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ABSTRACT This paper presents an adaptive terminal sliding mode control (TSMC) algorithm for robot

manipulators. The contribution of our control method is that the suggested controller can enable the

advantages of non-singular TSMC such as non-singularity, high robustness, small transient error, and

finite time convergence. To develop the suggested system, a non-singular terminal sliding variable is

selected and does not have any complex-value or constraints of the exponent in conventional TSMC.

Therefore, it prevents the singularity that occurs in the conventional TSMC and eliminates the reaching

phase glitch. Accordingly, the suggested system can ensure that the controlled variables reach the desired

values within a randomly known finite time using an efficiently smooth and chattering-free definite control

input. In addition, sliding motion in finite time can be achieved by employing the adaptive self-tuning rules

with no prior information regarding the upper bounds of undefined parameters (e.g., friction, disturbances,

and uncertainties). Furthermore, the finite-time convergence and global stability of the proposed algorithm

are proved by the Lyapunov stability theory. Finally, the proposed control algorithm is applied to the joint

position tracking control simulation for a 3-DOF PUMA560 robot. The trajectory tracking performance

of the proposed method is compared with those of the conventional terminal sliding mode control and the

conventional continuous sliding mode control. This comparison shows the efficiency and superiority of the

proposed algorithm.

INDEX TERMS Non-singular terminal slidingmode control, robotic manipulator, adaptive self-tuning rules,

uncertainty, disturbance, chattering behavior.

I. INTRODUCTION

During recent decades, considerable research efforts have

been devoted to investigating robot manipulator control

systems. To achieve higher-precision tracking performance,

numerous control methods have been constructed for motion

control of robot manipulators, such as the proportional-

integral-derivative (PID) controller [1] and computed torque

controller (CTC) [2]. Those mentioned controllers were high-

lighted as simple and monotonic methods for robot con-

trol. Generally, dynamic models of robot manipulators have

been challenged with various parametric uncertainties con-

sisting of friction, perturbation, payload parameters, and sen-

sor noise. Unfortunately, those controllers do not exhibit

good control performance of highly nonlinear and uncertain

control systems. Accordingly, to handle the uncertainty of

robotic systems and to improve the control performance,

recently, many nonlinear methods have been suggested for

robot manipulators such as adaptive control [3], [4], fuzzy

control [5], [6], optimal control [7], neural network con-

trol [8], [6], and sliding mode control [9]–[12].

Sliding mode control (SMC) has been a useful and impres-

sive robust control methodology to correct deficiency from

any kind of uncertainties or perturbation for both linear and

nonlinear systems. The scheme of SMC is to firstly per-

form a sliding manifold and then build up a control prin-

ciple that obligates the controlled variables to attain and

maintain the sliding surface. Nonetheless, in real systems,

the primary weakness of SMC is an undesirable chattering

behavior caused by high-frequency switching. Furthermore,

this algorithm only stabilizes the system asymptotically in
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the sliding phase following a linear sliding manifold method-

ology. From this point of view, the controlled variables

cannot obtain the desired values within a finite amount of

time.

In 1990s, a new category of SMC called terminal

sliding mode control (TSMC) was originally published

by Venkataraman and Gulati [13] and then advanced by

Zhihong et al. [14] and Wu et al. [15]. Contrary to linear

sliding surfaces, nonlinear sliding hyperplanes have exposed

some advanced properties in terms of high robustness, fast

transient response, high tracking positional accuracy, and

finite time convergence. Therefore, various uses of the TSMC

method have been established (e.g., robot control [14], [16],

motor control [17], TSMC observer [18].) Nonetheless, this

control algorithm does not exhibit good convergence when

the controlled variables are distant from the desired values.

Specifically, the TSMC algorithm has encountered the sin-

gularity drawback that causes complex-value, exponent, and

a greater control effort. To increase convergence speed once

the controlled variables are significantly different from the

desired values, Yu and Zhihong [19] and Yang and Yang [20]

presented a fast terminal sliding mode control (FTSMC).

However, both of the above methods still encounter the

singularity drawback. So, to deal with this obstacle, sev-

eral non-singular TSM (NTSM) methods [20]–[22] based on

TSMC have been established.

In addition, those above-mentioned control algorithms

require information regarding the upper bound of the uncer-

tainties in the robot system, eliminating them from control

input signals. In general, it is not easy to precisely define

the upper bound of the uncertainty. Some control methods,

which are based on an integration of adaptive control law,

fuzzy logic control, neural network control, or synchroniza-

tion control into TSMC or NTSMC to overcome above

issue, have been presented ([23]–[33] and reference therein).

In those papers, adaptive laws were used only to determine

unidentified parameters. These methods still required infor-

mation on the upper bound of the unidentified parameters,

but no attention was paid to disturbances and uncertainties.

