
ARTICLE

An adaptive variational algorithm for exact
molecular simulations on a quantum computer
Harper R. Grimsley1, Sophia E. Economou2, Edwin Barnes2 & Nicholas J. Mayhall 1

Quantum simulation of chemical systems is one of the most promising near-term applica-

tions of quantum computers. The variational quantum eigensolver, a leading algorithm for

molecular simulations on quantum hardware, has a serious limitation in that it typically relies

on a pre-selected wavefunction ansatz that results in approximate wavefunctions and

energies. Here we present an arbitrarily accurate variational algorithm that, instead of fixing

an ansatz upfront, grows it systematically one operator at a time in a way dictated by the

molecule being simulated. This generates an ansatz with a small number of parameters,

leading to shallow-depth circuits. We present numerical simulations, including for a proto-

typical strongly correlated molecule, which show that our algorithm performs much better

than a unitary coupled cluster approach, in terms of both circuit depth and chemical accuracy.

Our results highlight the potential of our adaptive algorithm for exact simulations with

present-day and near-term quantum hardware.
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Anticipation that a useful quantum computer will be rea-
lized in the near future has motivated intense research
into developing quantum algorithms which can poten-

tially make progress on classically intractable computational
problems. While many research areas expect to see transformative
change with the development of such quantum devices, compu-
tational chemistry is poised to be among the first domains to
significantly benefit from such new technologies. Due to the
exponential growth in the size of the Hilbert space with increasing
orbitals, a quantum computer with tens of qubits could poten-
tially surpass classical algorithms1–3. Achieving such a capability
depends not only on the quality of the qubits, but also critically
on the efficiency of the algorithms.

The phase estimation algorithm (PEA)4 was the first algorithm
proposed for simulating electronic structure problems on a
quantum computer1,5. PEA provides a path for obtaining the
exact ground state electronic energy for a molecule by evolving in
time a quantum state with significant overlap with the ground
state using the molecular Hamiltonian of interest. Due to the very
long circuit depths and complex quantum gates required by PEA,
the coherence times needed to simulate interesting electronic
states would exceed the coherence times available on any existing
or near-term quantum device. Improvements to PEA still require
significant resources and experimental demonstrations to date
only involve a few qubits6–8.

In order to reduce the significant hardware demands required by
PEA and exploit the capabilities of noisy intermediate-scale quan-
tum (NISQ) devices9, the variational quantum eigensolver (VQE)
algorithm was proposed and demonstrated using photonic qubits
by Peruzzo et al.10. This was followed by several theoretical studies
on VQE7,11–17 and demonstrations on other hardware such as
superconducting qubits7,16,18 and trapped ions19,20. Other approa-
ches have been pursued as well, including methods for adiabatic
quantum computation21 and quantum machine learning22.

VQE is a hybrid quantum-classical algorithm, because the
computational work is shared between classical and quantum
hardware. VQE starts with an assumption about the form of the
target wavefunction. Based on this form, an ansatz with several
tunable parameters is constructed, and a quantum circuit capable
of producing this ansatz is designed. The ansatz parameters are
variationally adjusted until they minimize the expectation value
of the molecular Hamiltonian. Classical hardware is used to
precompute all the Hamiltonian terms and to update the para-
meters during the circuit optimization. The quantum hardware is
only used to prepare a state (defined by its current set of ansatz
parameter values) and to perform measurements of the various
interaction terms in the molecular Hamiltonian, Ĥ ¼ P

i giôi.
Because the individual operator terms, ôi, generally do not
commute, the state preparation has to be repeated multiple times,
until all the individual operators have been measured enough
times to get sufficient statistics on their mean value. Details on all
these steps can be found in ref. 12.

Compared to PEA, VQE is much more suitable for NISQ
devices, trading in the long circuit depths for shorter state pre-
paration circuits, at the expense of a much higher number of
measurements. Although VQE has been demonstrated to be more
efficient and error-tolerant7,12,16, this comes with the compro-
mise that the ansatz generally only allows one to obtain
approximations to the ground state. Because the choice of ansatz
determines the variational flexibility of the trial state, the quality
of a VQE simulation is only as good as the ansatz.

