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Abstract—The penetration of renewable distributed energy
resources such as wind turbine has been dramatically increased in
distribution networks. Due to the intermittent property, the wind
power generation patterns vary, which may risk distribution net-
work operations. So, it is intrinsically necessary to monitor wind
turbines in a distributed way. This paper presents an adaptive-
then-combine distributed dynamic approach for monitoring the
grid under lossy communication links between the wind turbines
and energy management system. Firstly, the wind turbine is
represented by a state-space linear model, with sensors deployed
to the obtain the system state information. Based on the mean
squared error principle, an adaptive approach is proposed to esti-
mate the local state information. The global estimation is designed
by combining estimation results with weighting factors which are
calculated by minimizing the estimation error covariance based
on semidefinite programming. Finally, the convergence analysis
indicates that the estimation error is gradually decreased, so the
estimated state converges to the actual state. The efficacy of the
developed approach is verified using the wind turbine and IEEE
6-bus distribution system.

Keywords—Adaptive-then-combine, Kalman filter, Lyapunov
function, packet losses, semidefinite programming, wind turbine.

I. INTRODUCTION

Nowadays, the penetration of renewable distributed energy
resources (DERs) such as wind turbine, tidal, and solar cells
is radically increasing owing to the government incentives for
low carbon emission strategies and meeting on-going energy
demand [1], [2]. Among available renewable green resources,
the wind turbine has relatively low investment cost and high
generation capacity compared with solar panels and tidal
systems [3]. So far, Denmark produces about 33% electricity
from wind farms and 50% is targeted in 2020. The European
Wind Energy Association set a target to achieve 25% electricity
from wind farms in 2030 [4]. However, the integration of wind
turbines into the grid is associated with serious practical chal-
lenges, such as grid synchronization, power quality, stability,
and reliability [5]. This is basically due to the fact that the
wind speed generally depends on nature and meteorological
conditions. Usually, the wind farm is situated near consumers
or sea areas [6]. If the wind farm is installed in rural/sea
areas, its operating condition should be closely monitored.
State estimation for the microgrid incorporating wind turbines
is a vital task in the grid energy management system (EMS).

Mostly, the wind firm and EMS is located far away from
each other [6], so there is an unreliable communication link
between them. [7] illustrates that the sensing measurements
are affected by communication impairments when they are
transmitted through an unreliable communication network.
The unreliable link such as packet losses causes monitoring
performance degradation and may give deceiving information
to the utility operator [8], [9], [10]. A Kalman filter (KF)
based state estimation via wireless sensor networks over fading
channels and missing measurements are presented in [11], [12],
[13]. Hence, the packet losses are considered as another form
of power system contingency which may lead to a massive
blackout if suitable actions from the operator are not taken
on time. Therefore, state estimation considering packet losses
has drawn significant attention and triggered a new wave of
research on the smart distribution system [12], [13].

Research has been conducted on the power system state
estimation in a centralized or distributed way. The centralized
estimation means that the EMS uses all measurements from
the local sensors to obtain a global estimation [14], [15],
[16], thus demanding huge communication and computation
resources for processing all the measurements. Firstly, all
sensing measurements are transmitted to the central estimator,
so more communication bandwidth is required compared with
the distributed one. The distributed system can process the
subset of sensing information in a distributed way, leading
to a very effective strategy for performing the wide-area
distributed computation [13], [17], [18]. Secondly, if there is
problem in the central estimator and its may fail to process
everything. This may lead to a single point failure or massive
blackout. For instance, more than 95% of power outages [19]
is owing to distribution system faults (excluding the reason
of generation deficiency). In the distributed state estimation,
every local estimator computes the state information based on
its own measurements and sends it to the global estimator
for obtaining a reliable estimation. From the smart grid and
practical point of views, it improves scalability and compu-
tational efficiency [14], [15]. It is also relatively easier for
monitoring the microgrid operating condition which changes
after adding/removing the microgrid to/from the grid. There are
several estimation methods that deals with the centralized and
distributed state estimation. First of all, weighted least squares
is a classic method for estimating power system states [20].
The distributed KF (DKF) based dynamic state estimation is
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widely used in the literature [21]. Moreover, the extended KF
and unscented KF algorithms are proposed in [22]. Nowadays,
the consensus-based DKF methods have been proposed for
sensor networks in [23], [24]. From the practical point of
view, the diffusion strategy is widely used in the literature,
where the global estimator linearly combines local results
using a set of weighing factors [25], [26]. However, selecting
an optimal weighting factor from the power system perspective
is a quite difficult task. Furthermore, none of the above papers
consider the packet losses in the distributed estimation process.
Interestingly, the KF and linear quadratic Gaussian based
optimal control for the networked controlled smart grid is
suggested in [12]. Even though it considers packet losses, it is
only suitable for the centralized power system state estimation
and control. In fact, the microgrid state estimation with an
unreliable communication channel is not considered in the
literature specifically in a distributed way.

