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ABSTRACT

The lifting scheme provides a general and flexible tool for the con-
struction of wavelet decompositions and perfect reconstruction fil-
ter banks. In this paper we propose an adaptive version of this
scheme which has the intriguing property that it allows perfect
reconstruction without any overhead cost. We restrict ourselves
to the update lifting step which affects the approximation signal
only. The update lifting filter is assumed to depend pointwise on
the norm of the associated gradient vector, in such a way that a
large gradient induces a weak update filter. Thus, sharp transitions
in a signal (e.g., edges in an image) will not be smoothed to the
same extent as regions which are more homogeneous.

1. INTRODUCTION

The past fifteen years have shown a steadily growing interest in
wavelet transforms and perfect reconstruction filter banks (PRFB)
for application in numerous areas in signal and image processing.
Today we know various construction techniques for PRFB’s [1].
One which is particularly interesting, not only because of its gen-
erality and flexibility, but also since it allows efficient implemen-
tations, is the lifting scheme due to Sweldens [2]. In the filter
bank literature, this scheme is also sometimes referred to as ladder
structure [3].

A severe limitation of most existing PRFB’s is that the filter
structure is fixed over the entire signal. In many applications it
is desirable to have a filter bank that somehow determines how to
shape itself for the data it analyzes. The idea of locally adapting
the filters is not new and, recently, it has been investigated by sev-
eral independent groups [4, 5, 6, 7]. In this paper we aim to provide
a generalized lifting scheme for building adaptive PRFB’s which
(and this is crucial) do not require any additional bookkeeping to
enable inversion. To the best of our knowledge, no such systematic
construction yet exists.

In [8] we present a more comprehensive discussion on adap-
tive update lifting. We refer also to that paper for technical proofs
of the results presented here, as well as for some additional exper-
imental results.

2. LIFTING SCHEME

In this section we briefly recall the basic idea behind the original
update lifting scheme illustrated in Fig. 1.

This scheme can be applied after making a decomposition of
the original signal x� into two other signals, the approximation
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Fig. 1. Classical lifting scheme.

signal x � X , and the detail signal y � Y . Such a decomposi-
tion may be the result of a particular wavelet transform, but also
of a subdivision of the signal’s domain into two disjoint subsets,
in general the even and odd samples. This latter decomposition
is sometimes referred to as the lazy wavelet transform. We dis-
tinguish two basic lifting steps, prediction and update lifting. A
general lifting scheme may comprise any sequence of basic lift-
ing steps being alternatively of prediction and update type. In this
paper we restrict ourselves to the update lifting step. The idea be-
hind update lifting is to apply an update operator U to y and to
combine it with x in order to get a “better” approximation signal
x� � x � U�y�. Here, the specific meaning of the adjective “bet-
ter” depends on the particular application. For example, we may
want to apply update lifting to obtain more vanishing moments for
the corresponding low-pass wavelet filter.

3. ADAPTIVE LIFTING

Whereas in the standard lifting scheme described in the previous
section, the operatorU and the addition� are fixed, in the adaptive
case the choice of these operations may be governed by the local
properties of the approximation signal x and the detail signal y. In
fact, in our approach this choice will be triggered by a so-called

decision map D � X � Y � D
Z, where D is the decision set. In

Fig. 2 we give a schematic representation of our lifting scheme.
For every possible outcome d � D of the decision map, we

have a different update operator Ud and addition �d. Thus, the
analysis step of our adaptive update lifting scheme looks as fol-
lows:

x
��n� � x�n��dn Udn�y��n� � (1)

where dn � D�x� y��n� is the decision at location n.
We denote the subtraction which inverts �d by �d. At syn-

thesis we can invert (1) by

x�n� � x
��n� �dn Udn�y��n� � (2)
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Fig. 2. Adaptive update lifting scheme.

Since dn � D�x� y��n�, this expression depends on the original
signal x. However, at synthesis, we do not know x but ‘only’ its
update x�. In general, this prohibits the computation of dn and in
such cases perfect reconstruction is out of reach. But, as we show
below, there exist a number of situations in which it is still possible
to recover d from a posteriori decision map D� which uses x� and
y as input. Obviously, D� needs to satisfy

D
��x�

� y� � D�x� y� � (3)

for �x� y� � X � Y and with x� given by (1). We refer to this
property as the decision conservation condition.

