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Mechanical arms have been widely used in the industry for many decades. They have played a
dominant role in factory automation. However the control performance, or even system stability,
would be deteriorated if some of the actuators fail during the operations. Hence, in this study,
an adaptive variable structure scheme is presented to solve this problem. It is shown that, by
applying the control mechanism proposed in this paper, the motion of robot systems can maintain
asymptotical stability in case of actuators failure. The control algorithms as well as the convergence
analysis are theoretically proved based on Lyapunov theory. In addition, to demonstrate the
validity of the controller, a number of simulations as well as real-time experiments are also
performed for Pendubot robot and Furuta robot systems. The results confirm the applicability
of the proposed controller.

1. Introduction

Stabilization and tracking control problems of the nonlinear uncertain underactuated systems
are difficult to be dealt with because of their fewer independent control actuators than the
degrees of freedom to be controlled. In addition to the lack of enough control inputs for
system’s degrees of freedom, the dynamics of underactuated mechanical systems is generally
characterized by uncertain nonholonomic constraints. And hence, the underactuated system
is always a challenging problem in the field of control applications. Robot manipulators have
been ubiquitously equipped in many industrial plants for manufacturing automation and
most of them were fully actuated. In general, the controller is designed for fully actuated
systems based on the properties such as linear controllability, feedback linearizability,
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and passivity. However, actuators failure might occur due to infrequent maintenance or
limited life cycle, which could cause severe damages to the operators and products. In
general, the parts with actuator failures would be unactuated. The underactuated system
presents challenging control program since the control design must typically exploit some
coupling between the unactuated and the actuated states to achieve the control objective. In
this paper, an adaptive variable structure control is presented to obtain globally asymptotical
stabilization for a class of underactuated mechanical systems.

Underactuated systems are known as the systems with fewer independent control
actuators than the degree of freedom to be controlled. The mathematical representation can
be as below:

q̈ = f
(
q, q̇

)
+ b

(
q
)
u. (1.1)

The system is said to be underactuated if the system satisfies the condition rank(b) < dim(q),
where q is the state vector of generalized coordinates on the configuration manifold, q̇ is the
generalized velocity vector, and b(q) is the input state vector.

The underactuated system generally exhibits nonminimum phase [1] and is subject
to nonholonomic constraints [2]. In contrast to fully actuated systems controller design,
the underactuated system is more difficult with less independent control actuators than
the degrees of freedom to be controlled. Tracking control of nonminimum phase systems
is a highly sophisticated problem encountered in many practical engineering applications
such as rocket control [3], aircraft control [4], flexible link manipulator control [5], and
inverted pendulum systems [6]. The nonminimum phase property has long been recognized
to be a major obstacle in many control problems. It is well known that unstable zeros
cannot be moved with state feedback while the poles can be arbitrarily placed (if completely
controllable). For this reason, a growing interest is arising for the design of automatic
control systems for the underactuated systems. A lot of literature discussing the control
of underactuated systems models has been published in the past years. Wang and other
researchers [7, 8] presented a new sliding mode controller for second order underactuated
systems. This paper has shown that all sliding surfaces are asymptotically stable. In [9, 10]
the authors introduce an IDA-PBC approach to the underactuated mechanical systems. In
[11, 12] some nonlinear control schemes, such as feedback linearization, inverse dynamics,
and adaptive controller design, have been proposed for the control of underactuated systems.
In order to achieve better performance, possibly unknown dynamics must also be considered
in control design. In [13], the sliding mode control is proposed to achieve the robustness
of many systems such as power systems, electronic motors, and robot manipulators. In
[14], the paper provides the state of the art of recent developments in sliding mode
control systems with soft computing, examining key technical research issues and future
perspectives. In [15], a nonlinear control design is presented, but it requires the solution of
a Hamilton-Jacobi type differential equation. It renders the solutions to achieve stability of
the system robustly asymptotically stable. The robust backstepping method is utilized to find
a stabilizing controller in [16]. The adaptive backstepping controller evolves from [17] with
unknown parameters appearing linearly in the state equation, and adaptation mechanism is
included to cope with unknown parameters. In [18], the controller is designed for a general
class of input-output linearizable systems without zero dynamics, which can be extendable
to minimum phase systems. The control scheme uses the backstepping design technique
and guarantees semiglobal stability. In paper [19], an adaptive fuzzy output feedback
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control approach is proposed for single-input–single-output nonlinear systems without the
measurements of the states. It is shown that by applying the proposed adaptive fuzzy
control approach, the closed-loop systems are semiglobally uniformly ultimately bounded.
In [20], the backstepping technique and adaptive fuzzy backstepping-control approaches for
a class of strict-feedback large-scale nonlinear systems with unmodeled dynamics, dynamic
disturbances, unknown high-frequency gain signs, and unmeasured states are designed.
It has been proved that the proposed adaptive fuzzy control approach can guarantee the
uniformly ultimate boundedness of all the signals in the closed-loop system. In [21] a robust
adaptive multiestimation-based scheme has been designed for robotic manipulators with
force reflection and uncertainties. The closed-loop stability is guaranteed if a minimum
residence time, which might be updated online when unknown, between different controller
parameterizations is respected. In paper [22], the stable adaptive fuzzy sliding mode
controller is developed for nonlinear multivariable systems with unavailable states. It is
proved that uniformly asymptotic output feedback stabilization can be achieved. In [23]
the authors utilize the coupled sliding mode control concept to achieve the stabilization of
inverted pendulum systems. By properly designing the control parameters, the resulting zero
dynamics is proved to be semiglobally stable in the presence of bound disturbance.