This paper presents an adaptive-then-combine distributed
dynamic approach for monitoring the wind turbine under
packet loss conditions and it seems more preferred for many
practical issues. After the local estimation, the global point
fuses local results to yield an optimal system state estimation.
The knowledge of state enables EMS to perform locally
various crucial tasks, such as contingency analysis, bad data
detection as well as maintaining system stability and reliability.
The key contributions of the paper are as follows:
• Environment-friendly wind turbine is described as a

linear state-space model, and the system measurements
are obtained at EMS under unreliable communication
links. The considered model and scenario are usually
required in the power industry for the development of
green technologies.

• In order to know the wind turbine operating conditions,
an adaptive-then-combine distributed dynamic state es-
timation method is proposed. After locally estimating
the system states, the global estimator combines local
estimation results through a set of designed weight-
ing factors. The weighting coefficients are calculated
by minimizing estimation error covariances based on
semidefinite programming (SDP).

• Convergence of the proposed approach is analyzed based
on the Lyapunov approach. The proof indicates that
the error function is a decreasing sequence, so that the
error system is asymptotically stable. The analysis is
significantly important for validation of the algorithm
and simulation results.

The outline of this paper is as follows. A community
resilient wind turbine state-space model is described in Section
II, followed by the measurement model and problem formu-
lation in Section III and IV, respectively. In Section V, an
adaptive-then-combine diffusion algorithm and a weighting
factor calculation method are proposed. Convergence of the
proposed method is analyzed in Section VI. In Section VII,
the developed approach is applied to the wind turbine and
IEEE 6-bus distributed test system and the effectiveness of
the proposed method is demonstrated. In Section VIII, the
conclusion is drawn and recommendations are made for future
directions of research.

Notation: Bold face lower and upper case letters are used
to represent vectors and matrices, respectively. E(·) denotes
the expectation operator, tr(·) denotes the trace operator, x′
denotes the transpose of x and I denotes the identity matrix.

II. WIND TURBINE MODEL

Usually, wind turbines are the most important and promising
DERs which are contributing considerably to the world’s
power generation [27]. The wind turbine converts the wind
kinetic energy into electrical energy. In other words, the power
generated by the wind turbine is transferred to the grid through
inverter and step up transformer. To illustrate, the structure of a
wind turbine is shown in Fig. 1 [28]. It consists of aerodynamic
rotor, drive train (mechanical part) and generator (electrical
part) [29]. The drive train is the connection between the rotor
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Fig. 1: Two-mass wind turbine model [28].

and generator. The rotor of the turbine is driven by blades.
The blade converts the wind kinetic energy into torque. Then
the drive train converts it into high rotational speed to drive
the generator [28], [30]. Generally, wind turbines are designed
to generate high torque at low speed due to the low wind
speed and its huge variations. The turbine output power Pa is
determined as follows: [27]:

Pa =
1

2
sρv3 =

1

2
πr2ρv3, (1)

where s = πr2 is the area covered by rotor, r is the rotor
radius, ρ is the air density, and v is the wind speed. As
the wind speed v increases, the capturing power rises as
roughly the cube of the speed. Normally, the power that can
be converted by rotor is limited by the power coefficient [31],
so the mechanical power Pext extraction from the wind can
be written as follows:

