
Received April 28, 2020, accepted May 11, 2020, date of publication May 19, 2020, date of current version June 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2995672

An Adaptive Turn Rate Estimation for
Tracking a Maneuvering Target

MOHAMED ELTOUKHY , M. OMAIR AHMAD , (Life Fellow, IEEE),

AND M. N. S. SWAMY , (Life Fellow, IEEE)
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G1M8, Canada

Corresponding author: Mohamed Eltoukhy (m_eltou@ece.concordia.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and in part by the

Regroupement Stratgique en Microlectronique du Qubec (ReSMiQ).

ABSTRACT Tracking maneuvering targets accurately is one of the most challenging tasks in the design of

aircraft tracking systems. For efficient tracking performance, the target motion predicted by the target motion

model needs to match the target’s actual motion during the maneuver. For tracking a maneuvering target,

a combination of the constant velocity (CV) model and the coordinated turn (CT) model with a known turn

rate are incorporated in the interacting multiple model (IMM) algorithm. However, in such a scheme when a

target performs an unexpected maneuver, the tracking performance deteriorates, or the scheme may even fail

to track the target. To overcome this problem, there exists a scheme in the literature, in which instead of using

an a priori knowledge of the target turn rate, it is estimated adaptively using the target acceleration and speed.

However, this algorithm uses a three-dimensional model to estimate the turn rate in two-dimensional space,

which may result in an inaccurate estimation of the target acceleration, and thus may lead to in inaccurate

turn rate value. In this paper, an adaptive algorithm to track a maneuvering target in an IMM framework is

proposed. Estimating the turn rate is based on the speed of the target and the radius of the turn, where the latter

is computed by a simple method using the previous three successive measurements. Further, a detailed study

to select an appropriate transition probability matrix for the proposed algorithm is carried out. Simulation

results demonstrate that the proposed tracking algorithm outperforms the other algorithms in terms of its

tracking accuracy and consistency, particularly in the realistic situation when neither an a priori knowledge

about the target turn rate nor about the range rate information is available to the tracking algorithm.

INDEX TERMS Interacting multiple model for radar tracking, target tracking, target turn rate estimation,

maneuvering targets.

I. INTRODUCTION

One of the major challenges faced by any target tracking sys-

tem is to track targets during maneuverability, i.e., when the

aircraft turns right or left with a certain angle. Two approaches

have been used for tracking a maneuvering target. One of

them uses a maneuver detector and the other does not. The

maneuver detector is a statistical test, which is formulated to

decide whether the target maneuver has begun or not. Same

framework is used to test whether the maneuver has ended or

not [1].

In the first approach, the algorithm uses a single filter in

all the tracking process. The algorithm is assumed to track

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhixiong Peter Li .

the target in the non-maneuvering mode, when the detector

decides that a maneuver is begun, the algorithm switches to

track the target in the maneuvering mode. One of the most

basic algorithms in this approach uses the two-level white

noise filter [2], in which the filter models the target motion

with a constant velocity (CV) and switches between two

noise levels, the low noise level for the non-maneuvering

mode and the high noise level for the maneuvering mode.

Another algorithm in the maneuver-detector approach is the

variable dimension (VD) algorithm [3]. This algorithm also

uses one filter and utilizes two motion models: the CV model

is used for the non-maneuvering motion of the target, and

the constant acceleration (CA) model for the maneuvering

motion. In general, the algorithms in this approach show a

high peak position error at the beginning of the maneuver
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motion, which may be higher than the raw measurement

data [3].

The second approach is to track the target without a maneu-

ver detector. In this approach, a number of filters are used

in parallel, each of which uses a different motion model.

The output is a weighted sum of the outputs of these filters.

These weights are proportional to the probability of each

filter being the accurate one to track this target [4]. This

approach overcomes the problem of peak position error that

appears in the maneuver-detector algorithms [5], [6]. Several

algorithms have been proposed in this approach such as the

first order generalized pseudo-Bayesian (GPB1), the second

order of GPB (GPB2), and interacting multiple model (IMM)

[7]–[11]. The IMM algorithm has a slightly higher complex-

ity, but a better performance compared to that of GPB1 algo-

rithm and significantly lower complexity than GPB2 with a

comparable tracking performance [12]. The implementation

of IMM with a large number of filters does not guarantee

a better performance, despite its increased complexity [13].

This algorithm shows an efficient tracking performance when

it utilizes the CV model and coordinated turn (CT) model

with known turn rate [14], [15]. However, the tracking per-

formance deteriorates when the turn rates deviate from the

maneuver performed by the target, i.e., a prior information

about the target maneuver is required for better tracking

performance [16].

For a practical implementation of the IMM algorithm,

we have to determine the turn rate, since it is not known.

The first method assumes that the maneuver range that will

be performed by the target is known a priori [17], and the

turn rate is selected to cover these expected maneuvers, but

the tracking performance degrades if this prior knowledge of

the range is inaccurate. The second method obtains the turn

rate by estimating the magnitude of target acceleration and

speed [18]. In general, the estimated accelerations may not

be precise and may cause biased estimation of the turn rate.