Several approaches have been explored with the goal of
creating a compact ansatz which provides high accuracy with few
parameters and shallow circuits. The first ansatz explored10 was
based on the unitary variant of coupled cluster theory truncated

at single and double excitations (UCCSD), inspired by early
efforts in computational chemistry to improve coupled cluster
theory23–26. In UCCSD, trial states are generated by applying to a
reference state a unitary operator in the form of an exponential of
a sum of single and double fermion operators with their coeffi-
cients taken as free parameters. More recent proposals based on
UCCSD include the unitary Bogoliubov coupled cluster theory
which takes a generalized Hartree–Fock (HF) state as the refer-
ence27 and the k-UpCCGSD approach of Lee et al.17 which uses k
products of unitary paired generalized doubles excitations, along
with the full set of generalized single excitations. The k-
UpCCGSD approach builds on early work by Nakatsuji28–31 and
Nooijen32 studying the use of generalized excitation terms in
classical quantum chemistry algorithms, but prunes the expansive
operator list by restricting the two-particle terms to only paired
interactions, which provides a systematic way to converge to FCI
without introducing higher excitation rank operators. Ryabinkin
et al.33 recently proposed a coupled cluster-like ansatz which is
constructed directly in the qubit representation with the goal of
achieving shallower circuits. While not directly a variation of the
UCCSD ansatz itself, ref. 16 developed an approach (termed the
quantum subspace expansion) to extract not just the expectation
value of Ĥ but all the matrix elements hIjĤjJi in a small subspace
consisting of single excitations from the trial state. This Hamil-
tonian matrix is then diagonalized on a classical computer, which
reduces the impact of decoherence and gives access to excited
states. Even further from the original UCC ansatz, Kandala
et al.18 have used an alternative ansatz for their VQE experiments
based on the native entangling gate in their superconducting
qubit device, referred to as a “hardware-efficient ansatz”. This
allows entanglement to be created directly from a device-wide
unitary instead of through a more traditional gate decomposition
of a fermionic operator.

Despite these considerable improvements to the UCCSD ansatz
for VQE, this remains an approximate approach that works best
for systems that are not strongly correlated. However, strongly
correlated systems are the hardest to simulate classically, and this
is precisely the motivation for performing simulations using
quantum computers. While an exact VQE simulation could in
principle be performed by adding higher rank excitations to the
ansatz, this would be prohibitively expensive for both the classical
subroutines and NISQ devices. To overcome these challenges, we
need to avoid imposing an ad hoc ansatz and instead allow the
system to determine its own compact, quasi-optimal ansatz.

In this paper, we achieve this by introducing a simple algo-
rithm termed Adaptive Derivative-Assembled Pseudo-Trotter
ansatz Variational Quantum Eigensolver (ADAPT-VQE).
ADAPT-VQE determines a quasi-optimal ansatz with the mini-
mal number of operators for a desired level of accuracy. The key
idea is to systematically grow the ansatz by adding fermionic
operators one-at-a-time, such that the maximal amount of cor-
relation energy is recovered at each step. This results in a wave-
function ansatz that is discovered by the algorithm, and which
cannot be predicted a priori from a traditional excitation-based
scheme like UCCSD. While intuitive, this approach can also be
derived more rigorously as a particular optimization procedure
for Full Configuration Interaction (FCI) VQE and is more thor-
oughly discussed in Section 1 of the Supplement. We demonstrate
the power of ADAPT-VQE through numerical simulations of
three molecules of increasing complexity: LiH, BeH2, and H6. In
each case, we find vastly improved performance compared to
UCCSD, both in terms of the number of operators needed to
form the trial states and in terms of chemical accuracy. Therefore,
we believe that ADAPT-VQE is an ideal hybrid algorithm for
NISQ devices.
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Results
Specification of the adopted notation. In order to define the
approach, several definitions and notations need to be established.
First, molecular orbital indices i and j denote occupied orbitals, a
and b denote virtual orbitals, and p, q, r, and s denote arbitrary
molecular orbitals. In coupled cluster theory, in particular CCSD,
an expansion based on the HF state |ψHF〉 is created by using an
exponential ansatz involving single and double excitation opera-
tors:

ψCCSD
� � ¼ eT̂1þT̂2 ψHF

�� �
; ð1Þ

where the excitation operators are defined as:

T̂1 ¼
X
ia

t̂ai ¼
X
ia

tai â
y
aâi ð2Þ

T̂2 ¼
X
i<j;a;b

t̂abij ¼
X
i<j;a<b

tabij â
y
aâ

y
bâiâj: ð3Þ

For closed shell molecules near equilibrium, CCSD provides a
robust ansatz for molecular simulations. Early efforts to combine
size extensivity and variationality were pioneered by Bartlett,
Kutzelnigg, and coworkers23–25. In this context, a unitary variant
of coupled cluster theory (UCCSD) was defined by replacing the
excitation operators with an anti-Hermitian sum of excitation
and de-excitation operators:

t̂abij ! t̂abij � t̂ijab ¼ τ̂abij : ð4Þ
Because UCCSD is based on a unitary operator, the adjoint is

the inverse, and the expectation value of the UCCSD wavefunc-
tion can be expanded using the Baker–Campbell–Hausdorff
(BCH) formula to obtain a normalized Hamiltonian expectation
value (Rayleigh quotient) for variational optimization. Unfortu-
nately, the BCH expansion does not truncate at finite order,
making UCCSD computationally intractable on classical hard-
ware. However, the unitary nature of UCCSD is actually a benefit
for quantum algorithms as it corresponds to a coherent time
evolution, and this was the original motivation for using UCCSD
in VQE10.