Pext =
1

2
sρcp(ζ, β)v3, (2)

where β is the rotor blade pitch angle and cp(ζ, β) is the power
coefficient. The power coefficient is a nonlinear function of β
and tip speed ratio ζ i.e.,

ζ = ωrr/v, (3)

where ωr is the rotor angular rotational speed.
Mostly, the mechanical power generated by the wind turbine

is transferred from the rotor to generator terminal. This con-
nection is called drive train, and the dynamic model of drive
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train is represented by the following second order differential
equations:

Jr θ̈r = Tr − Ts. (4)

Jg θ̈g = Ts − Tg. (5)

Here, Jr, Tr, and θr are the moment of inertia, torque, and
azimuth angle of the wind turbine. Jg , Tg , and θg are the
moment of inertia, torque, and azimuth angle of the generator.
As shown in Fig. 1 the shaft of the wind turbine is represented
by a two-mass model, where the first mass represents a low
speed turbine, and the second mass represents a high-speed
generator. The two-mass connection is modelled as a spring
and a damper [32], [33]. The equivalent shaft torque Ts is
given by:

Ts = D(θ̇r − θ̇g) + Ec(θr − θg), (6)

where D is the damping coefficient and Ec is the spring elastic
coefficient of the shaft. Perturbation in the shaft torque δTs can
be expressed as follows:

δTs = D(δθ̇r − δθ̇g) + Ec(δθr − δθg). (7)

Using the Tailor series, Tr is expressed at the operating points
ωr0, v0, and β0 as follows:

Tr(ωr, v, β) = Tr(ωr0, v0, β0) + δTr, (8)

where δTr = αδv+ζδwr+ξδβ with α = ∂Tr

∂v |(ωr0,v0,β0), ζ =
∂Tr

∂ωr
|(ωr0,v0,β0), and ξ = ∂Tr

∂β |(ωr0,v0,β0). The perturbation in
rotor is expressed by the following second order differential
equation:

Jrδθ̈r = Tr + δTr − Ts − δTs. (9)

At the operating point, the perturbation in rotor and generator
deviation are zero. Let Tro, Ts0, and Tg0 are the rotor, shaft,
and generator torque at the operating points, respectively. Over-
all, the system dynamic can be represented by the following
differential equations [28]:

Jrδθ̈r=αδv+ζδωr+ξδβ−D(δθ̇r−δθ̇g)−Ec(δθr−δθg).
(10)

Jgδθ̈g = D(δθ̇r − δθ̇g) + Ec(δθr − δθg)− δTg. (11)

For the sake of simplicity, let’s define x1 = δθ̇r = δωr, x2 =
Td = Ec(δθr − δθg), and x3 = δθ̇g = δωg , then the dynamic
equations can be rewritten as follows:

Jrẋ1 = αδv + ζx1 + ξδβ −D(x1 − x3)− x2. (12)
ẋ2 = Ec(x1 − x3). (13)
Jgẋ3 = D(x1 − x3) + x2 − δTg. (14)

If the generator runs at the rated speed, δTg = 0, so the turbine
model is expressed as a state-space linear equation as follows:

ẋ = Ax + Bu+ Gn. (15)

Here, the turbine system state x = [x1 x2 x3]′ =
[δωr, Td, δωg]

′, system input u = δβ, n = δv, A =

[
(ζ −D)/Jr −1/Jr D/Jr

Ec 0 −Ec
D/Jg 1/Jg −D/Jg

]
, B = [ξ/Jr 0 0]′, and

G = [α/Jr 0 0]′. Now the wind turbine model is expressed as
a discrete time state-space linear equation as follows:

xk+1 = Adxk + Bduk + Gdnk, (16)

where Ad = I + A∆t, ∆t is the discretization step size
parameter, Bd = B∆t, Gd = G∆t, and nk is the zero mean
process noise whose covariance matrix is Qk.

