the characteristic

of saturated error; fal(x, α, δ) also shows that a small error

corresponds to a higher gain (|fal(x, α, δ)| > |x|), so the

nonlinear function fal(x, α, δ) has the characteristic of fast

convergence. Fig. 2 shows the corresponding function curves

of the nonlinear function fal(x, α, δ).

Based on the above information, a novel NLFOPID slid-

ing surface is designed as below. Firstly, fal(e, α, δ) is

obtained by error signal e passes through the nonlinear func-

tion fal(x, α, δ); then, the error signal e in the proportional

FIGURE 2. Characteristic curves of fal (x, α, δ), δ = 0.1, α = 0.1, 0.25, 0.5,
and 0.75.

term, integral term and differential term of the conventional

LFOPID sliding surface is replaced by the nonlinear function

fal(x, α, δ) in which the contradiction between the rapidity

and the overshoot by linear superposition of three basic mod-

ules in the conventional LFOPID can be overcome, the short-

comings of relatively simple and rough signal processing on

the traditional LFOPID sliding surface are also compensated

by the nonlinear function fal(e, α, δ). Fig. 3 shows the novel

NLFOPID sliding surface structure diagram.

FIGURE 3. Structure diagram of the proposed NLFOPID sliding surface.

Sequentially, substituting (13) into (18), then the following

can be derived.






































Kp(α |e|α−1 ė) + KiD
1−u
t (fal((e, α, δ)))

+KdDε+1
t (fal((e, α, δ))

= −ks− ηsign(s) if |e| > δ

Kp((1/δ
1−α)ė) + KiD

1−u
t (fal((e, α, δ))

+KdDε+1
t (fal((e, α, δ))

= −ks− ηsign(s) if |e| ≤ δ

(20)

The proposed SMC strategy based on the novel NLFOPID

sliding surface (18) and the ERL (13) (NLFOPIDSMC) can

be given as:














































Kp(α |e|α−1 (ω̇r − 3pnϕf

2J
iq + TL

J
+ B

J
ω))

+KiD1−u
t (fal((e, α, δ)))

+KdDε+1
t (fal((e, α, δ)) = −ks− ηsign(s) if |e| > δ

Kp((1/δ
1−α)(ω̇r − 3pnϕf

2J
iq + TL

J
+ B

J
ω))

+KiD1−u
t (fal((e, α, δ))

+KdDε+1
t (fal((e, α, δ)) = −ks− ηsign(s) if |e| ≤ δ

(21)














































































iq = 2J

3pnϕf Kpα |e|α−1

((Kpα |e|α−1 (ω̇r + TL

J
+ B

J
ω)

+KiD1−u
t (fal(e, α, δ)) + KdD

1+ε
t (fal(e, α, δ))

+ks+ ηsign(s)) if |e| > δ

iq = 2J

3pnϕf Kp(1/δ1−α)

((Kp(1/δ
1−α)(ω̇r + TL

J
+ B

J
ω)

+KiD1−u
t (fal(e, α, δ)) + KdD

1+ε
t (fal(e, α, δ))

+ks+ ηsign(s)) if |e| ≤ δ

(22)
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In order to effectively suppress the chattering problem

and improve the control performance in the reaching phase,

the following adaptive super-twisting reaching law (ASTRL)

is selected.






ṡ = −η1 |s|1/2 sign(s) + η2

η̇2 = −β

2
sign(s)

(23)

where the adaptive control term is constructed as:


















η̇1 =







γ1

√

κ1

2
sign(|s| − ν) if η1 > η̂1

ℜ if η1 ≤ η̂1

β = 2θη1

(24)

where γ1, κ1, ν, θ, ℜ and η̂1 are the positive coefficients.

Remark 1: η̂1 and ℜ are arbitrary small positive coeffi-

cients, large γ1, κ1, θ and small ν can obtain smaller tracking

error and larger convergence rate.