In the third method, the turn rate is included in the state vector

and is estimated along with the other elements of the state

vector [5], [19]. This results in a nonlinear CT model, which

is computationally more expensive to estimate the elements

of the state vector. Recently, it has been proposed that the

range rate information can be used to improve the turn rate

estimation [20]–[22]. However, this information may not be

available in all radar types [16].

In this work, it is assumed that the target performs the

maneuver in a uniform circular motion in two-dimensional

plane with a constant speed, as mentioned in [23]. The frame-

work of IMM with three filters is used. One of these filters

uses the CV model and the other two use the CT model,

one of which is to track the target for the right turn and the

other for the left turn [24]. In this algorithm, the turn rate of

the target is adaptively estimated at each time step without

any prior knowledge about the target maneuverability or the

range rate. The turn rate is based on the estimation of the

radius of the turn and the speed of the target and is calculated

as the speed of the target divided by the radius of the turn.

The performance of the proposed algorithm is evaluated and

compared with two other types of IMM tracking algorithms

that use linear models. One of these types uses a known turn

rate, whereas the other adaptively estimates it using the speed

and acceleration. These algorithms are evaluated in various

maneuvers in terms of the normalized position error [18] and

estimator consistency [25].

This manuscript is organized as follows: Section II intro-

duce the state space model (the target motion and measure-

ment models used in this work). A brief review of the IMM

algorithm is provided in Section III. In Section IV, we intro-

duce the proposed algorithm wherein a method of estimating

the turn rate is given. Section V is devoted to the performance

evaluation and comparison of the results with that of the other

existing linear IMM algorithms. Finally, Section VI contains

the conclusions.

II. THE STATE SPACE MODEL

The precision of the target motion model is crucial to the

tracking accuracy of a tracker, in that the performance of the

tracker deteriorates if there is a mismatch between the motion

predicted by the assumed model and the actual motion of

the target. Assuming the target performs a two-dimensional

motion and a CT maneuver, the target kinematics may be

represented by its position and velocity, and the target state

vector is given by

xk = [ξk , ξ̇k , ηk , η̇k ]
′ (1)

where ξk and ηk represent the target’s position in the x and

y directions, respectively, ξ̇k and η̇k are the corresponding

target velocity components, and (·)′ denotes the transpose.

The equation of the state-spacemodel that describes the target

motion is given by [26].

xk = Fk−1xk−1 + Ŵwk−1 (2)

where Fk−1 is the state transition matrix and Ŵ is the distur-

bance matrix that can be expressed as

Ŵ =









0.5T 2 0

T 0

0 0.5T 2

0 T









(3)

where T is the sampling period. Generally, radar systems pro-

vide the measurements in polar coordinates, that is, in terms

of azimuth and range. However, tracking using polar coor-

dinates is not as accurate as tracking using Cartesian coor-

dinates and hence the latter is recommended with a suitable

measurement conversion [27]. Therefore, using a suitable

conversion of the polar measurement such as used in [28],

we can track the target in Cartesian coordinates for better

tracking performance. Therefore, most of the algorithms that

have been proposed for target tracking assume that suitable

conversion has already been made of the polar measure-

ment to Cartesian coordinates [5], [11], [15], [18]. We have

also followed the same practice as others have done. Then,
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the measurement equation is given by

zk = Hkxk + mk (4)

with the measurement matrix

Hk =

[

1 0 0 0

0 0 1 0

]

(5)

where zk is the received measurement, Ŵwk−1, and mk are

the additive white Gaussian process and measurement noise

vectors, respectively. Conventionally, Ŵwk−1 and mk are

assumed to be independent with zero mean and with covari-

ance matrices ŴQk−1Ŵ
′ and Ck , respectively.

When the target performs a straight-line motion at a con-

stant velocity, the state transition matrix (Fk = FCVk ) is given

by [26]

FCVk =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









(6)

where FCVk corresponds to the CV model. When it performs

a CT motion with a known turn rate ω, the state transition

matrix (Fk = FCTk ) is given by [29]

FCTk =















1
sin(ωT )

ω
0 −

1 − cos(ωT )

ω
0 cos(ωT ) 0 − sin(ωT )

0
1 − cos(ωT )

ω
1

sin(ωT )

ω
0 sin(ωT ) 0 cos(ωT )















(7)

This corresponds to the CT model with a known turn rate.

III. THE IMM ALGORITHM

The IMM algorithm is quite effective in tracking a maneu-

vering target, wherein the target maneuver is modeled as a

combination of different motion models. The output at each

time step is a combination of the outputs of all the filters

weighted by the corresponding mode probability, the mode

probability being defined as the probability of the model

matching the target motion. At each time step, the algorithm

decides as to which model is suitable to predict the motion of

the target (non-maneuvering or maneuvering motion) based

on the mode probability. The block diagram of a single cycle

of the IMM algorithm, which uses two Kalman filters each

using a different motion model, is shown in Fig. 1 [14].