III. MEASUREMENT SYSTEM MODEL

The proposed distributed estimation scheme considering
packet losses is described in Fig. 2. In order to simplify the
discussion, it is assumed there are N=4 observation stations
in the distribution power network1. The measurements of the
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Fig. 2: Proposed distributed microgrid state estimation
considering packet losses.

system are described by a set of sensors as follows:

zik = Cixk + wik, (17)

where zik is the observation information for the i-th estimator
at the time instant k, Ci is the observation matrix, and wik is
the zero mean measurement noise whose covariance matrix is
Rik. Taking into account the packet loss, (17) can be written
as follows:

yik = αikCixk + αikwik, (18)

1The proposed work can be easily extended to the generic case.
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where yik is the received measurements under the condition
of packet losses, and αik ∈ {0, 1} is the Bernoulli distribution
considered as a packet loss model in this work [12], [13].
Mathematically speaking, the packet loss can be modelled as
follows:

αik =

{
1, with probability of λik ,
0, with probability of 1− λik ,

where λik is the packet arrival rate reaching at the estimator.
Remark: The assumption of a Bernoulli packet loss model

is inappropriate when the communication channel is congested
[12], [34], [35]. In a congested channel the packet loss occurs
in bursts, and follows a two-state Markov chain model, also
known as Gilbert model [12], [34], [35].

IV. PROBLEM FORMULATION

The local state estimation considering the packet losses is
written as follows:

x̂ik|k = x̂ik|k−1 + Ki
k[yik − αikCix̂ik|k−1]. (19)

Here, x̂ik|k is the local updated state estimation, x̂ik|k−1 is the
predicted state estimation and Ki

k is the gain. The predicted
state and error covariance are computed as follows:

x̂ik|k−1 = Adx̂ik−1|k−1 + Bduk. (20)

Pik|k−1 = AdPik−1|k−1A′d + GdQi
kG′d. (21)

Here, x̂ik−1|k−1 is the estimated state of the previous step
and Pik−1|k−1 is the error covariance matrix of the previous
step. Based on the aforementioned filtering process, our first
problem is to design the optimal gain Ki

k, so that the estimated
state converges to the actual state. The second objective is to
find a set of optimal weighting factors so that an accurate
state estimation can be obtained by optimally combining the
weighted local estimations. Our final objective is to analysis
the convergence of the proposed state estimation method,
so that the developed approach can apply to the real-time
applications. Driven by the aforementioned motivations, the
proposed scheme is demonstrated in Fig. 3. This paper tries
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Fig. 3: Problem formulation and proposed strategy.

to answer these questions by presenting an adaptive-then-
combine distributed dynamic algorithm in the subsequent
sections.

V. PROPOSED ADAPTIVE-THEN-COMBINE DISTRIBUTED
DYNAMIC APPROACH

Let ei denotes the estimation error between the actual system
state and estimated state of the i-th estimator, which can be
expressed as follows:

eik|k−1 = xk − x̂ik|k−1. (22)

eik|k = xk − x̂ik|k. (23)

Now substituting (19) into (23), one can obtain the following
expression:

eik|k = xk − x̂ik|k−1 −Ki
k[yik − αikCix̂ik|k−1]

= xk − x̂ik|k−1 −Ki
k[αikCixk + αikwik − αikCix̂ik|k−1]

= [I− αikKi
kCi][xk − x̂ik|k−1]− αikKi

kwik
= [I− αikKi

kCi]eik|k−1 − α
i
kKi

kwik. (24)

Now, the estimation error covariance matrix is defined by:

Pik|k = E[eik|ke′ik|k]. (25)

By substituting (24) into (25), one can obtain the following
estimation error covariance matrix as follows:

Pik|k = λik[I−Ki
kCi]Pik|k−1[I−Ki

kCi]′ + λikKi
kRikK

′i
k+

(1− λik)Pik|k−1. (26)

For any two compatible matrices X and Y, the following partial
derivatives are holds:

∂tr(YX)

∂X
= Y′. (27)

∂tr(XYX′)
∂X

= X(Y + Y′). (28)