According to (18) and (23), we can obtain:






































Kp(α |e|α−1 ė) + KiD
1−u
t (fal((e, α, δ)))

+KdDε+1
t (fal((e, α, δ))

= −η1 |s|1/2 sign(s) + η2 if |e| > δ

Kp((1/δ
1−α)ė) + KiD

1−u
t (fal((e, α, δ))

+KdDε+1
t (fal((e, α, δ))

= −η1 |s|1/2 sign(s) + η2 if |e| ≤ δ

(25)

Afterwards, the proposed SMC strategy based on the novel

NLFOPID sliding surface (18) and the ASTRL (23), (24)

(ASTNLFOPIDSMC) can be given as follows:


































































Kp(α |e|α−1 (ω̇r − 3pnϕf

2J
iq + TL

J
+ B

J
ω))

+KiD1−u
t (fal((e, α, δ)))

+KdDε+1
t (fal((e, α, δ))

= −η1 |s|1/2 sign(s) + η2 if |e| > δ

Kp((1/δ
1−α)(ω̇r − 3pnϕf

2J
iq + TL

J
+ B

J
ω))

+KiD1−u
t (fal((e, α, δ))

+KdDε+1
t (fal((e, α, δ))

= −η1 |s|1/2 sign(s) + η2 if |e| ≤ δ

(26)














































































iq = 2J

3pnϕf Kpα |e|α−1

((Kpα |e|α−1 (ω̇r + TL

J
+ B

J
ω)

+KiD1−u
t (fal(e, α, δ))+KdD1+ε

t (fal(e, α, δ))

+η1 |s|1/2 sign(s) − η2) if |e| > δ

iq = 2J

3pnϕf Kp(1/δ1−α)

((Kp(1/δ
1−α)(ω̇r+

TL

J
+ B

J
ω)

+KiD1−u
t (fal(e, α, δ))+KdD1+ε

t (fal(e, α, δ))

+η1 |s|1/2 sign(s) − η2) if |e| ≤ δ

(27)

where load torque TL is estimated by an ESO in this paper.

According to Equation (10), define x1 = ω and x2 =
−TL/J , Equation (10) can be rewritten as:







ẋ1 = x2 − B

J
x1 + 3pnϕf

2J
iq

ẋ2 = ϑ
(28)

where ϑ can be regarded as disturbance of x2.

The ESO is designed as follows:










ē = Z21 − x1

Ż21 = Z22 − β̃01fal(ē, δ, α) + b̃0iq

Ż22 = −β̃02fal(ē, δ, α)

(29)

where β̃01 and β̃02 are the positive gain parameters of the

ESO; b̃0 is an estimation of the compensation factor; Z21 and

Z22 are used to estimate the values of x1 and x2, respectively;

the unknown disturbance −TL/J = Z22 − 1d , and 1d is the

estimation error.

Remark 2: In general, the gain parameters of the ESO are

selected as β̃01 = 2ω0, β̃02 = ω2
0
,which can achieve a good

prediction effect, where ω0 is the bandwidth of the ESO.

According to (29), (22) could then be expressed by the

following:














































































iq = 2J

3pnϕf Kpα |e|α−1

((Kpα |e|α−1 (ω̇r − Z22 + B

J
ω)

+KiD1−u
t (fal(e, α, δ)) + KdD

1+ε
t (fal(e, α, δ))

+ks+ ηsign(s)) if |e| > δ

iq = 2J

3pnϕf Kp(1/δ1−α)

((Kp(1/δ
1−α)(ω̇r − Z22 + B

J
ω)

+KiD1−u
t (fal(e, α, δ)) + KdD

1+ε
t (fal(e, α, δ))

+ks+ ηsign(s)) if |e| ≤ δ

(30)

According to (29), (27) could then be expressed by the

following:














































































iq = 2J

3pnϕf Kpα |e|α−1

((Kpα |e|α−1 (ω̇r − Z22 + B

J
ω)

+KiD1−u
t (fal(e, α, δ)) + KdD

1+ε
t (fal(e, α, δ))

+η1 |s|1/2 sign(s) − η2) if |e| > δ

iq = 2J

3pnϕf Kp(1/δ1−α)

((Kp(1/δ
1−α)(ω̇r − Z22 + B

J
ω)