In addition to a unitary form, CCSD can also be generalized by
including excitation operators which immediately annihilate the
HF state. These would include excitations from occupied to
occupied, virtual to virtual, etc. Generalized excitations or
interactions of this form have been considered previously, and
have been used in the context of VQE recently by Lee and
coworkers17. In this case the cluster operators are further
generalized to remove the HF-based subspace restriction:
τ̂abij ! τ̂rspq, where p, q, r, and s refer to any arbitrary orbital.

Although UCCSD is perhaps a natural ansatz for VQE, it
cannot be implemented directly as written or as explored
previously in the quantum chemistry context. Because the gate
model of quantum computation is realistically bound to using
gates acting on only a few qubits at a time, the UCCSD operator
must be broken up into a time-ordered sequence of few (one or
two) particle operators. This is achieved by using a Trotter
expansion of a matrix exponential34,

eAþB ¼ lim
n!1 eðA=nÞeðB=nÞ

� �n
: ð5Þ

Because the generalized single and double excitation operators
do not commute, the use of a truncated Trotter expansion
represents an approximation to the underlying UCCSD ansatz,
and recent work has shown clearly that this does not strongly
affect the results because the variational flexibility is sufficient to
absorb this error7, and that even a single Trotter number (n= 1)
is sufficient to reproduce the results of UCCSD. As a result, a

unitary, generalized, Trotterized ansatz becomes:

ψtUCC
�� � ¼ Y

s2fpqg
et̂s

Y
d2fpqrsg

et̂d ψHF
�� �

; ð6Þ

where notation is introduced such that the generalized singles
index, s, runs over all unique pairs of p, q and the doubles index,
d, over unique combinations of p, q, r, s.

ADAPT-VQE algorithm. The above discussion described the
Trotter expansion as an approximation to UCCGSD. However,
as recognized previously7,35, if the parameters are optimized
after the Trotterization, this is not so much an approximation to
UCC as it is a wholly unique ansatz. In fact, the exact FCI
solution could be obtained by simply going to an nth order
Trotterized form of UCCSD and allowing the different para-
meter replicas to vary independently. This is due to the fact that
n-body interactions can be described as products of one- and
two-body interactions. The exact (FCI) quantum state can thus
be represented as an arbitrarily long product of one- and two-
body operators,

ψFCI
�� � ¼ Y1

k

Y
pq

eτ̂
q
p ðkÞ

Y
pqrs

eτ̂
rs
pqðkÞ ψHF

�� �
ð7Þ

where τ̂rspqðkÞ is the kth instance, or “replica”, of the operators in

t̂rspq � t̂pqrs . It is important to note that this is not a Trotter
approximation to any simple two-body ansatz, as each replica
can assume different parameter values, e.g., τrspqðkÞ≠ τrspqðjÞ.

The main goal in this paper is to approximate FCI with
arbitrary accuracy using a maximally compact sequence of
unitary operators. The basic outline of the algorithm is drawn
schematically in Fig. 1 and is as follows:

(1) On classical hardware, compute one- and two-electron
integrals, and transform the fermionic Hamiltonian into a
qubit representation using an appropriate transformation:
Jordan–Wigner, Bravyi–Kitaev, etc. This is a standard step
in regular VQE.

(2) Define an “Operator Pool”. This is simply a collection of
operator definitions which will be used to construct the
ansatz. For the examples presented in the next section, we
consider the set of all unique spin-complemented one- and
two-body operators, but one might imagine adding a few
three-body or four-body terms as well.

(3) Initialize qubits to an appropriate reference state, ideally one
with the correct number of electrons. The HF state would be
a sensible choice here. Initialize the ansatz to the identity
operator.

(4) On a quantum computer, prepare a trial state with the
current ansatz. If multiple quantum computers are available,
perform this step on all devices simultaneously.

(5) Measure the commutator of the Hamiltonian with each
operator in the pool to get the gradient. Repeating this
multiple times and averaging gives the gradient of the
expectation value of the Hamiltonian with respect to the
coefficient of each operator. This can be done in parallel.