As we said before the decision criterion depends on local prop-
erties of the approximation and detail signal. Throughout most of
this paper we restrict ourselves to the case that d depends on s, the
l�-norm of the gradient. In Section 7, however, where we consider
quincunx sampling for 2D images, s will be the l�-norm for tech-
nical reasons. The assumption that the decision map is entirely
based on local gradient information enables us to build decompo-
sition schemes which behave different in the proximity of edges
than in more or less homogeneous regions.

Define the gradient vector at location n as �v�n�� w�n�� �
�x�n�� y�n� ��� y�n�� x�n��� Our previous assumptions yield
that

D�x� y��n� � d�s�n�� where s�n� � jv�n�j� jw�n�j � (4)

and d is a function which maps different gradient values to pos-
sibly different decisions, i.e., d � IR� � D. In the next two
sections we assume that d�s� � s, but for convenience we will
write d rather than s. Later on we consider the case where d can
take different values depending on a straightforward thresholding
criterion.

4. UPDATE FILTER

We assume that the update operator Ud is a 2-tap filter and that �d

is the standard addition followed by some scale factor. Now, the
analysis step in (1) is of the form

x
��n� � �dnx�n� � �dny�n� �� � �dny�n� � (5)

and the synthesis step (presumed that dn is known and �d �� � ) is
given by

x�n� �
�

�dn

�
x

��n�� �dny�n� ��� �dny�n�
�
� (6)

4.1. Lemma. In order to have perfect reconstruction it is neces-
sary that �d � �d � �d is constant for all d � D.

Henceforth we assume that

�d � �d � �d � � � for all d � D � (7)

In general, the condition in (7) is not sufficient. But we have es-
tablished the following result.

4.2. Proposition. Perfect reconstruction is guaranteed in each of
the following two cases:

�a� �d � � for all d � � and �d, �d are non-increasing with
respect to d.

�b� �d � � for all d � � and �d, �d are non-decreasing with
respect to d.

So far, we have only derived conditions which guarantee that
perfect reconstruction is possible, but we have not yet given the
corresponding algorithm. In the next section, we propose a general
reconstruction algorithm.

5. RECONSTRUCTION ALGORITHM

Let us simplify the notation by replacing the vector �x�n�� y�n�
��� y�n�� by �x� y� z�. For each index n, we can retrieve x as
follows:

1. Compute � � jz � yj.

2. Compute coefficients ��� ��� ��.

3. Compute the lower and upper limits Y and Z:

Y � min�y � ���z � y�� z � ���z � y��

Z � max�y � ���z � y�� z � ���z � y��

4. If x� � 	Y� Z
 put

� � �� and � � ��

else

	 compute d by solving

d 
 �d � jy � z � �x� � ��d � �d��y � z�j

	 put
� � �d and � � �d �

5. Compute x from

x �
x� � �y � �z

� � � � �
�

Note that the reconstruction algorithm implicitely computes
the decision map at every location.

6. THRESHOLD CRITERION

For some special cases we can have a much simpler reconstruction
algorithm. In particular, we now concentrate on the case where
the decision map is based on a simple threshold criterion. To be
precise, we assume that D � f�� �g and that the function d in (4)
has the form

d�s� �

�
�� if s � T

�� if s � T �
(8)
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where T is the gradient threshold. Instead of (8) we sometimes use
the shorthand notation

d�s� � 	s � T 
 (9)

where 	P 
 returns 1 if the predicate P is true and 0 if it is false.
Note that now it is not necessary to recover s at the synthesis step
but rather if s was smaller or equal than the threshold T , or if
s was larger than T . In fact, we are interested in finding a second
threshold value T � such that the decision at synthesis d��s��, which
must equal the decision at analysis, i.e.,

d
��s�� � d�s� �

can also be written as a threshold criterion, i.e.,

d
��s�� � 	s�

� T
�
 � (10)

where s� is the l�-norm of the gradient at synthesis:

s
� � jx� � yj� jz � x

�j �

If we restrict ourselves to T � � T , we can state the following
result

6.1. Proposition. We have d��s�� � d�s� with T � � T if and only
if

� � ��� �� � � and either ��� �� � � or ��� �� � � �

If the conditions of Proposition 6.1 hold, then the reconstruc-
tion algorithm consists of the following steps:

1. Compute s� � jx� � yj� jz � x�j.

2. Let d � 	s� � T 
 and put

� � �d and � � �d �

3. Compute x from

x �
x� � �y � �z

�� � � �
�

Additional results can be found in [8].