Other approaches [19]–[22] utilized TSMmanifolds, but also

encountered the singularity drawback. To prove convergence

in finite time, those algorithms ordered the approximately

large estimated parameters to generate initial values. How-

ever, such techniques are not practically possible since the

magnitude of the generated control input seems to be not

suitable in terms of motor torque saturation during the period

of manifold switching, s = 0 and s 6= 0. Another crit-

ical problem is that a chattering phenomenon occurred by

applying high-frequency control switching, which reduces

the tracking control performance. Some procedures have also

used a sat (·) function, sometimes called a relay function,

but those techniques reduce tracking positional accuracy and

increase steady-state errors. So, the robustness and perfor-

mance of the control algorithm will be degraded.

Purposed by the above analysis, the target of our paper

is to propose a novel tracking control algorithm for robot

manipulators. The benefits of our control methodology are

highlighted as:

• Satisfies updating rules to control the system’s con-

trolled variables, attains the sliding manifold, and con-

verges to the balanced point in finite time, as well as

guarantees asymptotic stability of the robot system with

a fast transient response rate.

• Not only prevents the singularity problem by presenting

a modified NTSM surface, but also avoids the reaching

phase issue.

• Eliminates the requirement for prior information about

the upper bounds of parametric uncertainties existing in

a real robotic system.

• Rejects the effect of chattering behavior in control input.

• Finite time convergence characteristic and asymptotic

stability of the robot system are proved by the Lyapunov

criterion.

The rest of our article is arranged as follows. The problem

statements required for the proposed non-singular sliding

surface and control are presented in Section 2. The structural

procedure of the suggested control algorithm is reported in

Section 3. In Section 4, the proposed control algorithm is

applied to the joint position tracking control simulation for

a 3-DOF PUMA560 robot. Further, the proposed algorithm’s

trajectory tracking performance is compared with those of the

conventional TSMC and conventional sliding mode control.

Lastly, several concluding remarks are presented in Section 5.

Several symbols are utilized throughout the article, ‖∗‖ and
|∗| correspond to the Euclidean norm and modulus, while N

and R correspond to the spaces of natural numbers and real

numbers, respectively.

II. PROBLEM STATEMENT

For an n-link rigid robotic manipulator, the corresponding

dynamic equation can be given as ([22])

M (θ) θ̈ + Cm
(

θ, θ̇
)

θ̇ + G (θ)+ Fr
(

θ̇
)

+ τD = τ (1)

in which θ, θ̇ , θ̈ ∈ R
n are defined as the system’s state vector.

M (θ) ∈ R
n×n is the inertia matrix, Cm

(

θ, θ̇
)

∈ R
n×1 is

defined as the matrix resulting from Coriolis and centrifugal

forces,G (θ) ∈ R
n×1 is the gravitational force term, Fr

(

θ̇
)

∈
R
n×1 is the friction matrix, τ ∈ R

n×1 is the torque produced

by actuators, and τD ∈ R
n×1 is a load disturbance matrix.

From Eq. (1), we have

θ̈ = M−1 (θ)
[

τ − Cm
(

θ, θ̇
)

θ̇ − Fr
(

θ̇
)

− G (θ)− τD
]

(2)

To simplify the analysis and design in next section, Eq. (2)

can be given as

θ̈ = H
(

θ, θ̇
)

+ D
(

θ, θ̇ , t
)

+ Q (θ) τ (3)

in which H
(

θ, θ̇
)

= M−1 (θ)
[

−Cm
(

θ, θ̇
)

θ̇ − G (θ)
]

,

Q (θ) = M−1 (θ), andD
(

θ, θ̇ , t
)

= M−1(θ)
[

−Fr
(

θ̇
)

− τD
]

.

Next, we employ u (t) = τ as the control input and

x = [x1, x2]
T as the state vector in which x1, x2 correspond
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to θ , θ̇ ∈ R
n×1. The robotic dynamic of Eq. (3) can be

described in the following state space form as
{

ẋ1 = x2

ẋ2 = H (x, t)+ D (x, t)+ Q (x, t) u (t)
(4)

in which H (x, t) ∈ R
n and Q (x, t) ∈ R

n×n are smooth

nonlinear vector fields, and D (x, t) ∈ R
n presents the dis-

turbances and uncertainties.

The sliding motion in finite time can occur with no prior

information regarding the upper bounds of undefined param-

eters (e.g., friction, disturbances, and uncertainties), and the

following assumption is necessary for designing a control

scheme in the next section.

Assumption 1: There exists a bounded function of D (x, t)

presenting undefined parameters (e.g., friction, disturbances,

and uncertainties), which satisfies the following condition:

D (x, t) ≤ 9 (5)

The control target in our article is to construct a suggested

control algorithm such that the system’s controlled variables

of x1 attain the desired values of xd within a finite amount

of time with no prior information about upper bounds of

undefined parameters. Accordingly, the tracking positional

error is defined as follows:

e = x1 − xd (6)

To achieve this target, this paper presents two main tasks: (1)

construct apposite NTSM manifolds including the desirable

dynamic features and (2) establish a control algorithm to

guarantee the sliding movement and the system’s controlled

variables to achieve the desired trajectory within a finite time.