The paper is organized as follows. In Section 2, an adaptive variable structure control
scheme for a class of underactuated mechanical systems is developed. It is verified by
computer simulations as well as experiments for the Pendubot system and the Furuta
pendulum system, as shown in Sections 3 and 4, respectively. It is observed from both the
simulations and the experiments that the effectiveness of the designed controller can be
confirmed. Finally, some conclusions are given in Section 5.

2. Adaptive Variable Structure Controller Design

2.1. Problem Formulation

For convenience, the dynamic equations of a general underactuated mechanical manipulator
system can be expressed as

H
(
q
)
q̈ +D

(
q, q̇

)
q̇ +G

(
q
)
= u, (2.1)

where

q =
[
θ1 θ2

]T
,

u =

[
τ
0

]
,

(2.2)

where q is a vector of n joint displacement, u is the applied torque vector, H(q) ∈ Rn×n is
the effective moment of inertia matrix which is symmetric and positive definite, θ1 ∈ Rm is
defined as the actuated joint, θ2 ∈ Rn−m denotes the unactuated joint, and m is the number
of actuated joint. The centripetal and Coriolis terms collected in the vector D(q, q̇)q̇ and G(q)
represent the gravitational forces.

The dynamic system given in (2.1) exhibits the following properties that are utilized
in the subsequent control development and stability analysis.
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(P1) The property of H(q) matrices is positive definite and satisfies the following
inequalities:

Q1‖Ψ‖2 ≤ ξTH
(
q
)
ξ ≤ Q2‖Ψ‖2, ∀Ψ ∈ Rn, (2.3)

where Q1, Q2 ∈ R are positive constants.

(P2) The property of skew-symmetric matrices satisfies the following relationship:

ΨT

(
1

2
Ḣ
(
q
)
−D

(
q, q̇

))
Ψ = 0, ∀Ψ ∈ Rn. (2.4)

Equivalently, (2.1) can be rewritten in following partitioned form:

[
h11 h12

h21 h22

][
θ̈1
θ̈2

]
+

[
d11 d12

d21 d22

][
θ̇1
θ̇2

]
+

[
g1
g2

]
=

[
τ
0

]
. (2.5)

The control objective in this section is to, for all arbitrary initial conditions, ensure the as-
ymptotical stability of error signal, that is, limt→∞‖e‖ = 0. To achieve the tracking control
objective, the controller is based on the assumption that q(t), q̇(t) are measurable.