(6) If the norm of the gradient vector is smaller than some
threshold, ε, exit.

(7) Identify the operator with the largest gradient and add this
single operator to the left end of the ansatz, with a new
variational parameter. Note that this does not “drain” the
pool in the sense that choosing an operator does not remove
it from the pool so it can be used again later.

(8) Perform a VQE experiment to re-optimize all parameters in
the ansatz.

(9) Go to step 4.
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As described above and illustrated in Fig. 1, each iteration
starts as a series of uncoupled experiments to obtain the
parameter gradients via measurements of operator commutators
(the gradient expression in step 5 is derived in section IB of the
Supplemental Information). The purpose of these gradient
measurements is to determine the best operator with which to
grow the ansatz, as the operator with the largest gradient is likely
to recover the most correlation energy in the subsequent VQE
minimization. This process is continued iteratively, until a
convergence threshold is met. In the classical numerical examples
presented below, we chose to consider the L2 norm of the
gradient vector to determine convergence. This is just one
possibility, and alternative convergence indicators could be used
instead in step 6. At convergence, the ADAPT-VQE algorithm
obtains the following ansatz:

ψADAPTðεÞ�� E
¼ eτ̂N

� �
eτ̂N�1
� � � � � eτ̂2

� �
eτ̂1
� �

ψHF
�� � ð8Þ

where the identity of each τ̂i is determined by the algorithm.
The re-optimization subroutine in step 8 can be implemented

on either a classical or quantum processor using any of the
gradient- or non-gradient-based optimization routines that have
been proposed or demonstrated for VQE12,15,16,18. Note that this
subroutine is distinct from the gradient computed in step 5 of the
algorithm. Additional possible modifications to the algorithm are
mentioned in the “Discussion” section.

The evaluation of all the gradient terms could in principle be
achieved in a NISQ-friendly, highly parallel manner with a large
number of uncoupled quantum computers all tasked with
preparing the same state and measuring a different operator.
This is the same potential for parallelization that the underlying
VQE subroutine has. Just as with the original motivation for
VQE, ADAPT-VQE decreases the circuit depth at the expense of
a larger number of measurements. In our case a sequence of VQE
experiments is performed, with the most resource-demanding
experimental steps happening at the end. This constitutes a rather
large prefactor which would scale with the size of the system, but
the crucial advantage is controllability over the ansatz accuracy

(in principle approaching FCI). Because the number of non-zero
parameters equals the number of iterations, in order to discover
an ansatz for a large system, an equal number of VQE re-
optimizations will need to be performed. One strategy to
minimize this prefactor could simply be to add a few operators
at a time.

Determining resource requirements for adaptive procedures is
rather difficult. The classical resources are not expected to be
significant in the foreseeable future. However, as quantum
technology progresses toward deeper circuits, the parameter
manipulation and updating on a classical computer could become
costly. However, we expect the dependence between parameters
at the beginning and end of the ADAPT-VQE circuit to decay
with circuit depth, such that one could imagine freezing the early
parameters after a certain number of iterations. This would
possibly establish an approach for FCI with only a polynomial
number of variables, completely avoiding any exponential cost for
the classical hardware.

Molecular dissociation simulation results. In this section, we
explore the convergence properties of the ADAPT-VQE algo-
rithm with a few small molecular systems, LiH, BeH2, and linear
H6. The former two molecules have been simulated using quan-
tum hardware18,20. H6 is included as a prototypical strongly
correlated molecule, which allows us to test the ADAPT-VQE
approach for systems which are not well described with unitary
coupled cluster.

In order to perform the simulations, an in-house code was
written, using Psi436,37 for the integral calculation (via the
OpenFermion-Psi438 interface) and OpenFermion was used for
the Jordan–Wigner operator transformation. All calculations used
the Broyden–Fletcher–Goldfarb–Shannon (BFGS) minimization
implemented within Scipy39. To classically simulate the re-
optimization subroutine in step 8 of ADAPT-VQE, we could use
a standard numerical gradient method. However, in order to
improve the efficiency and allow precise gradients for tight
convergence, we derived and implemented an efficient analytic

3) Initialize

6) Converged?