III. DESIGN PROCEDURE OF THE CONTROL ALGORITHM

In this section, a novel control algorithm is proposed for the

robot manipulator of Eq. (1) and is expressed by following

two main tasks.

A. DESIGN OF THE NON-SINGULAR TERMINAL SLIDING

MODE SURFACE

First, with the tracking error in Eq. (6), the following NTSM

surface variables are suggested:

s = ė+
t

∫
0

(

g0e
[γ ] + g1e+ g2e

3 + g3ė
[β]
)

(7)

in which s = [s1, s2, . . . , sn]
T ∈ R

n×1 is the sliding vari-

able; g0, g1, g2, g3 are positive coefficients; 0 < γ < 1,

β = 2γ
/

(1 + γ ), and e = [e1, e2, . . . , en]
T ∈ R

n×1 are

tracking errors; and ė = [ė1, ė2, . . . , ėn]
T ∈ R

n×1 is the time

derivative of the tracking error of e.

In addition, e[γ ] and ė[β] are defined as ([34])

e[γ ] = |e|γ sign [e] and d
dt
e[β] = β |e|β−1 ė (8)

in which γ > 0, β > 0, and sign [e] =







1 if e > 0

−1 if e < 0

0 if e = 0

Remark 1: The converging speed property of the NTSM

variable has been explained in [20]. Once the tracking posi-

tional error of |e| is much greater than 1, g0e
[γ ] + g1e+ g2e

3

conveys a fast convergence rate.While the tracking positional

error of |e| is much smaller than 1, g3ė
[β] conveys the role of

defining finite time convergence.

According to the SMC principle, when the system’s track-

ing positional error runs in sliding mode, the following equa-

tion should be satisfied ([9]):

s = 0 and ṡ = 0 (9)

Accordingly, from Eq. (7) and Eq. (9), it is obtained that

ë+ g0e
[γ ] + g1e+ g2e

3 + g3ė
[β] = 0 (10)

Therefore, the following dynamic system of the sliding mode

can be acquired as

ë = −g0e[γ ] − g1e− g2e
3 − g3ė

[β] (11)

Consequently, the following theorem is generated to com-

plete the proof of convergence within a known finite time.

Theorem 1: For the following dynamic system of Eq. (11),

the original points ei = 0, (i = 1, 2, . . . , n) are globally

balanced points in finite time.

Stability Analysis: Defines the following Lyapunov

function candidate as

V1 = g0

γ + 1
|e|γ+1 + g1

2
e2 + g2

4
e4 + 1

2
ė2 (12)

With Eq. (11) the time derivative of Eq. (12) is derived as

V̇1 = g0 |e|[γ ] ė+ g1eė+ g2e
3ė+ ėë

= g0 |e|[γ ] ė+ g1eė+ g2e
3ė

+ ė
(

−g0e[γ ] − g1e− g2e
3 − g3ė

[β]
)

= −g2 |ė|1+β ≤ 0 (13)

As a result, the condition for the Lyapunov stability principle

is fulfilled. Next, the original point of the system in Eq. (11)

is needed to prove a point as globally stable in finite time.

From the system in Eq. (11), this can be given as

ė = ψ (e)+ ψ̂ (e) (14)

with

ψ (e) =
(

ė

−g0e[γ ] − g2ė
[β]

)

,

ψ̂ (e) =
(

ψ̂1 (e)

ψ̂2 (e)

)

=
(

0

−g1e− g2e
3

)

(15)

when ψ̂ (e) = 0; the system in Eq. (14) becomes the

form of the system under the feedback control law (54-55).

It is a globally stable solution in finite time, according to

Lemma 2 shown in the Appendix.

Accordingly, using Lemma 1, the original point of the

dynamic system of Eq. (14) is a globally balanced point in

case Eq. (53) that is satisfied with a disturbance vector ψ̂ (e).
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Based on Definition 2 shown in the Appendix, the system

of ė = ψ (e) is homogeneous of negative degree p = γ −1 <

0 with respect to the dilation (r1, r2) = (2, 1 + γ ). It is sure

that r1 − r2 − p > 0. Hence,

lim
λ→0

ψ̂2 (λ
r1e, λr2 ė)

λr2+p

= lim
λ→0

−g1λr1e− g2λ
3r1e3

λr2+p
= 0, ∀e 6= 0 (16)

Accordingly, ψ̂ (e) = 0 satisfies the condition from

Lemma 1 shown in the Appendix; hence, the original point

of the dynamic system (e = 0) is a locally balanced point in

finite time.

Proof of stability has been fulfilled.