The position tracking error is defined as follows:

S = ė +Ke =

[
ė1 + k1e1
ė2 + k2e2

]
=

[
s1
s2

]
, (2.6)

where K =
[
k1Im×m 0

0 k2I(n−m)×(n−m)

]
with k1, k2 are some designated positive constants. Ii×i is i × i

identity matrix, e = [ e1
e2 ] =

[
θ1
θ2

−
−

θd1
θd2

]
∈ Rn, and θd

1 and θd
2 are the desired trajectories with

‖θd
1 ‖∞ ≤ ε1 and ‖θd

2 ‖∞ ≤ ε2, where ε1, ε2 are some bound positive values and the design of θd
1

and θd
2 has to satisfy the zero dynamics h21θ̈1d + h22θ̈2d + d21θ̇1d + d22θ̇2d + g2 = 0. In general,

the desired trajectories are often chosen to be constant. Then, in view of (2.5), it is readily
obtained that

[
h11 h12

h21 h22

][
ṡ1
ṡ2

]
+

[
d11 d12

d21 d22

][
s1
s2

]
+

[
k3 0
0 k4

][
s1
s2

]
=

[
W1φ1 + k3s1 + τ
W2φ2 + k4s2

]
(2.7)

or more compactly

H
(
q
)
Ṡ +D

(
q, q̇

)
S +KS =

[
W1φ1 + k3s1 + τ
W2φ2 + k4s2

]
, (2.8)
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where

W1φ1 = h11

(
−θ̈d

1 + x1ė1
)
+ h12

(
−θ̈d

2 + x2ė2
)
+ d11

(
−θ̇d

1 + x1e1
)
+ d12

(
−θ̇d

2 + x2e2
)
− g1,

W2φ2 = h21

(
−θ̈d

1 + x1ė1
)
+ h22

(
−θ̈d

2 + x2ė2
)
+ d21

(
−θ̇d

1 + x1e1
)
+ d22

(
−θ̇d

2 + x2e2
)
− g2,

(2.9)

K =
[
k3Im×m 0

0 k4I(n−m)×(n−m)

]
and k3 ∈ R, k4 ∈ R are some positive constants.

2.2. Controller Design

In this subsection, an adaptive variable structure control scheme is presented to account for
parameter uncertainty existing in W1φ1 and W2φ2. From the system dynamics of a robot
manipulator with revolute joints, it is well known and can be easily verified that

∥∥W1φ1

∥∥ ≤
l∑

i=1

δiQi

(
q, q̇

)
,

∥∥W2φ2

∥∥ ≤
r∑

j=1

σjQj

(
q, q̇

)
,

(2.10)

where δi, σj , i = 1, 2, . . . , l, j = 1, 2, . . . , r are some unknown positive constants, and Qi, Qj are
known positive functions of q and q̇.

Based on the development of the aforementioned error dynamics, the control law is
presented as follows:

τ = −k3s1 − sgn(s1)

(
l∑

i=1

δ̂iQi

(
q, q̇

)
)

− sgn(s1)‖s2‖|ξ| − k5 sgn(s1)‖s2‖, (2.11)

ξ̇(t) = ξ1/(2n+1)

⎡
⎣−k4‖s2‖2 − ‖s2‖

m∑

j=1

σ̂jQj

(
q, q̇

)
⎤
⎦, (2.12)

where n is some positive integer chosen by designer, kl, l = 3, 4, 5 are some positive constants,
and sgn(·) is the sign function, which is defined as

sgn(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 x > 0

0 x = 0

−1 x < 0.

(2.13)
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In (2.11) and (2.12) δ̂i, σ̂j denote the parameter estimates, and the estimation errors are de-
fined as follow:

δ̃i = δi − δ̂i, ∀i = 1, . . . , l,

σ̃j = σj − σ̂j , ∀j = 1, . . . , r.
(2.14)

Let the parameter estimation laws be designed as

˙̂δi = Γai‖s1‖Qi

(
q, q̇

)
, (2.15)

˙̂σj = Γbj‖s1‖Qj

(
q, q̇

)
, (2.16)

where Γai ∈ R, Γbj ∈ R, (for all i = 1, 2, . . . , l, j = 1, 2, . . . , r) are positive definite gain matrices.

Remark 2.1. From the robustness point of view, it would be better if additional feedback term
−k5 sgn(s1)‖s2‖ is included in the control law (2.11). With such an inclusion, the stabilization
of θ2 subject to external disturbance can also be maintained as the θ1 arrived at zero. This can
be easily checked from the stability proof given in the theorem.