+KiD1−u
t (fal(e, α, δ)) + KdD

1+ε
t (fal(e, α, δ))

+η1 |s|1/2 sign(s) − η2) if |e| ≤ δ

(31)

Compared with the traditional LFOPIDSMC (17),

the ASTNLFOPIDSMC (31) proposed in this paper has
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the following advantages: 1) the disadvantages by linear

superposition of three basic modules in the conventional

LFOPID sliding surface can be overcome by the nonlinear

function fal(e, α, δ) in the sliding mode phase; 2) the ASTRL

can effectively solve the chattering problem of the traditional

LFOPIDSMC, good control performance can be ensured by

the ASTRL in the reaching phase simultaneously; 3) load

torque estimated by the ESO transferred to the drive system,

which can improve the ability of the system to resist external

disturbance.

In this study, a novel compound control strategy is designed

for the PMSM speed regulation system with id = 0 con-

trol strategy is shown in Fig. 4. The block diagrams of the

NLFOPIDSMC and ASTNLFOPIDSMC schemes are shown

in Fig. 4 (b), Fig. 4 (c), respectively.

B. STABILITY ANALYSIS

The stability of the proposed NLFOPIDSMC is discussed in

the following theorem.

Proof: Step 1: the positive definite Lyapunov function

can be constructed as:

V = 1

2
s2 > 0 (32)

Taking the first derivative of (32), we have:

V̇ = s · ṡ
= s(KpD

1
t fal(e, α, δ) + KiD

1−u
t fal(e, α, δ)

+KdDε+1
t fal(e, α, δ)) (33)

According to (19), (33) could be expressed by the

following:
Then, substituting (30) into (34), as shown at the bottom of

this page, it can be obtained as:

V̇

=







s
(

−ks− ηsign(s) + Kpα |e|α−1 1d
)

if |e| > δ

s
(

−ks−ηsign(s)+Kp(1/δ1−α)1d
)

if |e| ≤ δ

=







−ks2 − sign(s)ηs+ Kpα |e|α−1 s1d if |e| > δ

−ks2 − sign(s)ηs+ Kp(1/δ
1−α)s1d if |e| ≤ δ

=
{

−ks2 − η |s| + Kpα |e|α−1 s1d if |e| > δ

−ks2 − η |s| + Kp(1/δ
1−α)s1d if |e| ≤ δ

(35)

Assumption 1: In practice, the disturbances are bounded,

so we can get the following bounded conditions:










1d ≤ 4

Kpα |e|α−1 4 < η

Kp(1/δ
1−α)4 < η

(36)

where 4 is the upper limit of 1d , and it is a constant.

According to Assumption 1, one can rewrite (35) in the

following form:

V̇ ≤
{

−ks2 − η |s|+|s|Kpα |e|α−1 4 < 0 if |e| > δ

−ks2−η |s|+|s|Kp(1/δ1−α)4 < 0 if |e| ≤ δ

(37)

Thus, it has been proved that with the proposed

NLFOPIDSMC law, the system can reach the sliding surface

at any initial state.

Step 2: When the system reaches the sliding surface,

the following formula is satisfied.

Kp(fal(e, α, δ)) + KiD
−u
t (fal(e, α, δ))

+KdDε
t (fal(e, α, δ)) = 0 (38)

According to (5), Equation (38) can be taken by the Frac-

tional derivative of order ε written as follows:

KpD
ε
t (fal(e, α, δ)) + Ki(fal(e, α, δ))

+KdDε
t (D

ε
t (fal(e, α, δ))) = 0 (39)

The sliding mode dynamics also can be obtained by the

Equation (40).






Dε
t fal(e, α, δ) = χ

Dε
t χ = − Ki

Kd
fal(e, α, δ) − Kp

Kd
χ

(40)

Equation (40) can be rewritten as a matrix equation:
[

Dε
t fal(e, α, δ)

Dε
t (χ )

]

=





0 1

− Ki

Kd
−Kp

Kd





[

fal(e, α, δ)

χ

]

(41)

where Kd > 0,Ki > 0 and Kp > 0.