Given the suitable NTSM surfaces have already been

selected, the next task is designing a controller such that the

sliding mode motion occurs in a finite time.

Remark 2: The NTSM surfaces proposed in Eq. (7) are

totally different from the previously proclaimed surfaces ref-

erenced by TSM [13]–[15] and Fast TSM [19], [20]. Their

sliding surfaces are expressed respectively in the form of the

following equations:

s = ė+ µeq/l,

s = ė+ ρe+ µeq/l . (17)

in which ρ andµ are defined positive coefficients, and l, q are

positive odd integers that satisfy the condition 1 < l
/

q < 2.

It can be clearly observed that, for e < 0, the fractional

power l
/

q can cause the component of eq/l /∈ R. Additionally,

the control input in [19] encompasses e
q
l −1ė, which may

cause a singularity in cases ė 6= 0 and e = 0.

To overcome obstacles of the complex-valued problem in

Eq. (17), Yu et al. [22] suggested another form of TSM

surface as

s = ė+ µ |e|γ sign (e),
s = ė+ ρe+ µ |e|γ sign (e). (18)

With the sliding surface of Eq. (18), the complex-valued

number problem has been solved, but the control input has

also encountered the singularity drawback in cases of e2 6= 0

and e1 = 0.

In recent years, some new forms of NTSM surfaces were

proposed to deal with the singularity obstacle [20]–[22]:

s = e+ 1

µ
ėl/q (19)

Nonetheless, the restriction of this sliding surface is that q

and l must be positive odd integers. Accordingly, the pro-

posed NTSM surface in this paper has not encountered the

singularity drawback as discussed above.

B. DESIGN OF THE PROPOSED CONTROL ALGORITHM

As mentioned before, the appropriate finite time NTSM sur-

face in the form of Eq. (7) has been selected, and the next

task is to construct a control algorithm satisfying the control

target in Section 2. Further, to obtain the desired performance

for System (4) with Assumption 1, the following control law

is presented in Theorem 2.

Theorem 2: For the dynamic system in state space as

shown in Eq. (4), if the control input signal is constructed

as (20-22), a suitable finite time NTSM surface is selected as

shown in Eq. (7), and positive coefficients of 9 satisfying

Assumption 1 exist. This means that the system tracking

position x1 will reach the desired trajectory values xd in a

finite time. Accordingly, the goal of achieving global stability

in a finite time is guaranteed.

The proposed controller based on the NTSM surface vari-

able is designed as

u (t) = −Q (x, t)+
(

ueq (t)+ us (t)
)

(20)

ueq (t) =
(

H (x, t)− ẍd + g0e
[γ ] + g1e+ g2ė

[β] + ϒs
)

(21)

us (t) = (9 + η) sign (s) (22)

where Q+ (x, t) = QT (x, t)
[

Q (x, t)QT (x, t)
]−1

, and

ϒ, η, and 9 are positive constants.

Stability Analysis:With System (4), ë is present as

ë = ẋ2 − ẍd = H (x, t)+ D (x, t)+Q (x, t) u (t)−ẍd (23)

Inserting (23) into the time derivative of the NTSM variable

of (7) gives

ṡ = ë+ g0e
[γ ] + g1e+ g2e

3 + g3ė
[β]

= H (x, t)+ D (x, t)+ Q ( x, t) u (t)

− ẍd + g0e
[γ ] + g1e+ g2e

3 + g3ė
[β] (24)

Applying the control law (20-22) to (24) obtains

ṡ = H (x, t)+ D (x, t)+ g0e
[γ ] + g1e+ g2e

3 + g3ė
[β]

+Q ( x, t)
(

−Q (x, t)+
(

ueq (t)+ us (t)
))

− ẍd

= H (x, t)+ D ( x, t)− ẍd + g0e
[γ ] + g1e+g2e3+g3ė[β]

−
((

H (x, t)−ẍd+g0e[γ ] + g1e

+g2e3 + g3ė
[β] + ϒs

)

+(9+η) sign (s)
)

= −ϒs+ D (x, t)− (9 + η) sign (s) (25)

Let us define the following Lyapunov function candidate as

V2 = 1

2
sT s (26)

From (25), the time derivative of Eq. (26) is then derived as

V̇2 = sT ṡ = sT (−ϒs+ D (x, t)− (9 + η) sign (s))

= −ϒsT s+ D (x, t) s−9s− η |s| (27)

Using Assumption 1, the following inequality is obtained as

V̇2 ≤ −ϒsT s− η |s| ≤ 0 (28)

According to the Lyapunov stability criterion [34], [35],

the stability and convergence of the error variables have

been secured despite terrible conditions such as disturbances,
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dynamic uncertainties, or faults. It also means positive coef-

ficients of 9 exist, which satisfying the condition of Eq. (5).

Hence, Theorem 2 has been proved.