In the following theorem, it is shown that, by applying the adaptive variable structure
controller designed above, the asymptotical stabilization of overall closed-loop system can be
achieved.

Theorem 2.2. Consider the robot system (2.5) with imprecise system parameters. By applying
the control laws (2.11)-(2.12) and estimate laws (2.15)-(2.16), the objective of global asymptotical
stabilization can be achieved, that is, all signals inside the close-loop system are bounded and
e1, e2 → 0 asymptotically.

Proof. To prove the theorem, let the Lyapunov function candidate be defined as

V =
1

2
STHS +

1

2

l∑

i=1

δ̃T
i Γ

−1
ai δ̃i +

1

2

r∑

j=1

σ̃T
j Γ

−1
bj σ̃j +

2n + 1

2n
ξ2n/(2n+1) (2.17)

and take the time derivative of V to get

V̇ = STHṠ +
1

2
STḢS +

l∑

i=1

δ̃T
i Γai

˙̃δi +
r∑

i=1

σ̃T
j Γbj

˙̃σiξ
−1/(2n+1)ξ̇

= ST

{
−DS +

[
τ +W1φ1

W2φ2

]}
+
1

2
STḢS +

l∑

i=1

δ̃T
i Γai

˙̃δi +
r∑

j=1

σ̃T
j Γbj

˙̃σi + ξ−1/(2n+1)ξ̇
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=
1

2
ST{Ḣ − 2D

}
S + sT1 τ + sT1W1φ1 + sT2W2φ2 +

l∑

i=1

δ̃T
i Γai

˙̃δi +
r∑

j=1

σ̃T
j Γbj

˙̃σi + ξ−1/(2n+1)ξ̇

= sT1 τ + sT1W1φ1 + sT2W2φ2 +
l∑

i=1

δ̃T
i Γai

˙̃δi +
r∑

j=1

σ̃T
j Γbj

˙̃σi + ξ−1/(2n+1)ξ̇.

(2.18)

In the above derivations, (2.4) has been applied. Then, by using the boundedness of parame-
ter uncertainties (2.10), the time derivative of V can be further expressed as

V̇ ≤ sT1 τ + ‖s1‖
∥∥W1φ1

∥∥ + sT2W2φ2 +
l∑

i=1

δ̃T
i Γai

˙̃δi +
r∑

j=1

σ̃T
j Γbj

˙̃σi + ξ−1/(2n+1)ξ̇

≤ sT1 τ + ‖s1‖
l∑

i=1

δiQi

(
q, q̇

)
+ sT2W2φ2 +

l∑

i=1

δ̃T
i Γai

˙̃δi +
r∑

j=1

σ̃T
j Γbj

˙̃σi + ξ−1/(2n+1)ξ̇.

(2.19)

Thus, by applying the designed controller (2.11)-(2.12) and the adaptive laws (2.15)-(2.16),
the following inequality holds:

V̇ ≤ − k3‖s1‖
2 + ‖s1‖‖s2‖‖ξ‖ + ‖s2‖

∥∥W2φ2

∥∥ +
r∑

j=1

σ̃T
j Γbj

˙̃σi + ξ−1/(2n+1)ξ̇ − k5|s1|‖s2‖

≤ − k3‖s1‖
2 − ‖s1‖‖s2‖‖ξ‖ + ‖s2‖

m∑

j=1

δjQj

(
q, q̇

)
+

r∑

j=1

σ̃T
j Γbj

(
−Γbj‖s2‖Qj

(
q, q̇

))

+ ξ−1/(2n+1)ξ̇ − k5|s1|‖s2‖

≤ − k3‖S1‖
2 − ‖S1‖‖S2‖‖ξ‖ + ‖S2‖

m∑

j=1

δjQj

(
q, q̇

)
+

r∑

j=1

σ̃T
j Γbj

(
−Γbj‖S2‖Qj

(
q, q̇

))

+

⎡
⎣−k4‖S2‖

2 − ‖S2‖
m∑

j=1

σ̂Qj

(
q, q̇

)
⎤
⎦ − k5|s1|‖s2‖

≤ − k3‖S1‖
2 − k4‖S2‖

2 − ‖S1‖‖S2‖‖ξ‖ − k5|s1|‖s2‖

≤ − ‖S‖TK‖S‖,

(2.20)

where K =
[
k3 0
0 k4

]
. Thus, it is clear that V̇ (t) ≤ 0 if k3, k4, k5 > 0. Then, according to Barbalat’s

lemma [22], it is readily obtained that S → 0 as t → ∞ asymptotically and, hence, e, ė → 0
as t → ∞.