According to (6), (7), we know that the Fractional-order

system (41) is stable if the following condition (42) is satis-

fied.






|arg(spec(Z))| > ε
π

2

0 < ε
π

2
<

1

2
π

(42)

V̇ =























s

(

Kpα |e|α−1
(

ω̇r + B
J
ω − 3pnϕf

2J
iq + TL

J

)

+KiD1−u
t fal(e, α, δ) + KdD

ε+1
t fal(e, α, δ)

)

if |e| > δ

s

(

Kp(1/δ
1−α)

(

ω̇r + B
J
ω − 3pnϕf

2J
iq + TL

J

)

+KiD1−u
t fal(e, α, δ) + KdD

ε+1
t fal(e, α, δ)

)

if |e| ≤ δ

(34)
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FIGURE 4. (a) The configuration of field-oriented control PMSM servo drive system based on the novel
control strategy. (b) The proposed NLFOPIDSMC strategy. (c) The proposed ASTNLFOPIDSMC strategy.

where Z =
[

0 1

− Ki
Kd

−Kp
Kd

]

, we know that the eigenvalues of

matrix Z and 0 < ε < 1 are synchronously satisfied the con-

dition (42), then |arg(spec(Z))| > ε π
2
holds, the system (41)

is stable, consequently, the system (38) is also stable and its

error decay towards 0 like t−ε.

The stable domain in stable plane is shown in Fig. 5. To this

end, the stable condition has been achieved.

The stability of the proposed ASTNLFOPIDSMC is dis-

cussed in the following theorem.

Proof: Step 1: when the amount of disturbances of the

system is considered, then the following equation can be
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FIGURE 5. Stable domain of fractional order system.

derived:






ṡ = −η1 |s|1/2 sign(s) + η2 + 3
{

3 = Kpα |e|α−1 1d if |e| > δ

3 = Kp(1/δ
1−α)1d if |e| ≤ δ

(43)

Assumption 2: The value of 3 has an upper limit, which

satisfies the following condition:
|3| ≤ δ̂ |s|1/2 (44)

where δ̂ > 0.

Then a new state variable is introduced:
ϕ = [ϕ1, ϕ2]

T =
[

|s|1/2 sign(s), η2
]T

(45)

According to (23), the time-derivative of ϕ could be

expressed by the following:










ϕ̇1 = 1

2 |ϕ1|
(−η1ϕ1 + ϕ2 + 3)

ϕ̇2 = − β

2 |ϕ1|
ϕ1

(46)

According to Assumption 2, 3 has the following form:
3 = φ(x, t) |s|1/2 sign(s) = φ(x, t)ϕ1 (47)

where 0 < φ(x, t) < δ̂.

According to (46) and (47), it can be obtained as follows:






ϕ̇ = ζϕ

ζ = 1

2 |ϕ1|

[

φ(x, t) − η1 1

−β 0

]

(48)

The positive definite Lyapunov function can be constructed

as:

V = V0 + 1

2κ1
(η1 − η̃1)

2 + 1

2κ2
(β − β̃)2 (49)

where η̃1 > η
1‘ > 0, β̃ > β > 0 and V0 = ϕTPϕ, P is

defined as follows:

P =
[

λ + 4θ2 −2θ
−2θ 1

]

(50)

where λ is an arbitrary positive coefficient; the matrix P is

positive definite symmetry, thus it is proved that the function

V0 is positive.

The first derivative of V0 can be obtained as follows:
V̇0 = ϕ̇TPϕ + ϕTPϕ̇

= ϕT (ζ TP+ Pζ )ϕ

= − 1

2 |ϕ1|
ϕT2ϕ (51)

where 2 is defined as follows:

2=
[

−2(λ+4θ2)(φ−η1)−4θβ 2θ (φ−η1)+β−λ−4θ2

2θ (φ − η1) + β − λ − 4θ2 4θ

]

(52)

According to (24), we know β = 2θη1, the matrix 2 will

be positive definite with the minimum eigenvalue λmin(2) ≥
2ε if the follow condition (53) is satisfied.