In comparison with Theorem 2 that is subject to the tra-

ditional SMC in terms of chattering behavior, the suggested

system has significantly less chattering behavior in the con-

trol input. Both methods demand prior information regarding

the upper bounds of the uncertainty terms; unfortunately,

this prior information is not always accessible in real sys-

tems. In an unknown bound case, for (27) to be ensured,

the design parameters selected in control law should be

greater than the upper-bounds uncertainties. One weak point

is that greater design parameters yieldmore serious chattering

behavior. To overcome these control performance limitations,

our method applies an adaptive technique to approximate the

design parameters of the reaching control law and obtain the

desired control algorithm.

Therefore, the proposed controller based on the NTSM

surface variable and adaptive technique as depicted in Fig. 1 is

designed as

u (t) = −Q (x, t)+
(

ueq (t)+ uas (t)
)

(29)

where ueq (t) is constructed the same as the equivalent control

term in Eq. (21), and the adaptive control term is constructed

as

uas (t) =
(

9̂ad + η

)

sign (s) (30)

where ueq (t) is constructed identically to the equivalent

control term in Eq. (21), and the adaptive control term is

constructed as

˙̂
9ad = 1

κ
|s| (31)

where κ > 0 indicates the adaptive gain.

The following theorem is formulated for the proposed con-

troller to achieve the control objective for the robotic system

of Eq. (4).

Theorem 3: For the dynamic system in state space as

Eq. (4), if the control input signal is constructed (29-30) with

its parameter updating law as in Eq. (31) and a suitable finite

time NTSM surface is selected as in Eq. (7), the estimating

value of 9̂ad has an upper limit. It means that there exists a

positive coefficient of 9̂ad satisfying the following condition:

9̂ad ≤ 9∗ (32)

Furthermore, this means that the system tracking position

x1 will reach the desired trajectory values xd in finite time.

Accordingly, the goal of achieving global stability in finite

time is guaranteed.

Stability Analysis: Proof of stability will be done according

to the following approach.

Firstly, it will be shown there exist positive coefficients9∗

satisfying the condition of Eq. (32), which causes the system

tracking position x1 to reach the desired trajectory values xd .

FIGURE 1. Block diagram of the proposed control method.

The following positive-definite Lyapunov functional is

considered:

V3 = 1

2
sT s+ 1

2
κ

(

9̂ad −9

)T (

9̂ad −9

)

(33)

where κ is a positive constant. Utilizing the same method

employed to obtain (25), the time derivative of Eq. (33) is

derived as

V̇3 = sT ṡ+ κ

(

9̂ad −9

)T ˙̂
9ad

= sT

(

−ϒs+D (x, t)
−
(

9̂ad+η
)

sign (s)

)

+κ
(

9̂ad−9
) ˙̂
9ad (34)

Inserting the adaptive rule (31) into (34) yields

V̇3 = −ϒsT s+ D (x, t) s− 9̂ad |s|
− η |s| +

(

9̂ad −9

)

|s| (35)

Applying Assumption 1, the following inequality is obtained

as

V̇3 = −ϒsT s+ D (x, t) s− 9̂ad |s| − η |s|
+
(

9̂ad −9

)

|s|

= −ϒsT s+ D (x, t) s−9 |s| − η |s|
≤ −ϒsT s− η |s| ≤ −η |s| ≤ 0 (36)

According to the Lyapunov stability criterion [34], [35],

the estimating parameter of 9̂ad is limited. It means that there

exist positive coefficients of 9∗ satisfying the condition of

Eq. (32). Thus, Eq. (32) is proved.

Then, the method will continue to show that the system of

Eq. (4) will attain the NTSM surfaces s = 0 in a finite time.

We use the following proof procedure ([10]).
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Consider the following Lyapunov function candidate as

V4 = 1

2
sT s+ 1

2
v9̃T 9̃ (37)

where v is the positive coefficient, 9̃ = 9̂ −9∗.
The time derivative of Eq. (37) is derived as

V̇4 = sT ṡ+ v9̃T ˙̃
9

= sT
(

−ϒs+ D (x, t)−
(

9̂ad + η

)

sign (s)
)

+ v
(

9̂ad −9∗
) ˙̂
9ad (38)

Inserting the adaptive rule (31) into (38) and using (32) yields

V̇4 = sT
(

−ϒs+ D (x, t)−
(

9̂ad + η

)

sign (s)
)

+ v
(

9̂ad −9∗
) 1

κ
|s|

= −ϒsT s+D (x, t) s−9̂ad |s|−η |s|+ v

κ

(

9̂ad−9∗
)

|s|

≤ −ϒsT s+9s− 9̂ad |s| − η |s| + v

κ

(

9̂ad −9∗
)

|s|

≤ 9s− 9̂ad |s| + v

κ

(

9̂ad −9∗
)

|s| +9∗ |s| −9∗ |s|

= −
(

9∗ −9
)

|s| + v

κ

(

9̂ad−9∗
)

|s|−
(

9̂ad−9∗
)

|s|

= −
(

9∗ −9
)

|s| −
(

− |s| + v

κ
|s|
) ∣

∣

∣
9̂ad −9∗

∣

∣

∣
(39)