The predicted state vector x̃
j
k for a Kalman filter j is given

by [30]

x̃
j
k = Fk−1x̂

oj
k−1 (8)

where x̂
oj
k−1 is the input state vector for the filter j. The

predicted error covariance matrix, P̃
j
k , is given by

P̃
j
k = Fk−1P̂

oj
k−1F

′
k−1 + ŴQk−1Ŵ

′ (9)

where P̂
oj
k−1 is the error covariance matrix of the input state

vector for the filter j. The measurement innovation or the

FIGURE 1. One cycle of the IMM algorithm when r = 2 [14].

residual of the filter β
j
k

β
j
k = zk − Hk x̃

j
k (10)

where zk is the received measurement vector. The innovation

error covariance matrix, S
j
k , is given by

S
j
k = Hk P̃

j
kH

′
k + Ck (11)

The Kalman gain K
j
k is defined as

K
j
k = P̃

j
kH

′
k (S

j
k )

−1 (12)

The output state estimate x̂
j
k of the Kalman filter j and its error

covariance matrix P̂
j
k are expressed as

x̂
j
k = x̃

j
k + K

j
kβ

j
k (13)

P̂
j
k = [I − K

j
kHk ]P̃

j
k (14)

where I is the identity matrix.

Assuming the IMM algorithm to contain only two Kalman

filters, each of which is used to find the output state estimate

of the target according to a specific type of motion (e.g. non-

maneuvering, referred to as mode 1, and maneuvering mode,

referred to as mode 2). The algorithm starts with initial values

for the mode probabilitiesµ1
k−1 andµ2

k−1. In addition, a fixed

matrix Ptr is assumed, whose (i, j)th element, pij, i, j = 1, 2,

is the probability of transition frommode i to mode j, wherein

the sum of the elements of each row in this matrix is unity.

The mode probabilities as well as the transition probabilities

are used to calculate the mixing probabilities µ
i|j
k−1(i, j =

1, 2). These mixing probabilities along with the filter outputs

x̂
j
k−1, j = 1, 2 of the previous cycle are utilized to calculate

the inputs to the filters, x̂
0j
k−1, j = 1, 2. In other words, each

filter input is calculated as a weighted sum of all the filter

outputs of the previous cycle. When the new measurement

zk is received, each filter updates its output state, x̂1k and

x̂2k . Then, the likelihood probabilities of the filters, 31
k and

32
k , are computed from the measurement innovation βk , and

the corresponding covariance matrix Sk for each filter. Next,

the mode probabilities are updated to µ1
k and µ2

k , using 31
k

and32
k ,µ

1
k−1 andµ2

k−1, and Ptr . Finally, the output state esti-

mate x̂k is computed as a weighted sum of the outputs of the

filters using the weights of the updated mode probabilities,
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µ1
k and µ2

k . The outputs of the filters and the updated mode

probabilities are set as the initial data for the next cycle. More

details about the IMM algorithm can be found in [31]. The

steps of the IMM algorithm with r filters are as follows

1) State interaction: In this step, the previous state esti-

mates and their covariancematrices aremixed using the

calculated mixing probabilities µ
i|j
k−1. The input state

vector of the jth filter, x̂
oj
k−1 and its covariance matrix

P̂
oj
k−1 are calculated as

x̂
oj
k−1 =

r
∑

i=1

x̂ik−1µ
i|j
k−1 i, j = 1, · · · , r (15)

and

P̂
oj
k−1 =

r
∑

i=1

µ
i|j
k−1[P̂

i
k−1 + [x̂ik−1 − x̂

oj
k−1]

× [x̂ik−1 − x̂
oj
k−1]

′], i, j = 1, · · · , r (16)

where

µ
i|j
k−1 =

1

ēj
pijµi

k−1, i, j = 1, · · · , r (17)

with the normalization constant

ēj =

r
∑

i=1

pijµ
i
k−1, i, j = 1, · · · , r (18)

2) Mode probability update: when the measurement zk
is received, each Kalman filter uses its input state

and its error covariance matrix to calculate its output

state x̂
j
k and its error covariance matrix P̂

j
k . Moreover,

both the innovation β
j
k and its error covariance matrix

S
j
k [30] are used to calculate the likelihood of each

filter, which is given by

3
j
k =

1
√

2πS
j
k

exp[−0.5(β
j
k )

′(S
j
k )(β

j
k )], j=1, · · · , r

(19)

Then, the mode probability update for the jth filter is

computed as

µ
j
k =

1

G
3
j
k ē
j, j = 1, · · · , r (20)

and

G =

r
∑

j=1

3
j
k ē
j (21)

3) Fusion of the outputs: The output state estimate x̂k
and its error covariance matrix P̂k are computed as a

fusion of all the filter output states and their covariance

matrices weighted by the updated model probabilities,

respectively.

x̂k =

r
∑

j=1

x̂
j
kµ

j
k (22)

FIGURE 2. Target motions.

and

P̂k =

r
∑

j=1

µ
j
k [P

j
k + [x̂

j
k − x̂k ][x̂

j
k − x̂k ]

′] (23)

IV. THE PROPOSED TRACKING ALGORITHM

Consider a target that is moving in a circular path around a

fixed center at a speed v in a 2-D space. Then its angular speed

(or the turn rate) ω is given by [32], [33]

ω =
v

R
(24)

where R is the radius of the circle. If v is assumed to be

constant, then angular speed, i.e., the turn rate is also constant.