Taking the partial derivative of (26) with respect to Ki
k and

applying (27) and (28) yields:

∂[trPik|k]

∂Ki
k

= −2λikPik|k−1C
′i + 2λikKi

kCiPik|k−1C
′i+

2λikKi
kRik. (29)

Setting
∂[trPi

k|k]

∂Ki
k

= 0 and the optimal gain is given by:

Ki
k = Pik|k−1C

′i[CiPik|k−1C
′i + Rik]−1. (30)

Next, we design an optimal linear estimator to fuse the local
state estimations as follows:

x̂gk|k =

N∑
i=1

w
(i)
k x̂ik|k. (31)

Here, x̂ik|k is the local estimation and w
(i)
k is the weighting

factor to be designed. It can be observed that designing an
optimal set of weighing factors plays a vital role for the
distributed state estimation in the context of smart grids. In
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order to find the optimal weighting factors, we propose the
following (assuming N = 4):

minimise s

subject to (w
(1)
k )2d

(1)
k|k+(w

(2)
k )2d

(2)
k|k+

(w
(3)
k )2d

(3)
k|k+(w

(4)
k )2d

(4)
k|k ≤s, (32)

w
(1)
k + w

(2)
k + w

(3)
k + w

(4)
k = 1, (33)

where d
(i)
k|k = tr(Pik|k), and s is an auxiliary variable for

minimizing the trace of the global estimator error covariance.
Consequently, the error covariance is minimized, so that the
estimated states match the true states. By using the semidefinite
programming (SDP) variable s, the distributed estimation
problem is converted to a convex problem which can be solved
effectively and efficiently. Based on Schur’s complement, (32)
can be formulated as a linear matrix inequality:

−s w
(1)
k w

(2)
k w

(3)
k w

(4)
k

w
(1)
k −(d

(1)
k|k)−1 0 0 0

w
(2)
k 0 −(d

(2)
k|k)−1 0 0

w
(3)
k 0 0 −(d

(3)
k|k)−1 0

w
(4)
k 0 0 0 −(d

(4)
k|k)−1


≤0.

(34)

Finally, one can formulate the proposed optimization problem
as follows:

minimise s

subject to Hold (33), and (34).
(35)

In summary, the proposed distributed state estimation algo-
rithm in the context of smart grids is summarized in Table
I. The main advantage of this method is that it only requires

TABLE I: Proposed distributed state estimation algorithm.

Initialization for observation station i:
Input: x̂i0|0 and Pi

0|0.
Take the local measurements yi from the observation stations.
1: Predict the system state and covariance matrix:
x̂ik|k−1 = Adx̂ik−1|k−1 + Bduk,

Pi
k|k−1 = AdPi

k−1|k−1A′d + GdQi
kG′d.

2: Estimate the local system state and covariance matrix:
Ki

k = Pi
k|k−1C

′i[CiPi
k|k−1C

′i + Ri
k]−1.

x̂ik|k = x̂ik|k−1 + Ki
k[yik − αi

kCix̂ik|k−1].

P̂i
k|k = λi

k[I - Ki
kCi]Pi

k|k−1[I−Ki
kCi]′ + λi

kKi
kRi

kK
′i
k + (1−

λi
k)Pi

k|k−1.
3: Diffusion step:
x̂g
k|k =

∑N
i=1 w

(i)
k x̂ik|k ,

where w(i)
k is determined by solving (35).

low computation complexity and communication resources. It
also does not need neighborhood communication in contrast to
consensus algorithm [36] while maintaining accurate and con-
sistent estimation. Even though there are missing observations,
the optimization method can improve the accurate and consis-
tent estimation after selecting suitable weighting coefficients.

This is due to the fact that it runs in an automated way and is
well adapted to the unknown change in measurements. Now
the question is that how we can guarantee the convergence of
the proposed state estimation method.