For a simpler description, some symbols are defined as
{

30 = (9∗ −9)

31 =
(

− |s| + v

κ
|s|
) (40)

9∗, and vmust be selected to satisfy the conditions that9∗ >
9 and v > κ . It follows that 30 > 0 and 31 > 0. Therefore,

the following result is obtained:

V̇4 ≤ −30 |s| −31

∣

∣

∣
9̂ad −9∗

∣

∣

∣

≤ −
√
230

|s|√
2

−31

√

2

v

√
v

∣

∣

∣
9̂ad −9∗

∣

∣

∣

√
2

≤ −min

{

√
230,31

√

2

v

}

·





|s|√
2

+
√
v

∣

∣

∣
9̂ad −9∗

∣

∣

∣

√
2





(41)

Using Jensen’s inequality of Lemma 4 shown in the

Appendix and defining that 3 = min

{√
230,31

√

2
v

}

,

the following results are consequently obtained:

V̇4 ≤ −3







sT s
(√

2
)2

+
(√

v
)2

(

9̂ad−9∗
)T (

9̂ad−9∗
)

(√
2
)2







1
2

≤ −3V
1/2
4 (42)

Based on Lemma 3 shown in the Appendix, it is shown that

the controlled variables in Eq. (4) reach the NTSM variable

FIGURE 2. 3−DOF PUMA560 robot manipulator.

in a known amount of time T ≤ 2V

1
/2

4 (0)

3
. Furthermore, once

the NTSM surface converges to zero, then the tracking error

of the robot system will also become zero. This completes the

proof of Theorem 3.

Remark 3: In real systems, the parameter drift matter usu-

ally occurs under adaptive law (31). Therefore, the bounded

method is performed to set up the adaptive law as

˙̂
9ad =







0 if |s| ≤ υ

1

κ
|s| if |s| > υ

(43)

in which υ > 0 is an arbitrary positive value.

Theoretically, the proposed control algorithm contains the

discontinuous term
(

9̂ad + η

)

sign (s) that may cause chat-

tering phenomenon from an infinite switching frequency of

a discontinuous term. To reject the possible chattering phe-

nomenon, some procedures have been used. For example,

the function of s
/

(|s| + ε∗) can be utilized to approximate

the function of sign (s) (in which ε∗ is a minor positive

coefficient) or another technique is applied in this paper,

which is summarized in Remark 4.

Remark 4 [22]: The chattering phenomenon can be sig-

nificantly alleviated by replacing the sign (·) function with a

saturation function in the control input signal, such as

sat
( s

ε∗

)

=
{

sign (s) if |s| ≥ ε∗
s

ε∗
if |s| < ε∗

(44)

in which ε∗ is a minor positive coefficient.

IV. NUMERICAL SIMULATION RESULTS

We consider a 3-DOF PUMA560 robot [36] with the first

three joints and the last three joints blocked. Its kinematic

illustration is shown in Fig. 2.
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FIGURE 3. Tracking Positions with a sign function: (a) at Joint 1, (b) at
Joint 2, and (c) at Joint 3.

The uncertainties in this simulation are assumed as follows.

The friction Fr
(

θ̇
)

and disturbance τD are assumed to be

Fr
(

θ̇
)

+τD=







2.1θ̇1 + 2.02sign
(

3θ̇1
)

4.2θ̇2 + 2.2sign
(

2θ̇2
)

1.1θ̇3 + 1.15sign
(

2θ̇3
)






+









7.2sin
(

θ̇1
)

6.1sin
(

θ̇2
)

4.15sin
(

θ̇3
)









(45)

The desired joint trajectories are

θd =
[

cos
(

t
5π

)

− 1 sin
(

t
5π

+ π
2

)

− 1 sin
(

t
5π

+ π
2

)

− 1
]T

(46)

The parameters for the NTSM surface in Eq. (7) and the

controlling input (29-31) are experimentally selected as g0 =
15, g1 = 6, g2 = 3, g3 = 10, γ = 0.2, β = 0.6, ϒ = 20,

κ = 0.1, ε∗ = 0.15, and η = 0.2. The initial values of the

system are chosen as θ1 (0) = −0.5, θ2 (0) = −0.5, and

θ3 (0) = −0.5. The initial value of adaptive control law is

selected as 9̂ad (0) = 0.

To show the effectiveness of the proposed control algo-

rithm, its trajectory tracking performances are compared with

those of the conventional SMC [9]–[12] and the NTSM con-

troller [20]–[22]. These control methods for comparison are

briefly explained as follows.