The speed v of the target can be calculated at each time step

from the estimated velocity components in the output state

estimate vector given by

v =

√

ξ̇2 + η̇2 (25)

where ξ̇ and η̇ are the velocity components in the x and y

directions. Therefore, our aim is to estimate the radius R of

the turn at a given instant.

For this purpose, we assume that the target motion consists

of three sub-motions as depicted in Fig. 2. The sub-motions

are two straight-line motions before and after the turn, and a

circular motion during the turn with its center at (oξ k , oηk ).

For the circular part of the motion, we assume that the target

moves on the circumference of a circle with radius Rk , such

that the received measurements are at the same distance from

the center of the circle.

Suppose we have three consecutive measurements given

by (ξk−2, ηk−2), (ξk−1, ηk−1), and (ξk , ηk ). Then,

Rk−2 = Rk−1 = Rk (26)

Then using the distance formula between two points and (26),

we can determine (oξ k , oηk ), the coordinates of the center and

then the radius Rk . The detailed proof is in Appendix A.

The block diagram of the proposed tracking IMM algo-

rithm is shown in Fig. 3. The algorithm uses three Kalman

filters, first of which uses the CV model to account for the

straight-line motion of the target, and the second and third
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FIGURE 3. The block diagram of one cycle of the proposed tracking algorithm.

Algorithm 1 Determination of the Turn Rate ωk

1: Input: (ξk−2, ηk−2), (ξk−1, ηk−1), (ξk , ηk ), and

(ξ̇k , η̇k )

2: Find: ωk
3: begin

4: Obtain oξ k using (A.5)

5: Obtain oηk using (A.7)

6: Obtain Rk using (A.8)

7: Obtain vk using (25)

8: Obtain ωk using (24)

9: end

filters, denoted by CTL and CTR filters, use the CT model

to account for the left turning and right turning motions,

respectively. For left turns, the estimated turn rate takes a

positive sign, while negative values are used for the right

turns [26]. A sign-changing block is located at the input of

the CTR filter to switch the sign of the turn rate provided to

the CT model in that filter to account for the right turn. The

three measurements zk , zk−1, and zk−2 are fed to the block

that calculates the radius Rk at the current time step, as shown

in Fig. 3. Furthermore, the speed of the target is calculated

from the output state estimate of the algorithm. This output

state vector contains the estimated components for both the

position and velocity of the target, where the target speed is

calculated using (25). The output of the last two mentioned

blocks, Rk and vk , are then used to calculate the turn rate ωk ,

which in turn is used in the next time step of the algorithm.

ω
CTL
k = ωk (27)

ω
CTR
k = −ωk (28)

where ω
CTL
k and ω

CTR
k are the left and right turn rates, respec-

tively. Once ω
CTL
k and ω

CTR
k have been determined and the

new measurement zk is received, the measurement zk−2 is

Algorithm 2 The Proposed Tracking Algorithm

1: Input: P
prop
tr , Ŵ, Q, C, µo, ω

CTL
o , ω

CTR
o , N, and zk

2: Find: x̂k and P̂k
3: Initialization: using z1 and z2, find x̂o and P̂o ∀ KF

from (36) and (37)

4: At k = 3, Set:

x̂1k−1 = x̂2k−1 = x̂3k−1 = x̂0

P̂1
k−1 = P̂2

k−1 = P̂3
k−1 = P̂o

µk−1 = µo

ω
CTL
k−1 = ωCTL

o

ω
CTR
k−1 = ωCTR

o

5: begin the process at k = 3 to N

6: for j = 1:3 do

7: Obtain ēj and µ
i|j
k−1 using (18) and (17)

8: Obtain x̂
oj
k−1 and P̂

oj
k−1 using (15) and (16)

9: Obtain x̂
j
k and P̂

j
k using (13) and (14) with

ω
CTR
k−1 and ω

CTL
k−1

10: Obtain β
j
k and S

j
k using (10) and (11)

11: Obtain 3
j
k using (19)

12: Obtain G and µ
j
k using (21) and (20)

13: end for

14: Compute x̂k and P̂k using (22) and (23)

15: Compute ωk using Algorithm 1

16: Compute ω
CTL
k and ω

CTR
k using (27) and (28)

17: end the process

discarded, and the other two previous measurements zk−1 and

zk are retained as zk−2 and zk−1, respectively, and the process

is repeated. The complete algorithm is given as Algorithm 2,

wherein ŴQŴ′ and C are the covariance matrices for any
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value of k , and

Q =

[

σ 2
Q 0

0 σ 2
Q

]

(29)

C =

[

σ 2
C 0

0 σ 2
C

]

(30)

where σQ and σC are, respectively, the standard deviations of

the process noise and measurement noise in x or y directions.