No

Yes

Done

2) Operator pool

5) Measure gradients

7) Grow ansatz8) VQE: Re-optimize all parameters

Select operators
from pool

Select operator
with largest gradient

P
re
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re

 s
ta

te
s

4)

n = n + 1

�(n +1)  = {�(n)
 , 0}�HF

�HF
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�(n +1)
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∂�2

∂E (n)

∂E (n)
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�(n)
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ˆ ˆ
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Am =ˆ �rs
   + �rs
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pq ˆ ˆ�q
p + �q

p ˆ ˆ pq E

Fig. 1 Schematic depiction of the ADAPT-VQE algorithm described presented. Since step 1 occurs on classical hardware, it is not included in the illustration.
~θðnÞ is the list of ansatz parameters at the nth iteration. The number of parameters, lenð~θðnÞÞ, is equal to the number of operators in the ansatz. “Operator
Pool” refers to the collection of operators which are used to grow the ansatz one-at-a-time. Each τqp represents a generalized single or double excitation,
and these operators are then spin-complemented. The orbital indices refer to spatial orbitals, and the overbar indicates β spin. Orbital indices without
overbars have α spin. Note that growing the ansatz does not drain the pool, and so operators can show up multiple times if selected by the algorithm
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gradient function, which is detailed in Section D of the
Supplement. By reusing intermediates between individual para-
meter gradients, this algorithm obtains the full gradient vector for
all parameters at a cost which is only roughly 2× that of the base
energy evaluation. A table with timing data is included in Table 1
of the Supplement.

As discussed in the previous section, the ADAPT ansatz uses a
convergence threshold to determine when the calculation should
terminate (step 6). Here we use the norm of the gradient vector
and compare it to threshold εm, which we define as

εm ¼ 10�m: ð9Þ
For example, an ADAPT-VQE calculation where the norm of

the operator pool gradient is converged to less than 0.001 would
be denoted as ADAPT(ε3). In what follows we present numerical
results for bond-dissociation curves for LiH, BeH2, and H6 for
three different choices of the threshold (m= 1, 2, 3). We also
investigate alternate protocols for the ansatz growth and
demonstrate the superiority of the ADAPT ansatz.

Here, we study the LiH bond dissociation computed using
several methods, including FCI, UCCSD (un-Trotterized), HF,
ADAPT(ε1), ADAPT(ε2), and ADAPT(ε3), all with the STO-3G
basis set. In this basis set, LiH has 6 spatial orbitals and a Hilbert
space of dimension 4096. By starting with the HF state with two α
(spin-up) and two β (spin-down) electrons and using only
number conserving operators, the relevant subspace to explore

has a dimension of
6
2

	 

� 6

2

	 

¼ 225. In this basis, the

occupied orbitals are {1, 2}, and the virtual orbitals are {3, 4, 5, 6}.
The bond dissociation curves are shown in Fig. 2a, where all

the curves, with the exception of HF, cannot really be
distinguished on this scale. However, as shown in Fig. 2b, when
the FCI energy is subtracted and the scale is adjusted, significant
differences become evident. Shading is used to indicate chemical
accuracy, which is achieved in all cases other than HF. LiH has
only a single pair of electrons (a σ bond) breaking along the
dissociation coordinate, and UCCSD exhibits chemical accuracy
throughout the curve. While ADAPT(ε1) is not as accurate as
UCCSD, ADAPT(ε2) is comparable to UCCSD at short bond
distances and comfortably outperforms it at longer distances.
This is also evident in Table 1, where the average error across the
potential energy surface (PES) is shown. Remarkably, ADAPT(ε3)
outperforms UCCSD throughout the whole curve by at least an
order of magnitude and in some cases up to four orders of
magnitude.

Even more impressive is how few parameters are needed to
achieve this level of accuracy. As shown in Fig. 2c, in all three
cases and for all bond distances, ADAPT is much more compact
than UCCSD. UCCSD has 92 parameters, which can be reduced
to 64 by combining spin-complements. In all three ADAPT
calculations, fewer than half of the parameters are needed
compared to UCCSD. Although UCCSD is noticeably more
accurate than the simplest ADAPT calculation with a gradient
norm threshold of 0.1, the ADAPT(ε1) ansatz is incredibly
compact, consisting of fewer than 10 parameters across the curve.
For example, the ADAPT(ε1) ansatz for LiH at bond distance
2.39 Å is

ψADAPTðε1Þ
�� E

¼ eτ̂
16
12 eτ̂

5�5
2�2 eτ̂

4�4
2�2 eτ̂

13
12 eτ̂

3�3
1�1 eτ̂

3�3
2�2 eτ̂

3�6
2�2 eτ̂

6�6
2�2 ψHF
�� �

; ð10Þ
which includes a mixture of both double excitations and

correlated single excitations n̂jâ
y
aâi

� �
. The indices denote spatial

orbitals, overbar on an index denotes β spin, and spin-
complemented interactions are implied. For example τ̂0601 is really
τ̂0601 þ τ̂�0�6�0�1 . An interesting feature of the ansatz returned by

ADAPT-VQE, Eq. (10), is that the HOMO–LUMO double

excitation eτ̂
3�3
2�2

� �
is not the first operator, but instead the third.