FIGURE 4. Tracking Errors with a sign function: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

The conventional SMC [11] has the control input

u (t) = −Q (x, t)−1

[

H (x, t)+ ϕ (x2 − ẋd )

−ẍd + (9 + η) sign(s)

]

(47)

in which s = ė+ ce is the linear sliding surface.

The parameters of the controller in Eq. (47) were selected

as 9 = 19.8, η = 0.2, c = 2 and ϕ = 2 to obtain good

simulation results.

Further, the NTSM controller [21] has the control input

u (t) = −Q (x, t)−1

[

H (x, t)+ µ
q
l
ė2−l/q

−ẍd + (9 + η) sign (s)

]

(48)

in which s = e+ µ−1ėl/q is a nonlinear sliding surface.

The parameters of the controller in Eq. (48) were selected

as q = 3, l = 5, η = 0.2, 9 = 19.8, and µ = 2.0 to obtain

good simulation results.

The simulations were carried out in the following two cases

to compare the controllers in terms of both positional accu-

racy and the resulting chattering behaviors in their control

inputs.

Case 1: Each of three controllers has the discontinuous

term of sign (s) in its control input signal.

Case 2: Each of three controllers applied Remark 4 in

which the discontinuous term of sign (s) is replaced with a

saturation function in its control input signal.

In Case 1, the tracking positions and tracking errors

of the three joints with three control methods are given
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FIGURE 5. Control inputs with a sign function: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

FIGURE 6. Tracking positions with a saturation function: (a) at Joint 1,
(b) at Joint 2, and (c) at Joint 3.

in Fig. 3 and Fig. 4, respectively. All three controllers offer

similar good trajectory tracking performances. However,

the tracking errors of the proposed controller are smaller

FIGURE 7. Tracking errors with a saturation function: (a) at Joint 1, (b) at
Joint 2, and (c) at Joint 3.

FIGURE 8. Control inputs with a saturation function: (a) at Joint 1, (b) at
Joint 2, and (c) at Joint 3.

than those of the other control methods by the order of

10−6 rad. The tracking errors of the other control methods

are on the order of 10−4 ∼ 10−5 rad. The more interesting

finding involves comparison of the control inputs in terms of
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FIGURE 9. Non-singular terminal sliding surfaces with a sign function:
(a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.

the chattering phenomena, shown in Fig. 5. The chattering

behavior from the proposed NTSM surface and control law

was shown as significantly less than those of the other control

methods.

To reduce chattering, the saturation function has been

adopted in SMC methods instead of the sign function.

In this case, it is easily expected that reducing chattering

often reduces positional accuracy. The simulation results of

Case 2 confirm the expectant results shown in Figs. 6-8.

Noteworthy is that the degradation of the tracking positional

accuracies of the proposed control method is the smallest

among the three controllers, while the chattering of the con-

trol inputs is in the allowable range. The tracking errors of

the proposed controller are on the order of 10−6 rad, while

those of the other control methods are worse, on the order

of 10−3 rad. Furthermore, the required initial control input

of the proposed control method seems to be an affordable

magnitude, while those of the other control method seems

to be too high and lead to motor torque saturation as shown

in Fig. 8.

The response time of the sliding surface in two cases

is shown in Figs. 9-10. It is shown that the proposed

NTSM surface allows a faster finite time convergence tra-

jectory than the old-style SMC and conventional NTSM

surfaces. The transient response of the proposed NTSM

surface has been improved and quickly responded to the

FIGURE 10. Non-singular terminal sliding surfaces with a saturation
function: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.

FIGURE 11. The response time of the estimating parameters with a sign
function: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.

fast variation of influences of the external disturbances or

uncertainties.

The variations of the estimated parameter of 9̂ad in two

Case are shown in Figs. 11-12. The parameters are estimated

according to the variation of the undefined parameters, and

this estimated parameter will reach a constant when the

system state variables converge to the non-singular sliding

surfaces.

From the simulation results, it can be concluded that

the proposed controller shows the best performance among

the three in terms of tracking positional accuracy, small

steady state error, fast response speed, and weak chattering

behavior.
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FIGURE 12. The response time of the estimating parameters with a
saturation function: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.

Remark 5: The robustness issue and the finite-time conver-

gence of the suggested system are totally confirmed by the

Lyapunov stability principle. Through simulation studies and

comparison among those of the conventional SMC [9]–[12]

and the NTSM controller [20]–[22], the experimental results

and performance comparison could be expected to show the

effectiveness and viability of our proposed scheme for the

joint position tracking control of a 3-DOF PUMA560 robot.

In the next work, authors will apply the proposed controller to

the real robot system and compare with other state-of-the-art

controllers to demonstrate the effectiveness of this control

method.