η1 >
δ̂(λ + 4θ2)

λ
+ (2εδ̂ − λ − 4θ2)2

8θλ
(53)

Sequentially, the derivation of (51) can be obtained as:

V̇0 ≤ − θ

|ϕ1|
ϕTϕ = − θ

|ϕ1|
‖ϕ‖2 (54)

For the matrix 2 with maximum eigenvalue λmax(2), it is

bounded by:

λmin(P) ‖ϕ‖2 ≤ ϕTPϕ ≤ λmax(P) ‖ϕ‖2 (55)

Then, Equation (45) can be rewritten as:

‖ϕ‖2 = ϕ2
1 + ϕ2

2 = |s| + ϕ2
2 (56)

and

|s|1/2 ≤ ‖ϕ‖ ≤
V
1/2
0

λ
1/2
min(P)

(57)

where λmax(P), λmin(P) are the maximum eigenvalue of

matrix P and the minimum eigenvalue of matrix P,

respectively.

Therefore, we can get:

V̇0 ≤ −
θλ

1/2
min(P)

λmax(P)
V 1/2

0
(58)

The first derivative of V can be obtained as follows:

V̇ = V̇0 + 1

κ1
(η1 − η̃1)η̇1 + 1

κ2
(β − β̃)β̇ ≤ −

θλ
1/2
min(P)

λmax(P)
V
1/2
0

− γ1√
2κ1

|η1 − η̃1| − γ2√
2κ2

∣

∣

∣
β − β̃

∣

∣

∣
+ 1

κ1
(η1 − η̃1)η̇1

+ 1

κ2
(β − β̃)β̇ + γ1√

2κ1
|η1−η̃1|+

γ2√
2κ2

∣

∣

∣
β − β̃

∣

∣

∣
(59)

According to the familiar inequality
√

x2 + y2 + z2 ≤
|x| + |y| + |z|, we can get:

V̇ ≤ −τ

√

V0 + 1

2κ1
(η1 − η̃1)2 + 1

2κ2
(β − β̃)2

+ 1

κ1
(η1 − η̃1)η̇1

+ 1

κ2
(β − β̃)β̇ + γ1√

2κ1
|η1 − η̃1| + γ2√

2κ2

∣

∣

∣
β − β̃

∣

∣

∣
(60)

where τ = min

{

θλ
1/2
min(P)

λmax(P)
, γ1, γ2

}

.
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According to (47), we know η1 − η̃1 < 0 and β − β̃ < 0,

let






























V̂ = V0 + 1

2κ1
(η1 − η̃1)

2 + 1

2κ2
(β − β̃)2

X = − |η1 − η̃1|
(

η̇1

κ1
− γ1√

2κ1

)

−
∣

∣

∣
β − β̃

∣

∣

∣

(

β̇

κ2
− γ2√

2κ2

)

(61)

Then, (60) can be simplified to:

V̇ ≤ −τ V̂ 1/2 + X (62)

Case I: |s| > ν and η1 > η̂1.

η̇1 = γ1

√

κ1

2
(63)

then

X = −
∣

∣

∣
β − β̃

∣

∣

∣

(

β̇

κ2
− γ2√

2κ2

)

(64)

Sequentially, let θ = γ2
2γ1

√

κ2
κ1
, it can be obtained as:

V̇ ≤ −τV 1/2 < 0 (65)

Case II: |s| > ν and η1 ≤ η̂1.

η̇ = ℜ (66)

According to (24), we know the condition holds only for a

short period of time, the value of η1 will increase rapidly and

satisfy condition η1 > η̂1.

Case III: |s| ≤ ν and η1 > η̂1.

η̇1 = −γ1

√

κ1

2
(67)

then

X = 2 |η1 − η̃1|
γ1√
2κ1

+
∣

∣

∣
β − β̃

∣

∣

∣

(

2εγ1

κ2

√

κ1

2
+ γ2√

2κ2

)

(68)

According to (67) (68), we know that X > 0 and η̇1 < 0.

Because of η̇1 < 0, |s| will continue to increase until |s| > ν.

If the condition |s| > ν is satisfied, the |s| will converge to 0,
which means that s will be satisfied |s| ≤ ν again. Therefore,

it can be deduced that the sliding variable will remain in a

domain |s| ≤ ν0, and ν0 > ν in the sliding manifold.