In the next section, the Pendubot system and the Furuta pendulum system are studied
to verify the above theoretical results.
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Figure 1: The Pendubot system.

3. Applications to the Pendubot System

In this section, the adaptive sliding mode control scheme developed previously is applied to
the Pendubot system. The Pendubot system is a two link planner manipulator in which the
first link is driven by an actuator but the second link is unactuated, as shown in Figure 1. Link
1 and link 2 are connected by revolute joint, and link 1 can freely rotate about 360 degrees in
the horizontal plane. In this section, the kinematic and dynamic models of a Pendubot system
are presented.

The equation of motion is derived using Lagrange’s equation [24] as

d

dt

(
∂L

∂q̇

(
q, q̇

))
−
∂L

∂q̇

(
q, q̇

)
= τ. (3.1)

The Lagrange’s function is given by

L = K − P, (3.2)

where K is the kinetic energy of the system and P is The potential energy of the system.
From the Lagrange’s equation, it is shown that the equation of motion for this system

can be represented in the following form:

M
(
q
)
q̈ + C

(
q, q̇

)
q̇ = τ, (3.3)

M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the centripetal-Coriolis matrix.
Where q(t) ∈ R2 is the joint position defined as follows:

q =
[
θ1 θ2

]
, (3.4)
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where θ1 ∈ R1 and θ2 ∈ R1 denote the angles of link 1 and link 2, respectively. M(q) ∈ R2×2,
C(q, q̇) ∈ R2×2, and control input vector τ are defined as follows:

q =

[
θ1
θ2

]
, M

(
q
)
=

[
m11 m12

m21 m22

]
, C

(
q, q̇

)
=

[
c11 c12
c21 c22

]
, τ =

[
u
0

]
, (3.5)

where

m11 = m1c1
2 +m2l1

2 +m2c2
2 + 2m2l1c2 cos θ2 + J1 + J2,

m12 = m2c2
2 +m2l1c2 cos θ2 + J2,

m21 = m2c2
2 +m2l1c2 cos θ2 + J2,

m22 = m2c2
2 + J2,

c11 = −m2l1c2θ̇2 sin θ2,

c12 = −m2l1c2θ̇1 sin θ2 −m2l1c2θ̇2 sin θ2,

c21 = m2l1c2θ̇1 sin θ2,

c22 = 0.

(3.6)

From (3.1), as mentioned above, the inertia and centripetal-Coriolis matrices satisfy the fol-
lowing condition:

ΨT

(
1

2
Ṁ
(
q
)
−D

(
q, q̇

))
Ψ = 0, (3.7)

where

Ṁ
(
q
)
− 2D

(
q, q̇

)
=

[
0 m2l1c2 sin q2

(
2q̇1 + q̇2

)

−m2l1c2 sin q2
(
2q̇1 + q2

)
0

]
(3.8)

which is a skew-symmetric matrix. The system variables and parameters are defined in
Table 1.

As described in the preceding section, the adaptive variable structure controller will
be adopted to drive the first link to the desired position, and keep the second link to settle
down at the original angle. From the dynamic equation shown above, the following bounding
assumption can be made forW1φ1 and W2φ2:

∥∥W1φ1

∥∥ ≤ δ1
(
θ̇2
1 + θ̇2

2

)
+ δ2

(
e1

2 + e2
2
)
+ δ3,

∥∥W2φ2

∥∥ ≤ σ1

(
θ̇2
1 + θ̇2

2

)
+ σ2e1

2 + σ3,

(3.9)
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Table 1: Definitions of system variables and parameters.