It is to be pointed out that if only one KF is employed for

the turning motion using the CT model, then the model can

be designed either with a positive value or a negative value

of the turn rate. For example, in the former case, the model

can estimate the turn rate only for left turns, but will not be

able to make a good estimate in the case of right turns. This

is due to the fact that when the target performs a right turn,

the algorithm will assign a higher weight to the KF with the

CV model, thus resulting in a less accurate prediction of the

target position. Hence, it is not appropriate to use only one

KF for estimating both the right and left turn rates.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed algorithm

as well as that of the existing linear IMM algorithms are

compared and evaluated using the following metrics.

The normalized position error (NPE) [18] is used to com-

pare the tracking accuracy of the position, and is given by

NPEk =

√

1
M

∑M
i=1 (ξ̂

i
k−ξ ik )

2+(η̂ik−ηik )
2

√

1
M

∑M
i=1 (z

i
ξ k

−ξ ik )
2+(ziηk

−ηik )
2

(31)

where ξ̂ ik and η̂ik are the estimated positions in the x and y

directions, respectively, while ξ ik and ηik are the corresponding

true positions, ziξ k
and ziηk are the measured positions, andM

is the number of runs performed in the Monte-Carlo simula-

tion. When the value of NPE is less than unity, the estimator

performance is acceptable; on the other hand, when it is not

less than unity, the estimator performance is not acceptable,

at this time step.

Another test to check whether the error of the state is

well-suited with the corresponding covariance matrix of the

estimated state or not, which is the average normalized esti-

mation error squared (ANEES) test [28]. It is given by

ANEESk =
1

Mnx

M
∑

i=1

(xik − x̂ik )
′(P̂ik )

−1(xik − x̂ik ) (32)

where xik and x̂ik are the true and estimated state vectors,

respectively, and P̂ik is the estimated error covariance matrix

of the target at the time step k in the Monte-Carlo run number

i, while nx is the dimension of the state vector. The logarith-

mic ANEES (LANEES) is given by

LANEESk = log10 (ANEESk ) (33)

is more expressive in terms of displaying the results [25].

When the value of LANEES is equal or less than zero,

the estimator is said to be consistent at this time step.

For all the algorithms, the Kalman filters are initialized by

using the first two consecutive measurements of the target

position [16]. Let the first two consecutive measurements

received be z1 and z2 given by

z1 = [zξ 1, zη1]
′ (34)

z2 = [zξ 2, zη2]
′ (35)

where zξ 1 and zξ 2 are the measured positions in the x direc-

tion at time k = 1, 2, respectively, while zη1 and zη2 are

the measured positions in the y direction at time k = 1, 2,

respectively. Then, the initial estimate state vector x̂o is given

by

x̂o = [zξ 2,
zξ 2 − zξ 1

T
, zη2,

zη2 − zη1
T

]′ (36)

where T is the sampling period. The initial error covariance

matrix P̂o is given by [16]

P̂o =









σ 2
C σ 2

C/T 0 0

σ 2
C/T 2σ 2

C/T 2 0 0

0 0 σ 2
C σ 2

C/T

0 0 σ 2
C/T 2σ 2

C/T 2









(37)

where σC is the standard deviation of the measurement noise.

Assuming that the target moves nearly in a straight-line at the

beginning of the tracking process, the initial mode probability

is given by [18]

µo =







0.6 striaght linemotion
0.4

r − 1
other motions

(38)

where r is the total number of filters in each of the four IMM

algorithms under consideration.

We use a sampling period T of 1 second, which conforms

to the sampling period of modern radar systems [11]. The

standard deviation σC of the measurement noise to be 10m.

Monte-Carlo simulations of 100 runs is performed assuming

the noise for all the algorithms to be the same, for fair

comparison.

The three algorithms that are used in the comparison are

described below

The first algorithm, which we denote by A1, is an IMM

algorithm that employs three filters; one of the filters uses the

CV model and the other two the CT model with known turn

rates of±2.5◦/s. The standard deviation for the process noise

for all the models is assumed to be 0.003m/s2. The transition

probability matrix of the algorithm is assumed as

PA1tr =





0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9



 (39)

The second algorithm, which we denote by A2, is the same

as A1 except for the turn rates of the CT models that is

assumed to be ±3.5◦/s.