V. CONCLUSION

In this paper, an adaptive continuous finite time terminal

sliding mode control (TSMC) algorithm is presented for

robot manipulators. From the simulation and performance

comparison with two other control methods for a 3-DOF

PUMA560 robot, the suggested control method shows the

best performance among the three controllers in terms of

tracking positional accuracy, small steady state error, fast

response speed, and weak chattering behavior. We think that

the proposed control algorithm has the following important

characteristics: 1) the NTSM surface allows finite time con-

vergence without singularity, 2) requires no prior information

of the upper limits of uncertainties, 3) shows tremendously

less chattering behavior, and 4) the magnitude of the gener-

ated control input seems to be more suitable in terms of motor

torque saturation compared with those of the other control

methods.

APPENDIX

Some preliminary definitions applied in the progress of the

control scheme are introduced in this part.

Consider the following system

ẋ = ψ (x), ψ (x) = 0 (49)

where x ∈ � ⊂ R
n, x (0) = x0

Definition 1 [37]: The original point is termed a globally

balanced point of the system (49) in finite time in the case

of an open neighborhood N ⊆ � of the original point and

a function T : N\ {0} → (0, \∞), termed the settling time,

such that the following criterion holds:

Finite time convergence property: For every x0 ∈
N\ {0}, every solution x (t, x0) is defined for t ∈
[0,T (x0)), x (t, x0) ∈ N\ {0}, for t ∈ [0,T (x0)) and,

lim
t→T (x0)

x (t, x0) = 0.

The Lyapunov stability criterion: For every open set Us
such that 0 ∈ Us ⊆ N, there exists an open set Uδ such that

0 ∈ Us ⊆ N and such that, for every x0 ∈ Uδ\ {0} , x (t, x0) ∈
Us for all t ∈ [0,T (x0)).

The original point is defined as a globally balanced point

in finite time in the case that it is a finite-time balanced point

and � = N = R
n.

Definition 2: A family of dilations Cr
ε is a mapping that

designates to every real λ > 0 a diffeomorphism

Cr
λ (x1, x2, . . . , xn) = (λr1x1, λ

r2x2, . . . , λ
rnxn) (50)

where x1, x2, . . . , xn are appropriate coordinates on R
n, and

r = r1, r2, . . . , rn with the dilation coefficients r =
r1, r2, . . . , rn are positive real numbers.

A vector field ψ (x) = [ψ1 (x), ψ2 (x), . . . , ψn (x)]
T is

homogeneous to the degree p ∈ R with respect to the family

of dilations for all λ > 0

ψl
(

λr1x1, λ
r2x2, . . . , λ

rnxn
)

=λp+rlψl (x), l=1, 2, . . . , n

(51)

The system of Eq. (49) is named homogeneous in the case its

vector field ψ is homogeneous.

Lemma 1 [38]: The following non-linear system is consid-

ered:

ẋ = ψ (x)+ ψ̂ (x), x ∈ R
n (52)

where ψ (x) is an n-dimensional continuous homogeneous

vector field of degree p < 0 with dilation (r1, r2, . . . , rn)

satisfying ψ (0) = 0, and ψ̂ is a continuous vector field

satisfying ψ̂ (0) = 0. Assume x = 0 as an asymptotic

balanced point of the system ẋ = ψ (x). Then, the zero

solution of Eq. (52) is a locally finite time stable result if

lim
λ→0

(

ψ̂l
(

λr1x1, λ
r2x2, . . . , λ

rnxn
)

)

/λp+rl = 0

l = 1, 2, . . . , n,∀x 6= 0 (53)

Lemma 2 [38], [39]: The following system is considered
{

ẋ1 = x2

x2 = u
(54)

The original point of the system of Eq. (54) is a globally

balanced point in finite time according to the principle of

feedback control:

u = −µ1 |x1|ϑ1 sign (x1)− µ2 |x2|ϑ2 sign (x2) (55)

in which ϑ1, ϑ2 are positive coefficients, and ϑ1, . . . , ϑn
satisfy ϑi−1 = ϑiϑi+1

2ϑi+1−ϑi , i = 2, . . . , n, with ϑi+1 = 1 and

ϑi = ϑ .

Lemma 3 [40]: Suppose that a continuous positive-definite

function 1(t) satisfies the differential inequality:

1̇ (t) ≤ −α1δ (t), ∀t ≥ t0, 1 (t0) ≥ 0 (56)
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in which δ > 0, 0 < δ < 1 are coefficients. Then, for any

given t0,1 (t), the following inequality is satisfied:

11−δ (t) ≤ 11−δ (t0)− α (1 − δ) (t − t0), t0 ≤ t ≤ t1

(57)

with 1(t) = 0,∀t ≥ t1,

where t1 is calculated by

t1 = t0 + 1

α (1 − δ)
11−δ (t0) (58)

Lemma 4 ([41], Jensen’s Inequality): It has the following

form
(

m
∑

i=1

φ
a2
i

)1/a2

≤
(

m
∑

i=1

φ
a1
i

)1/a1

, 0 < a1 < a2 (59)

with φi ≥ 0, 1 ≤ i ≤ m.
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