m1: mass of link 1 (0.056 kg)

m2: mass of link 2 (0.022 kg)

l1: length of link 1 (0.16m)

l2: length of link 2 (0.16m)

c1: distance to link 1 center of mass (0.08m)

c2: distance to link 2 center of mass (0.08m)

J1: inertia of link 1 (0.001569 kg·m2)

J2: inertia of link 2 (0.001785 kg·m2)

θ1: displacement of link 1

θ̇1: angular velocity of link 1

θ2: displacement of link 2

θ̇2: angular velocity of link 2

τl: applied torque

where δi, i = 1, 2, 3 and σj , j = 1, 2, 3 are unknown positive bounded constants. Before
proceedingwith the adaptive slidingmode control design, let the parameter estimation errors
be defined as

δ̃i = δi − δ̂i, i = 1, 2, 3,

σ̃j = σj − σ̂j , j = 1, 2, 3.
(3.10)

From the error dynamics (2.7), the adaptive controllers can be designed as

u = −k3s1 − sgn(s1)
(
δ̂1
(
θ̇2
1 + θ̇2

2

)
+ δ̂2

(
e21 + e22

)
+ δ̂3

)
− sgn(s1)|s2||ξ| − k5 sgn(s1)‖s2‖,

ξ̇(t) = ξ1/(2n+1)
[
−k4s

2
2 − |s2|

(
σ̂1

(
θ̇2
1 + θ̇2

2

)
+ σ̂2e

2
1 + σ̂3

)]
,

(3.11)

with the adaptive laws

˙̂δ1 = Γ11|s1|
(
θ̇2
1 + θ̇2

2

)
, (3.12)

˙̂δ2 = Γ12|s1|
(
e21 + e22

)
, (3.13)

˙̂δ3 = Γ13|s1|, (3.14)

˙̂σ1 = Γ21|s2|
(
θ̇2
1 + θ̇2

2

)
, (3.15)

˙̂σ2 = Γ22|s2|e
2
1, (3.16)

˙̂σ3 = Γ23|s2|, (3.17)

where Γij , i = 1, 2, j = 1, 2, 3 are positive constants.
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Figure 2: Link 1 angular displacement with adaptive algorithm.

3.1. Simulation Results

A number of simulations are performed for the adaptive sliding mode schemes proposed in
this section. In this simulation, the initial positions of link 1 and link 2 are identically 0◦. The
desired final position for link 1 is θd

1 = 45◦ and for link 2 is θd
2 = 0◦, respectively.

The simulation results are shown in Figures 2–6. Figures 2 and 3 show the link 1 output
angle and link 2 output angle responses, respectively. It is seen that link 1 and link 2 can
converge to the target in 16 seconds. Figure 4 shows the convergence of the adaptive laws,
while Figure 5 shows the control adaptation gain parameters ξ(t). Finally, the control input is
shown in Figures 6 and 12. The control gains used in the simulation are chosen to be k1 = 0.3,
k2 = 20, k3 = 1.3, and k4 = 70, and the adaptive gains are chosen as Γ11 = 0.1, Γ12 = 1, Γ13 =

0.01, Γ21 = 1, Γ22 = 1, and Γ23 = 1.

3.2. Experimental Results

To validate the practical application of the proposed algorithm experiments on the
underactuated mechanical system apparatus is also conducted, as shown in Figure 7. In the
mechanical system the actuator is dc motor mounted on the arm (link 1) and coupled to
links through the power MOSFET chopper amplifier. A 500 pulse/rev shaft encoder is used
to sense the arm (link 1) position and pendulum position or link 2 position. A 12 bit A/D
converter provides the required signal. The microcomputer used is a INTEL-P4-based system
with 3GHz clock.

To demonstrate the effectiveness of our proposed controller, a comparison with the
results in [23] is made. The controller gains are chosen to be k = 10, cx = 1, and cθ = 2
and the results are depicted in Figures 8 and 9. In the experiment, the desired final position
for link 1 is θd

1 = 45◦, and for link 2 is θd
2 = 0◦. From Figure 10 it is seen that link 1 could

converge to 23 degrees at nearly 5 seconds but link 2 couldn’t keep at 0 degree as indicated
in Figure 11. From the experimental results, it is clearly observed that even though the exact
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Figure 3: Link 2 angular displacement with adaptive algorithm.
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Figure 4: Adaptive control gains estimates for the controller.

dynamics of the nonlinear model is available but with the system parameter unknown, the
control precision is still a problem needed to be solved.