The third algorithm [18], which we denote as A3, is also

an IMM algorithm but employs only two filters; one uses a

CV model, and the other a turning rate model that utilizes
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the target’s position, velocity, and acceleration to estimate the

target position, which we denote by 3CTR. The 3CTR model

is given by [18]

F3CTR =

[

Af 0

0 Af

]

(40)

where

Af =





1 ω−1 sin(ωT ) ω−2(1 − cos(ωT ))

0 cos(ωT ) ω−1 sin(ωT )

0 −ω sin(ωT ) cos(ωT )



 (41)

Its corresponding disturbance matrix can be expressed as

Ŵf =





0.167T 3 0

0.5T 2 0

T 0



 (42)

The initial value of the turn rate is assumed to be 0.2◦/s.

The standard deviation for the process noise for both the CV

model and the 3CTR model is assumed to be 0.1m/s2 and

10.5m/s2, respectively, and the transition probability matrix

of the algorithm to be [18]

PA3tr =

[

0.98 0.02

0.02 0.98

]

(43)

In order to compare the performance of our algorithm with

that of other two algorithms, we assume that the target moves

at a speed of 100m/s with white Gaussian atmospheric noise

having zero mean and standard deviation of 0.1m/s2 in both

the x and y directions. The parameter (standard deviation) of

the process noise is tuned to provide good tracking perfor-

mance for given statistics of the atmospheric and measure-

ment noises. In our proposed algorithm, it has been found that

the standard deviation of the process noise of 0.003m/s2 for

all the filters in all the scenarios for an atmospheric noise with

a standard deviation of 0.1m/s2 and 10m for the standard

deviation of measurement noise provides good performance.

However, if the levels of the atmospheric and measurement

noises change, the parameter of the process noise in the

proposed algorithm needs to be re-tuned. After having con-

sidered a number of probability transition matrices, it has

been found that the best transition probability matrix from

the point of view of both NPE and LANEES is given by

P
prop
tr =





0.9 0.05 0.05

0.1 0.8 0.1

0.1 0.1 0.8



 (44)

For details regarding the above choice, see Appendix B.

We choose the initial values of the turn rates of the two CT

models to be 0.2◦/s and −0.2◦/s.

Comparison is now carried out under five scenarios,

in which the targets performs various maneuvers. These sce-

narios along with the corresponding performance results in

terms of NPE and consistency, as measured by LANEES,

are shown in the sub-figures (a), (b), and (c), respectively,

in Fig. 4 to Fig. 8.

In the first scenario, the target starts with a straight-line

motion for 15 seconds, then performs the first maneuver to

FIGURE 4. The results of the first scenario for a target that performs turns
of 1.5◦/s, and 2.5◦/s. (a) True target trajectory. (b) Normalized position
error. (c) Consistency test.

the left with a turn rate of 1.5◦/s for 15 seconds. Afterwards,

it moves again in a straight-line motion for 10 seconds, and

then performs another turn to the left with a turn rate of 2.5◦/s

for 30 seconds. Finally, it goes in a straight-line motion for a
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FIGURE 5. The results of the second scenario for a target that performs
turns of 1.5◦/s, and 3◦/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

further 10 seconds. This target trajectory of this scenario is

shown Fig. 4a. The initial state vector is assumed to be

xo = [12500m, −70.5m/s, 10000m, −70.5m/s]′ (45)

FIGURE 6. The results of the third scenario for a target that performs
turns of 1.5◦/s, and 3.5◦/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

It is seen from Fig. 4b that all the four algorithms

exhibit acceptable performance in terms of NPE. However,

as expected, A1 exhibits the best performance, particularly at

the second maneuver in view of the fact that the algorithm
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design matches the target maneuver. In addition, it is seen

from Fig. 4c that throughout the tracking period, LANEES

value is always negative for all the algorithms and hence,

the algorithms are consistent, except for A3, which has a

positive value at the beginning of the second maneuver.

The second scenario is the same as the first one except that

the second turn rate of the target is increased to 3◦/s. This

scenario is depicted in Fig. 5a. From Fig. 5b, it is observed

that the proposed algorithm and A2 exhibit acceptable per-

formance throughout the tracking period. The performance

of A1 deteriorates, as expected, compared to its performance

in the previous scenario, since the turn rate of the target is

outside the range for which the algorithm is designed. Algo-

rithm A2 provides the best performance, as expected, since

the turn rate of the target is covered in the region for which the

algorithm is designed. The performance of A3 is acceptable

throughout the tracking period except at the beginning of

the secondmaneuver. As seen from Fig. 5c, the consistency of

A1 is not acceptable during the second maneuver, as is to be

expected. The other algorithms are consistent, but A3 again

has a positive value at the beginning of the second maneuver.

In the third scenario, the second turn rate is increased to

3.5◦/s. This scenario is shown in Fig. 6a. It is seen from

Figs 6b and 6c that A1 cannot track the second maneu-

ver. As expected, A2 gives the best performance, since the

turn rate of the target matches with one of the turn rates for

which the algorithm has been designed. The performance of

the proposed algorithm as well as that of A3 in terms of NPE

and LANEES are acceptable; however, as in the previous

scenarios, A3 exhibits positive value for LANEES at the

beginning of the second maneuver.