VI. CONVERGENCE ANALYSIS

From the engineering perspective, the discrete-time system
is easy to implement in the digital platforms, while the
continuous system is easy to analyze from the mathematical
point of view [37]. Motivated by this realistic dilemma and
similar to [23], the convergence analysis of the adaptive-then-
combine algorithm is completed based on the convergence
analysis of the continuous system. Similar to the discrete-time
system, the estimator applies the following step:

˙̂xi = Ax̂i + Bu+ Ki[yi −αiCix̂i]. (36)

The estimation error ei can be expressed as follows:

ei = x− x̂i. (37)

By direct differentiating (37), with (15) and (18), the estima-
tion error dynamics is in the following form:

ėi = ẋ− ˙̂xi

= Ax + Bu+ Gn− Ax̂i − Bu− αiKi[Cix + wi − Cix̂i]
= (A− αiKiCi)ei + Gn− αiKiwi. (38)

The error covariance matrix under the condition of losses is
written as follows:

Ṗi=(A−λiKiCi)Pi+Pi(A−λiKiCi)′+GQG′+λiKiRiK′i

=APi+PiA′+GQG′−λiKiCiPi−λiPiC′iK′i+λiKiRiK′i.
(39)

Taking the partial derivative of (39) with respect to Ki and
applying (27) and (28) yields:

∂[trṖ
i
]

∂Ki
= −2λiPiC′i + 2λiKiRi. (40)

Setting ∂[trṖi
]

∂Ki = 0 and the gain matrix is given by:

Ki = PiC′i(Ri)−1. (41)

Substituting (41) into (39), one can obtain the following error
covariance matrix:

Ṗi = APi + PiA′ + GQG′ − λiPiC′i(Ri)−1CiPi−
λiPiC′i(Ri)−1CiPi + λiPiC′i(Ri)−1CiPi

= APi + PiA′ + GQG′ − λiPiC′i(Ri)−1CiPi. (42)

In order to analyze the stability of the proposed approach,
defining ēi = E(ei), and taking the expectation on both sides
of (38), we have:

˙̄ei = (A− λiKiCi)ēi. (43)
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Consider the following Lyapunov function:

V =

N∑
i=1

ē
′i(Pi)−1ēi. (44)

Now taking the partial derivative and expectation of (44).
Using (41), (42) and (43), the Lyapunov function can be
written as follows:

V̇ =

N∑
i=1

{ ˙̄e
′i(Pi)−1ēi + ē

′i(Pi)−1 ˙̄ei− ē
′i(Pi)−1Ṗ

i
(Pi)−1ēi}

=

N∑
i=1

ē
′i[−λiC′i(Ri)−1Ci − λiC′i(Ri)−1Ci−

(Pi)−1GQG′(Pi)−1 + λiC′i(Ri)−1Ci]ēi

=−
N∑
i=1

ē
′i[λiC′i(Ri)−1Ci + (Pi)−1GQG′(Pi)−1]ēi <0.

(45)

The inequality (45) shows that the Lyapunov function is grad-
ually decreased, so the error function (43) is asymptotically
stable. Consequently, the estimated state x̂i converges to the
actual system state x. This concludes the proposed filtering
algorithm is convergent, which is significantly important for
real-time applications.
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Fig. 4: Rotor speed deviation δωr and its estimation.

VII. CASE STUDIES AND DISCUSSION

In this section, the proposed algorithm is tested and the
results are demonstrated using the wind turbine (located in
the distribution system) and IEEE 6-bus distribution system,
respectively. It is assumed that the complete system state could
not be measured directly, and the measurement of each sensor
is different. The system parameters are shown in Table II [28],
[30]. The simulation has been carried out using the Matlab,
Matpower [38], and YALMIP softwares [39].
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Fig. 5: Drive-train torsional spring force deviation δTd and
its estimation.

TABLE II: Simulation parameters.