This is different from what one might expect if classical MP2 or
CCSD amplitudes were used to order the ansatz. The reason is
that in choosing the next operator no state energy information is
used, for instance in the form of a denominator penalizing high
energy terms. Interestingly, at convergence it is not the
HOMO–LUMO term or the first operator with the largest

amplitude, but rather the second operator, eτ̂
3�6
2�2 .

In Fig. 2d–f, the dissociation curves for BeH2 are shown. In the
STO-3G basis, BeH2 has 7 spatial orbitals, for a total Hilbert space
dimension of 16,384, and a neutral molecule subspace of

dimension
7
3

	 

� 7

3

	 

¼ 1225. Unlike with LiH, UCCSD does

not provide chemically accurate results across the full PES.
UCCSD and ADAPT(ε1) are comparable at smaller bond
distances. Beyond ~3 Å, they both go above 1 kcal/mol in
absolute error. However, still with a small fraction of the number
of parameters in UCCSD, both ADAPT(ε2) and ADAPT(ε3)
provide nearly exact results, with average deviations from FCI
listed in Table 1.

Now we move our focus to the H6 data. At bond-breaking, the
previous two molecules involved strong correlation between only
two and four electrons, respectively. In order to evaluate the
ability of ADAPT-VQE to converge to FCI in the presence of
much stronger correlations, we have computed the simultaneous
stretching of H6, with the results presented in Fig. 2g–i.

The complexity of this strongly correlated system is reflected in
two obvious ways: (1) the failure of UCCSD to achieve chemical
accuracy across the curve in Fig. 2h, and (2) the increased number
of parameters selected in the ADAPT calculations in Fig. 2i.
Despite being strongly correlated, such that higher excitation rank
operators should be needed, both ADAPT(ε2) and ADAPT(ε3)
provide accurate results with only one- and two-body operators.
Moreover, in the case of ADAPT(ε2) this is achieved with fewer
operators than UCCSD for most bond distances. ADAPT(ε3) also
uses fewer parameters than UCCSD up to the distance where
UCCSD fails to reach chemical accuracy.

Because the algorithm is adaptive, during the course of a
chemical event (bond breaking, isomerization, etc.) the number of
parameters can change abruptly, leading to discontinuous
potential energy curves. Two notable examples of this can be
seen in Fig. 2h, first at R(H-H)= 1.8 Å where ADAPT(ε1)
experiences a large jump in energy, and second at 2.5 Å where
ADAPT(ε2) increases in energy. Figure 2i shows that these energy
jumps correspond to sudden drops in parameter counts.

The cause of the discontinuities in the H6 data can be explained
from the convergence data provided in the Supplement (see
Supplement Fig. 1). For larger bond lengths, as additional
operators are added to the ansatz, the energy flattens out before
dropping substantially again. If the convergence criterion is too
lenient, then the ADAPT-VQE optimization will abort at such
“false gradient troughs”. In the ADAPT(ε2) data of Fig. 2h, i, the
jump in energy error and drop in parameter number, respectively,
are caused by the 2.5 Å optimization aborting at a false gradient
trough, while the optimizations at other bond lengths do not. Of
course, if a tighter threshold is used (such as 0.001), the ADAPT-
VQE algorithm does not prematurely abort, and ultimately yields
high-accuracy results, even for this strongly correlated system.
More sophisticated convergence checks in step 6 might avoid
these situations and will be one focus of future work.

Dependence of convergence on operator ordering. To
demonstrate the importance of the gradient-based operator

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10988-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3007 | https://doi.org/10.1038/s41467-019-10988-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