For the experiment by using the controller proposed in this paper, the same conditions
as above are set, θd

1 = 45◦ for link 1 and θd
2 = 0 for link 2. For the controller proposed in this

paper, the following controlled gains are chosen for experiments: k1 = 10, k2 = 4, k3 = 1,
and k4 = 1, and the adaptive gains are set to be Γ11 = Γ12 = Γ13 = Γ21 = Γ22 = Γ23 = 0.1.
Figures 10 and 11 depict the position response of link 1 and link 2, and from the figures it
is observed that link 1 converges to the target nearly in 2 seconds, while the convergence of
link 2 is completed in 6 seconds. The control input is described in Figure 14. It is seen that the
adaptive controller can provide stable and better performance over awide range of parameter
variations in comparison with the conventional sliding mode controller.
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4. Applications to the Furuta Pendulum System

In this section, the Furuta pendulum system [1] is considered for demonstration. Figure 13
illustrates the mechanical system.

The equation of motion can be written in the following general form:

M
(
q
)
q̈ +D

(
q, q̇

)
q̇ +G

(
q
)
=

[
τl
0

]
, (4.1)
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Figure 7: Experimental setup for Pendubot system.
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Figure 11: Link 2 angular displacement with adaptive algorithm.

where

M
(
q
)
=

[
I0 +m1

(
L2
0 + l21sin

2θ2
)

m1L0l1 cos θ2

m1l1L0 cos θ2 J1 +m1l
2
1

]
,

D
(
q, q̇

)
=

⎡
⎢⎢⎣

1

2
m2l

2
1θ̇2 sin(2θ2) −m1l1L0θ̇2 sin θ2 +

1

2
m1l

2
1θ̇1 sin(2θ2)

−
1

2
m1l

2
1θ̇1 sin(2θ2) 0

⎤
⎥⎥⎦,

G
(
q
)
=

[
0

−m1l1g sin θ2

]
.

(4.2)
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Figure 13: The Furuta pendulum system.

Form (3.14)-(3.15), it is straightforward to show that the following relationship is satisfied:

ΨT

(
1

2
Ṁ
(
q
)
−D

(
q, q̇

))
Ψ = 0. (4.3)

Clearly, Ṁ(q)−2D(q, q̇) =
[

0 −m1l1(l1 sin(2θ2)θ̇1)−L0 sin θ2θ̇2
m1l1(l1 sin(2θ2)θ̇1)−L0 sin θ2θ̇2 0

]
is a skew-symmet-

ric matrix. The system variables and parameters are defined in Table 2.



Mathematical Problems in Engineering 17

Table 2: Definitions of system variables and parameters for Furuta pendulum system.

I0: inertia of the arm (I0 = 0.001569 kg·m2)

L0: total length of the arm (L0 = 0.16m)

m1: mass of the arm (m1 = 0.056 kg)

m2: mass of the pendulum (m1 = 0.022 kg)

l1: distance to the center of gravity of the pendulum (l1 = 0.08m)

J1: inertia of the pendulum around its center of gravity (J1 = 0.0001785 kg·m2)
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Figure 15: Link 1 angular displacement with adaptive algorithm.

Stage 1 (Swing up the Pendulum). The control objective here is to move the pendulum from
the stable equilibrium position to the unstable equilibrium position. In order to balance the
pendulum to the unstable equilibrium point, a swing-up controller should be first applied
to make the pendulum inside some acceptable region around the vertical line. Then, the
adaptive controller will be activated to keep the pendulum upright at the unstable equilib-
rium point.
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Figure 17: Link 2 angular displacement with adaptive algorithm.