In the fourth scenario, the target performs two maneuvers

the first to the right at a turn rate of −3◦/s and the second to

the left at a turn rate of 2◦/s. This scenario is shown in Fig. 7a.

From Fig. 7b, it is seen that the performance of both A1 and

A2 is better than that of A3 and the proposed one. As is

to be expected, the performance of A1 is the best during

the second maneuver, since the target turn rate is close to

one of the turn rates employed in the design of the algorithm.

However, the performance of A2 is the best during the first

maneuver because the target turn rate is close to one of turn

rates used in the design of this algorithm. Both the proposed

algorithm and A3 exhibit acceptable performance in terms of

NPE; however, A3 has value of more than unity for NPE at

the beginning of the first maneuver. It is seen from Fig. 7c

that all the algorithms have acceptable consistency, except

that A1 and A3 have positive values for LANEES at the end

and the beginning of the first maneuver, respectively.

The fifth scenario is the same as the fourth scenario except

that the turn rate of the first maneuver is −4.5◦/s and that

of the second is 4.5◦/s. This scenario is depicted in Fig. 8a.

From Figs 8b and 8c it is seen that, as expected, both A1 and

A2 are unable to track the target for either of the maneuvers,

since the target turn rate is outside the ranges for which

these algorithms are designed. Both the proposed algorithm

and A3 show satisfactory performance in terms of the two

FIGURE 7. The results of the fourth scenario for a target that performs
turns of −3◦/s, and 2◦/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

metrics. However, A3 exhibits a positive value for LANEES

at the beginning of both maneuvers, whereas the proposed

algorithm has acceptable consistency throughout the tracking

process.
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FIGURE 8. The results of the fifth scenario for a target that performs turns
of −4.5◦/s, and 4.5◦/s. (a) True target trajectory. (b) Normalized position
error. (c) Consistency test.

It is noticed from these scenarios that the algorithms

A1 and A2 exhibit a performance better than that of A3 or

the proposed algorithm, when the target turn rate is covered

in the region for which these algorithms have been designed.

However, when the turn rate is outside the range, then their

FIGURE 9. The results of the first scenario for a target that performs turns
of −2.5◦/s, and 3.25◦/s. (a) True target trajectory. (b) Normalized position
error. (c) Consistency test.

performance may not be acceptable or they may even fail

to track the target. Further, it is observed that A3 and the

proposed algorithm exhibit acceptable performance in all the

scenarios. But, the performance of the proposed algorithm is
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FIGURE 10. The results of the second scenario for a target that performs
turns of 3◦/s, and −2◦/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

always better than that of A3 during all the scenarios in terms

of both NPE and the consistency, whereas the consistency of

A3 may have a positive value at the beginning of a maneuver,

when the turn rate is outside the range of ±2◦/s. Based on

these results, the proposed algorithm represents a promising

performance in realistic scenarios, where prior information

about the target turn rate is rarely available.

VI. CONCLUSION

In this paper, we have proposed an algorithm to track a

maneuvering target, when the information on the target turn

rate is not a priori known and the system information about

only the position of the target. The turn rate is obtained

adaptively based on the speed of the target and the radius

of the turn using the interacting multiple model framework.

We have proposed a simple method of computing the radius

of the turn using the previous three consecutive measure-

ments, assuming that the target performs a circular maneu-

ver. A detailed study has been carried out to choose an appro-

priate transition probability matrix, so that the performance of

the proposed algorithm is acceptable in terms of two metrics,

normalized position error (NPE) and the logarithmic average

normalized estimation error squared (LANEES). A compar-

ison of the proposed algorithm with two existing algorithms

has been carried out. One of these two algorithms assumes

that the target turn rate is known and the other one estimates

it during the tracking process. All the algorithms in this com-

parison use linear models, namely, the constant velocity (CV)

and coordinated turn (CT) models. Based on a number of sce-

narios with various target turn rates, it has been shown that the

proposed algorithm exhibits satisfactory performance in all of

the scenarios considered, and its performance is superior to

that of the adaptive algorithm. Further, when an unexpected

maneuver is performed by the target, and the target turn rate

is not covered by the algorithms that have been designed with

a prior information on the target turn rate, the performance of

these algorithms deteriorates or the algorithms may even fail

to track the target, whereas the proposed algorithm always

exhibits a satisfactory performance. These results foster the

use of the proposed algorithm in real life situations, where

the information on neither the target turn rate nor the range

rate is available to the tracking algorithm.