H Be H
R R

H H H H H H
R R RR R

Li H
R

2 3 4

R(Be-H), angstrom

20

40

60

80

100

120

0.5 1.0 1.5 2.0 2.5

R(H-H), angstrom

20

40

60

80

100

2 3 4

R(Li-H), angstrom

10

20

30

40

50

60

N
um

be
r 

of
 p

ar
am

et
er

s 
in

 a
ns

at
z

LiH: number of parameters  BeH2: number of parameters  H6: number of parameters

2 3 4 0.5 1.0 1.5 2.0 2.52 3 4

10–5

10–4

10–3

10–2

10–1

100

101

102

10–4

10–3

10–2

10–1

100

101

102

10–3

10–2

10–1

100

101

102

E
-E

(F
C

I)
, k

ca
l/m

ol

LiH: error BeH2: error

R(Be-H), Angstrom R(H-H), AngstromR(Li-H), Angstrom

2 3 4

–15.6

–15.4

–15.2

–15.0

–14.8

0.5 1.0 1.5 2.0 2.5

–3.2

–3.0

–2.8

–2.6

–2.4

–2.2

2 3 4

–7.85

–7.80

–7.75

–7.70

–7.65

–7.60

–7.55a d g

h

i

e

f

b

c

E
ne

rg
y,

 a
u

LiH: PES BeH2: PES H6: PES

H6: error

R(Be-H), Angstrom R(H-H), AngstromR(Li-H), Angstrom

UCCSD

HF
ADAPT(�1)

ADAPT(�2)

ADAPT(�3)

Chemical
accuracy

Exact (FCI)

Fig. 2 Dissociation curves for LiH, BeH2, and H6. Potential energy as a function of nuclear coordinate, Hartree units (a, d, g). Absolute energy differences
from FCI, kcal/mol units (b, e, h). Shaded blue region represents area within “chemical accuracy” as 1 kcal/mol. Number of variational operators in
associated ansatz (c, f, i). Notation: ε indicates gradient norm threshold used such that εm= 10−m. In all curves, the FCI curve lies directly underneath the
ADAPT(ε3) curve, and so is not visible

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10988-2

6 NATURE COMMUNICATIONS |         (2019) 10:3007 | https://doi.org/10.1038/s41467-019-10988-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ordering chosen by ADAPT-VQE, we compare it to a few
alternate procedures for growing the ansatz: (a) Random (ijab):
Randomly select from a pool of τabij , where the indices are
restricted to those which do not annihilate the HF reference
state. (b) Random (pqrs): Randomly select from a pool of τrspq,
where the indices are not restricted. (c) Lexical (ijab): Select
from an ordered pool of τabij , where the indices are restricted to
those which do not annihilate the HF reference state. (d) Lex-
ical (pqrs): Select from an ordered pool of τrspq, where the indices
are not restricted.

In Fig. 3, we show the convergence of each of these orderings
and compare them to ADAPT using BeH2 as a typical example.
What stands out is that the ADAPT ansatz converges
dramatically faster than the other four cases considered. While
the two random-growth ansätze converge relatively similar to
each other regardless of whether restricted indices are used or not,
the lexically ordered ansatz shows a clear distinction between the
restricted index (singles and doubles) and un-restricted index
(generalized singles and doubles) ordering. This is due to the fact
that the first operators in the ansatz involve creation operators on
the occupied orbitals, and these do not contribute until the
wavefunction has become entangled. The un-Trotterized UCCSD
result is also marked for reference. Overall, the data in Fig. 3
demonstrate that an iterative gradient minimization algorithm
yields a highly compact ansatz for a given state.

Discussion
An obvious metric for evaluating the performance of any simu-
lation algorithm can be simply described as some accuracy
measure vs. some cost measure. While the accuracy measure in a
simulation is often easy to define, the cost measure is more
nuanced. For variational quantum simulations, there are two
factors which largely determine the overall cost: circuit depth and

number of measurements (or shot count). Shot count is impor-
tant as it determines the time to solution. It is possible that due to
the sheer number of measurements, a particular quantum simu-
lation becomes intractable. However, for NISQ devices in which
coherence times (and thus number of gates) are limited, circuit
depth is usually the most critical cost metric, as it determines
whether or not a simulation can occur at all. By taking circuit
depth as the most important cost metric to address, the original
VQE has been successful by minimizing circuit depth at the cost
of increased number of measurements. Similar to the original
VQE, our new ADAPT-VQE algorithm seeks to further minimize
the circuit depth with an increased number of measurements.

In this direction, the data clearly demonstrates that ADAPT-
VQE succeeds in creating a more compact and accurate wave-
function ansatz than UCCSD. The algorithm achieves this by
systematically identifying the optimal set and ordering of
operators to use in the wavefunction ansatz for a given problem.
The efficiency of ADAPT-VQE makes it very promising for
quantum chemistry simulations on NISQ devices, where circuit
depth limitations remain a significant challenge.