Case IV: |s| ≤ ν and η1 ≤ η̂1.

It has the similar procedure from the Case II with the |s| >

ν and η1 ≤ η̂1.

In summary, it has proven that with the proposed ASTNL-

FOPIDSMC law, the system can reach the sliding surface at

any initial state.

Step 2: We use the similar procedure from the step 2 of the

proof of the NLFOPIDSMC.

Finally, the stable condition has been achieved.

FIGURE 6. Response curves of the sliding mode functions under the
traditional LFOPIDSMC, the proposed NLFOPIDSMC and the proposed
ASTNLFOPIDSMC.

FIGURE 7. Speed response curves without load under three control
strategies.

FIGURE 8. Speed response curves with 3N · m load under three control
strategies.

IV. COMPARATIVE SIMULATIONS

We simulate and validate the effectiveness and performance

of the proposed approach used the PMSM verification plat-

form based on Matlab/Simulink (R2014a).
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FIGURE 9. Tracking curves of disturbance under 3N · m load based on the
ESO.

FIGURE 10. Speed response curves when the load suddenly increases.

FIGURE 11. Electromagnetic torque response curves when the load
suddenly increases.

The parameters of PMSM are listed as follows: Rs =
0.958�, L = 5.25mH, ϕf = 0.1827Wb, J = 0.009kg · m2,

B = 0.008 (Nm · s) /rad, pn = 4. The key parameters of the

conventional LFOPIDSMC are listed as follows: Kp = 0.1,

Ki = 0.3, Kd = 0.3, ε = 0.01, u = 0.01, k = 7 and

η = 6. The key parameters of the NLFOPIDSMC are listed

FIGURE 12. Speed response curves when the load suddenly decrease.

FIGURE 13. Electromagnetic torque response curves when the load
suddenly decrease.

TABLE 1. Comparative results without load start-up.

as follows: Kp = 0.1, Ki = 0.3, Kd = 0.3, ε = 0.01,

u = 0.01, δ = 0.1, α = 0.25, k = 7 and η = 6. The key

parameters of the ASTNLFOPIDSMC are listed as follows:

Kp = 0.1, Ki = 0.3, Kd = 0.3, ε = 0.01, u = 0.01, δ = 0.1,

α = 0.25, ν = 0.05, θ = 15, γ1 = 10, κ1 = 25, η̂1 = 0.01,

ℜ = 0.01. Parameters of current loop PI controller are listed

as follows: K̃p = 1100L, K̃i = 1100Rs. The parameters of

the conventional ESO and novel ESO are listed as follows:

ω0 = 100, β̃01 = 200, β̃02 = 10000, b̃0 = 121, δ = 0.1,

α = 0.25. The simulation results are shown in Figs. 6-13 and

Tabs. 1-4.

Case I: sliding mode surface response comparison.

For the sake of simulation, a speed reference of 100 rad/s

is given at 0 s, the response curves of the sliding mode
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TABLE 2. Comparative results with load start-up.

TABLE 3. Comparative results of three control methods for sudden
change of load from 0 N · m to 6 N · m.

TABLE 4. Comparative results of three control methods for sudden
change of load from 6 N · m to 0 N · m.

surfaces under the proposed ASTNLFOPIDSMC, the pro-

posed NLFOPIDSMC and the conventional LFOPIDSMC

strategies are shown in Fig. 6.

Fig. 6 clearly demonstrates the time response curve of the

proposed NLFOPID sliding surface is closer to s = 0 than

the time response curve of the traditional LFOPID sliding

surface. Furthermore, it is clear that the time to arrive at s = 0

under the proposed ASTNLFOPIDSMC strategy is shorter

than those of the NLFOPIDSMC strategy and the traditional

LFOPIDSMC strategy.

Case II: step response comparison.

A speed reference of 100 rad/s is given for 2 seconds.