7. QUINCUNX LIFTING FOR IMAGES

In this section we propose a 2-dimensional quincunx version of
the threshold-based adaptive scheme. Now, a sample x�n� is up-
dated with its four neighbors y�ni�,where ni, i � �� � � � � �, are
the indexes of the north, south, east and west nearest samples. For
simplicity, we assume they equally contribute to the update, and
hence the analysis step looks as follows:

x
��n� � �dnx�n� �

��� �dn�

�

�X

i��

y�ni�� (11)

By means of example, take �� � �

�
and �� � �, and consider s to

be the l�-norm of the gradient, that is,

s � �
�X

i��

jx�n�� y�ni�j
������

The reason for choosing the l�-norm is a technical one. It guaran-
tees that the gradient s� after the update lifting step satisfies s� � s
if s � T , i.e., d � �.

8. RESULTS AND DISCUSSION

We first apply the threshold-based adaptive scheme to the signal
in Fig. 3(a). We choose �� � �� � �

	
and �� � �� � �. Thus the

resulting low-pass filters are the average filter for d � �, and the
identity for d � �. The update step is followed by a fixed predic-
tion step of the form y��n� � y�n�� �

�
�x��n��x��n����� The ap-

proximation and detail signals, x� and y�, are depicted in Fig. 3(c)-
(d), where we have taken a threshold T � ���. The correspond-
ing decision map is shown in Fig. 3(b). For comparison we show
in Fig. 3(e)-(h) the approximation and detail signals obtained for
both non-adaptive cases corresponding with d � � and d � �.
Fig. 3(e)-(f) correspond with d � �, that is, an average filter, and
Fig. 3(g)-(h) correspond with d � �, i.e., the lazy wavelet. One
can see that the adaptive scheme performs as an average filter ex-
cept for those locations where the gradient is large (i.e., where it
exceeds the threshold T ); in these cases it ‘recognizes’ that there
is an edge and does not apply any smoothing. As a result, the
detail signal is not double-peaked in the adaptive case depicted
in Fig. 3(d), unlike the detail signal in Fig. 3(f) where averaging
takes place everywhere. By varying the threshold T , the resulting
system can be tuned to one or another behavior.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. (a) Original signal; (b) Decision map for T=0.2; (c) Ap-
proximation for T=0.2; (d) Detail for T=0.2; (e) Approximation
for fixed d=0 (average); (f) Detail for fixed d=0 (average); (g) Ap-
proximation for fixed d=1 (lazy); (h) Detail for fixed d=1 (lazy).

In Fig. 4 we show some experiments for quincunx lifting of
images as proposed in Section 7. The original image is depicted
in Fig. 4(a). The decisions maps in Fig. 4(b), (g), and (h), show
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how the amount of smoothing can be tuned by changing the thresh-
old T . The approximation and detail signals for T � 
� are shown
in Fig. 4(c)-(d). We can compare them with the ones obtained for
the fixed averaging filter in Fig. 4(e)-(f). The figure shows that the
edges are better preserved in the adaptive case.

In this preliminary investigation, we have introduced a new
framework for an adaptive lifting scheme. Our scheme is non-
redundant in the sense that no bookkeeping is required. Obviously,
this scheme needs further investigation to see if the idea is fruit-
ful. Preliminary experiments seem to indicate that these adaptive
decompositions yield detail signals with lower entropies than in
the non-adaptive case. The results obtained so far suggest that our
non-redundant adaptive schemes may be useful for compression,
and we intend to investigate this more thoroughly in the future. In
the literature there exist several wavelet decomposition schemes
which, in various ways, try to take into account discontinuities
(e.g., singularities in signals, edges in images) [5, 6, 9]. It is im-
portant to understand the similarities and differences between all
these techniques. Finally, we want to examine cases where the
linear update (and prediction) filters can be replaced by morpho-
logical ones [10].
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Fig. 4. (a) Original image; (b) Decision map for T=50; (c) Approx-
imation for T=50; (d) Detail for T=50; (e) Approximation for fixed
d=0 (average); (f) Detail for fixed d=0 (average); (g) Decision map
for T=30; (h) Decision map for T=150.
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