Symbols Values Symbols Values
ωro 42 RPM v0 18 m/s
β0 12 deg Ec 2.691× 107Nm/deg.
r 21.65 m D 0 Nm/deg-s
Jr 3.2175× 105 Jg 6.4103× 104

∆t 0.01 λ1 0.93
λ2 0.95 λ3 0.98
λ4 0.97 R1 0.0001*I
R2 0.00012*I R3 0.00014*I
R4 0.00015*I Qi 0.00001*I

A. Results based on the wind turbine
Figures 4-6 show the system states versus time step for the

wind turbine. It can be seen that the proposed method can
estimate the turbine states with reasonable accuracy. This is
because the local estimators are able to track the system states
after rejecting the statistical impairments as much as possible.
In other words, the mean square error based designed gain
provides accurate influence to remove the system impairments.
Then the global estimator properly calculates the optimal
weighting factors by minimizing the estimated error covari-
ances. Consequently, the fusion estimator can greatly reduce
the global estimation error, so the estimated state converges
to the true system state. Basically, the proposed SDP based
estimator can efficiently solve the distributed state estimation
problem to find the optimal solution. It can be seen from Fig.
4 that the proposed method requires maximum 0.1 second
(k × ∆t = 10 × 0.01) to estimate the system state. Tech-
nically, it means that the developed approach requires much
less time compared with the standard estimation time of 1
second [40]. Note that the small fluctuations come from system
impairments, but it does not affect the estimation accuracy. In
other words, the estimation result would not mislead the utility
operator even though there is missing measurements. As this
is an open-loop system without control, the system dynamics
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Fig. 6: Generator speed deviation δωg and its estimation.

cannot be guaranteed to be stable. As can be seen in the
simulation results, the state will fluctuate which is determined
by the open-loop system A matrix.

B. Estimation results using the IEEE 6-bus test system
The IEEE 6-bus testing system is employed to demonstrate

the performance of the proposed approach. A single-line
diagram of the IEEE 6-bus distribution test system is depicted
in Fig. 7. The system has three generators on buses 1, 2 and 6

G

1

G Load

GLoadLoad

2 3

4 5 6

 

Fig. 7: Single-line diagram of the IEEE 6-bus power
distribution system [41].

and three loads on buses 3, 4 and 5. It has the total generation
capacity 217.88 MW and load capacity 210 MW. The nominal
phase angles and bus voltage magnitudes are shown in Table
III.

Similarly, it is evident from the dynamic responses in Figs.
8-9 that the estimation results match the actual system states
within few steps. This clearly implies that the explored method
can well reject the system impairments, and accurately monitor
the system states. To sum up, this paper has presented an

TABLE III: The nominal values of the IEEE 6-bus system.

Bus ΘN VN Bus ΘN VN

1 0 1.050 4 -4.196 0.989
2 -3.671 1.050 5 -5.276 0.985
3 -4.273 1.070 6 -5.947 1.004

adaptive-then-combine distributed dynamic state estimation
algorithm, fundamental results, convergence analysis, and ap-
plication to the emerging smart grid communication area.
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Fig. 8: Voltage deviation δV2 and its estimation using the
IEEE 6-bus.
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Fig. 9: Phase angle deviation δθ2 and its estimation using the
IEEE 6-bus.

VIII. CONCLUSION AND FUTURE WORK

The increased penetration of renewable energy presents a
series of technical challenges in power system operations. To
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monitor such a system under lossy network conditions, we
propose an adaptive-then-combine distributed dynamic state
estimation algorithm based on the mean squared error and
SDP approaches. After estimating the local information, the
global estimator combines the locally estimated results with a
set of weighting factors, which are calculated by the proposed
convex optimization algorithm. The theoretical convergence
analysis is also verified through numerical simulation results.
So, these findings are valuable for green communication,
households, and provides the knowledge towards smart EMS
design. Although our proposed system model and algorithm
are useful for smart grid applications, the work presented
here has some limitations. Therefore, further investigations will
include the following aspects:
• Test the proposed estimation algorithm considering more

dynamic conditions such as a step, an inrush and a
sudden power injection.

• The suggested approach requires statistical information
about the process and measurement noises which are
often unavailable in practice. In light of the problem,
distributed H∞ filtering is the potential method.

• Future work also includes applying the distributed state
estimation algorithm to the large-scale power systems
with disturbances, delay, and cyber attacks.
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