Fig. 7 reveals the speed response curves of ω without external

load. While Fig. 8 reveals the speed response curves of ω

with 3N · m external load, and Fig. 9 reveals the estimated

disturbance of the ESO. Finally, Tab. 1 and Tab. 2 show

the speed adjustment time without and with load of the

motor under the three control strategies, respectively. The

following information can be obtained from Figs. 7-9, and

Tabs. 1-2.

1) Speed response: the comparison of the speed response

time is: ‘‘LFOPIDSMC > NLFOPIDSMC > ASTNL-

FOPIDSMC’’. It obviously shows that the ASTNL-

FOPIDSMC strategy has better dynamic performance.

2) Tracking error: when the system enters steady state,

the tracking error of traditional LFOPIDSMC control method

is larger than those of two novel control methods based on the

novel NLFOPID sliding mode surface.

3) Chattering phenomenon: the chattering phenomenon of

the LFOPIDSMC and the NLFOPIDSMC strategies are sig-

nificantly larger than that of the ASTNLFOPIDSMC strategy.

4) ESO can estimate external disturbance accurately and

timely.

The simulation results obviously demonstrate that the

proposed ASTNLFOPIDSMC strategy exhibits not only

improves system static and dynamic performance but also

reduces chattering phenomenon effectively.

Case III: robustness performance comparison.

The following simulation compares the anti-interference

capability of the three strategies under the external distur-

bance. A speed reference of 100 rad/s is given at 0 s, the exter-

nal load torque TL changes from 0N · m to 6N · m and

from 6N · m to 0N · m at 1s, respectively. From Figs. 10-13,

the comparisons of control performance are given when the

external load disturbance is applied on the motor under the

three control strategies. It can be seen from Figs. 10-13 that

the three methods have different levels of impact caused

by the external load disturbances. As can be seen from

Fig. 10 and Fig. 12, the speed disturbance rejection recovery

time of the ASTNLFOPIDSMC is significantly shorter than

those of the LFOPIDSMC and the NLFOPIDSMC, and the

speed fluctuation of the ASTNLFOPIDSMC is also smaller

than those of the LFOPIDSMC and the NLFOPIDSMC.

Fig. 11 and Fig. 13 reveal the electromagnetic torque curve

under the three control strategies. According to the compar-

ison results, we can clearly see that the proposed ASTNL-

FOPIDSMC has faster adjusting time of electromagnetic

torque than those of the other control strategies. In order to

better compare the anti-disturbance ability of the three con-

trol strategies, speed recovery time, speed overshoot amount

and torque setting time are shown in Tabs. 3-4. As shown

in the Tabs. 3-4, the performance indicators of the control

system when the load suddenly increases and decreases,

respectively. Evidently, the comparison results confirm that

the proposed ASTNLFOPIDSMC controller exhibits better

robustness against external disturbances than other control

methods.

In summary, the comparative results have clearly demon-

strated that the proposed ASTFOPIDSMC strategy not only

achieves better control performance with good stability and

dynamic properties, but also it has very strong robustness.
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V. CONCLUSION AND FUTURE WORK

A novel ESO based ASTNLFOPIDSMC strategy for the

speed operation of PMSM is successfully proposed. First

of all, we propose a novel NLFOPID sliding mode sur-

face with nonlinear proportion term, nonlinear integral term

and nonlinear differential term; secondly, a novel ASTNL-

FOPIDSMC strategy is constructed by the ASTRL and the

novel NLFOPID sliding surface; and then, ESO is designed

to estimate the value of the external disturbance; then,

a novel compound control strategy based on the ESO and

the ASTNLFOPIDSMC for the speed operation of PMSM is

proposed; finally, comparison results show that the proposed

control strategy not only achieves good stability and dynamic

performance, but is also robust to external disturbance.

The application of the novel NLFOPID sliding surface

and the ASTRL leads to an increase in the parameters of

the proposed ASTNLFOPIDSMC strategy, thus increasing

the complexity of the proposed ASTNLFOPIDSMC strategy.

For future work, we will use an optimization algorithm to

complete the selection of the parameters of the proposed

ASTNLFOPIDSMC strategy, which will further improve the

performance of the proposed ASTNLFOPIDSMC strategy.
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