The swing-up control law can be written as

us(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, t = 0,

c1, ti+1 > ti > 0,

−c2, ti+2 > ti+1,

(4.4)

where c1, c2 are positive constants.
As shown in Figure 14, when the pendulum is within ±0.8 rad of the vertical position,

the balancing controller is activated. Otherwise, the system operates under swing-up control.
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Stage 2 (Balance the Pendulum). Form the dynamic equation shown above, it is found that
bounds of W1φ1 and W2φ2 can be written as

∥∥W1φ1

∥∥ ≤ δ1
(
θ̇2
1 + θ̇2

2

)
+ δ2

(
e21 + e22

)
+ δ3,

∥∥W2φ2

∥∥ ≤ σ1

(
θ̇2
1 + θ̇2

2

)
+ σ2e1

2 + σ3.

(4.5)

The controller and adaptive gain are designed as follows:

u = −k3s1 − sgn(s1)
(
δ̂1
(
θ̇2
1 + θ̇2

2

)
+ δ̂2

(
e21 + e22

)
+ δ̂3

)
− sgn(s1)|s2||ξ| − k5s2,

ξ̇(t) = ξ1/(2n+1)
[
−k4s

2
2 − |s2|

(
σ̂1

(
θ̇2
1 + θ̇2

2

)
+ σ̂2e

2
1 + σ̂3

)]
.

(4.6)

The adaptive laws is as follows:

˙̂δ1 = Γ11|s1|
(
θ̇2
1 + θ̇2

2

)
,

˙̂δ2 = Γ12|s1|
(
e21 + e22

)
,

˙̂δ3 = Γ13|s1|,

˙̂σ1 = Γ21|s2|
(
θ̇2
1 + θ̇2

2

)
,

˙̂σ2 = Γ22|s2|e
2,
1

˙̂σ3 = Γ23|s2|,

(4.7)

where Γij , i = 1, 2, j = 1, 2, 3 are positive constants.
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Figure 20: Link 1 angular displacement (sliding mode controller).

4.1. Simulation Results

The simulations are performed using MATLAB and SIMULINK to show the validity of the
controller. The results are indicated in Figures 15–4.

In the simulations, the initial positions of θ1 and θ2 are chosen identically as 0◦. The
desired arm position and pendulum position are chosen as θd1 = 0.4 rad, as θd

2 = 0 rad,
respectively. As illustrated in Figure 15 the steady state position tracking error can approach
to zero in 6 seconds. As the results in Figure 4 show, the tracking error of unactuated link
can converge stably in a fast manner, and it is observed that all the parameter estimates
trajectories are convergent, as shown in Figure 18. The control input is shown in Figure 16.
Figure 4 plots the trajectory of ξ(t).
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0

0.2

0.4

0.6

0.8

−0.6

−0.4

−0.2

0 2 4 6 8 10 12 14 16

Time (s)

(r
ad

)

θ1

Figure 22: Link 1 angular displacement with adaptive algorithm.

4.2. Experimental Results

Similarly, the results obtained from the sliding mode controller [23] and the adaptive
controller proposed in this paper are also performed and compared in Figures 22–24. From
Figures 20 and 4.1 it is seen that, although the pendulum converge to target, the arm could
not precisely settle down to its desired position but oscillates within some bounded region by
using the sliding mode controller. It means that the poor closed-loop system response might
arise due to system parameters.

As for the experiment of adaptive controller, the controlled gains are chosen as k1 = 1,
k2 = 0.5, k3 = 10, and k4 = 1. The corresponding adaptive gains are set to be Γ11 = Γ12 =

Γ13 = Γ21 = Γ22 = Γ23 = 0.01. In this experiment, the control gains are difficult to determine
due to the unknown uncertainties in practical applications and are generally chosen as a
compromise between the stability and the control performance. Figures 22 and 23 depict the
position response of arm and pendulum. It is observed from the figures that the arm could
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converge to the desired position at 6 sec with the pendulum swinging up to top position in 5
seconds. Finally the control input is described in the Figure 24.

5. Conclusion

In this paper, the adaptive control for underactuated mechanical systems with parameter
uncertainty is discussed. By utilizing Lyapunov-based stability analysis asymptotical
stabilization of such systems can be guaranteed. The control schemes are also implemented in
the Pendubot system and Furuta pendulum system to verify the performance of the proposed
adaptive sliding controller. It is shown that the tracking error can be made asymptotically
stable undergoing such controller design.
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