APPENDIX A

DETERMINATION OF THE RADIUS OF THE TURN USING

THREE MEASUREMENTS

In this derivation, we assume that the target performs a CT

motion during the maneuvering time on the circumference

of a circle with radius Rk , its center at (oξ k , oηk ) and the

target moves in a straight line motion before and after the

maneuver as shown in Fig. 2. Assume that three successive

measurements are received. These measurements are defined

as (ξk−2, ηk−2), (ξk−1, ηk−1), and (ξk , ηk ). Therefore, these

measurements will be at the same distance from the center of

the turn during the maneuver motion; thus

Rk−2 = Rk−1 = Rk (A.1)

Then, construct two equations such as

Rk−2 = Rk−1 (A.2)
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oηk =
(ξ2k−2 − ξ2k−1 + η2k−2 − η2k−1)(ξk−1 − ξk ) − (ξ2k−1 − ξ2k + η2k−1 − η2k )(ξk−2 − ξk−1)

2((ηk−2 − ηk−1))(ξk−1 − ξk ) − 2((ηk−1 − ηk ))(ξk−2 − ξk−1)
(A.7)

Rk−1 = Rk (A.3)

From (A.3) we get

(ξk − oξ k )
2+(ηk − oηk )

2 = (ξk−1 − oξ k )
2 + (ηk−1 − oηk )

2

(A.4)

or

oξ k =
(ξ2k−1 − ξ2k ) + (η2k−1 − η2k ) − 2oη(ηk−1 − ηk )

2(ξk−1 − ξk )

(A.5)

Similarly, from (A.2) we can derive that

oξ k =
(ξ2k−2 − ξ2k−1) + (η2k−2 − η2k−1) − 2oη(ηk−2 − ηk−1)

2(ξk−2 − ξk−1)

(A.6)

Hence, from (A.5) and (A.6) we get (A.7), as shown at the

top of this page.

Therefore, from (A.5) and (A.7), we get the center position

(oξ k , oηk ). We now calculate the radius Rk using (oξ k , oηk )

and (ξk , ηk ) as the last received information about the target.

Rk =

√

(ξk − oξ k )
2 + (ηk − oηk )

2 (A.8)

APPENDIX B

DETERMINATION OF THE STATE TRANSITION MATRIX

As mentioned earlier, the target has three modes of motion,

namely, straight-line motion (SL), left turning motion (LT),

and right turning motion (RT), which will be referred to as

modes 1, 2, and 3, respectively. The element pij, i 6= j in

the transition probability matrix Ptr represents the probability

of the target transiting from mode i to mode j, while pii
represents the probability of the target continuing to be in

mode i. It has been found in [2] that pii should be between

0.8 and 0.98 for good tracking results.

We assume that p22 and p33 should have values less than

p11 in view of the fact that we adaptively estimate ω and

the predicted position by the CT models are not precise. The

other elements of this matrix are adjusted such that the sum

of the elements in each row is equal to unity. A number

of different transition matrices and various scenarios with

different maneuvers have been considered, and it has been

found that the best performance in terms of both NPE and

LANEES metrics is given by

P1
tr =





0.9 0.05 0.05

0.1 0.8 0.1

0.1 0.1 0.8



 (B.1)

For purpose of illustration, we consider the following two

other transition matrices

P2
tr =





0.95 0.025 0.025

0.2 0.8 0

0.2 0 0.8



 (B.2)

and

P3
tr =





0.95 0.025 0.025

0.15 0.8 0.05

0.15 0.05 0.8



 (B.3)

and compare their performance with that of P1
tr under two

different scenarios.

The first scenario is shown in Fig. 9a. The target starts

with a straight-line motion for 15 seconds, then performs

the first maneuver to the right with a turn rate of −2.5◦/s

for 15 seconds. Afterwards, it moves again in a straight-line

motion for 10 seconds, and then performs another maneuver

to the left with a turn rate of 3.25◦/s for 30 seconds. Finally,

it goes in a straight-line motion for a further 10 seconds. The

initial state vector used is

xo = [12500m, −70.5m/s, 10000m, −70.5m/s]′ (B.4)

The algorithm with P1
tr shows a better tracking performance

during the maneuvers in terms of NPE, as shown in Fig. 9b,

compared to that of the algorithm with P2
tr or P

3
tr . It is clear

from Fig. 9c the algorithm with P1
tr preserves its consistency

throughout the tracking period, while the other two do not in

the sense that LANEES for these two becomes positive during

the maneuvers.

The second scenario is the same as the first one except for

the maneuvering turn rates; the first maneuver is performed

to the left with a turn rate of 3◦/s and the second maneuver

to the right with a turn rate of −2◦/s, as shown in Fig. 10a.

It is see from Fig. 10b and Fig. 10c that the conclusions made

regarding NPE and consistency of the algorithm with P1
tr , P

2
tr

and P3
tr for the previous scenario hold good for the present

scenario also.

From the above two scenarios, it is clear that the perfor-

mance of the algorithm in terms of both NPE and LANEES

is better with P1
tr as the transition probability matrix than with

P2
tr or P

3
tr . Similar performance of P1

tr has been observed in

other scenarios and with other transition probability matrices,

but are not reported here. In view of these findings, we choose

P1
tr as the proposed transition probability matrix and denote

it by P
prop
tr .
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