In terms of shot-count, ADAPT-VQE will likely have an
increased number of measurements compared to UCCSD-based
VQE due to the necessary gradient measurements. However, this
is perhaps an easier problem to address (compared to circuit
depth) as the individual runs can in principle occur simulta-
neously if several devices exist. Further, the shot count also
depends on the number of iterations required for the classical
optimization of the ansatz parameters. For strongly correlated
systems where perturbation theory fails, the existing approach of
using classical MP2 amplitudes to initialize the UCCSD para-
meters12 is not likely to provide much improvement in the
UCCSD-based VQE. Alternatively, each iteration of ADAPT-
VQE only adds a single new parameter, with the previously
optimized parameters already being initialized to rather sensible
values. This might ultimately decrease the number of iterations
needed for the VQE subroutine in ADAPT-VQE, thus
decreasing the shot count (although this is not likely to fully
compensate for the large number of measurements for the gra-
dient). As hardware capabilities continue to increase, in terms of
both the size and number of quantum processors available,
ADAPT-VQE will offer an ideal quantum-parallel approach to
performing nontrivial quantum chemistry simulations. We
therefore expect this algorithm to have a strong impact on these
efforts in the near term.

As the name suggests, ADAPT-VQE could be classified as one
member of a family of adaptive-basis strategies that has seen
success in constructing compact many-electron wavefunctions40–46

and single-electron wavefunctions47–53, or as a relative of meth-
ods using sequential transformations which have been explored in
the context of multireference coupled-cluster theory54,55. Of
these, the ADAPT ansatz is perhaps most closely related to the
@-CC method of Lyakh and Bartlett47, in which a compact set of
cluster operators is iteratively determined to describe the state of
interest on a classical computer. Our approach is distinct in that it
is not only designed for a quantum computer implementation,
but also defined for a different wavefunction form (product of
unitary operators vs. coupled cluster) and a different importance
metric (operator gradient of the many-electron state vs. a single
electron-defined importance function, see ref. 47) for determining
new parameters.

An important aspect of ADAPT-VQE is that several steps of
the algorithm can be implemented in multiple ways, lending it
still greater versatility across a wide landscape of problems and
suggesting that it should perhaps be thought of as a class of
algorithms rather than a specific one. In the “Results” section, we
already discussed a few algorithmic options, including different

Table 1 Average errors across the PES scan for the different
methods assessed. Units in kcal/mol

UCCSD ADAPT(ε1) ADAPT(ε2) ADAPT(ε3)

LiH 0.0480 0.3000 0.0058 0.0002
BeH2 2.2384 0.8023 0.0907 0.0041
H6 3.7387 4.5297 0.3023 0.0047
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ways to perform the gradient-based parameter update and to
determine convergence. We also mentioned the possibility of
freezing early parameters at later stages of the algorithm in order
to speed up the re-optimization steps. Below, we discuss a few
more modifications to explore.

Although the ADAPT-VQE algorithm is notably not a per-
turbative approach, it still has a perturbative flavor in that the
suitability of the next iteration’s best operator only involves the
interaction of that operator with the Hamiltonian. As such, the
algorithm may not be able to recognize the best quadruple
excitation (for example) during one update. That being said, the
physics described by quadruple excitations is ultimately captured
after multiple iterations through the product of at least two two-
body interactions. The consequence of this is that convergence
will likely not be as fast for strongly correlated systems because
the algorithm can only “see” two body operators at a time.
Because only local knowledge of the FCI energy landscape is
used to update the ADAPT-VQE ansatz construction, the “true
optimally compact ansatz” is not guaranteed. As a result, flat
energy landscapes (associated with “false gradient troughs”) are
possible. Further classical simulations and device implementa-
tions are needed to provide better insight into the numerical
behavior.

Fortunately, however, multiple strategies can be pursued to
address any possible slow convergence issues. One possible
approach would be to add a selection of three- or four-body
interactions into the operator pool, such that these could be
inserted when needed. Alternatively, one might imagine trying to
update the ansatz with two (or more) operators in each iteration,
such that the best set of operators is added. The operator pool
would still consist of only one- and two-body interactions, but
higher-body interactions could be incorporated through products
of operators. Even further, one might imagine computing the
second derivative and using Hessian matrix elements to identify
cooperative effects between operators in the pool. We will explore
each of these approaches in future work, with the aim of deter-
mining the fastest converging algorithm in different chemical
scenarios.

In this paper, we presented ADAPT-VQE, a novel variational
hybrid quantum-classical algorithm designed to achieve exact
results at convergence. Unlike typical ansätze, which tends to be
ad hoc, our approach is based on an ansatz that is determined by
the system being simulated, and it features a well-defined, built-in
convergence criterion. Moreover, the parameter count, and thus
the gate depth, is kept to a minimum. A detailed description of
the algorithm is given, and numerical examples are provided to
demonstrate the performance of the ADAPT method with both
weakly and strongly correlated systems. Based on these results, we
find the ADAPT-VQE algorithm to be an operator- and
parameter-efficient method capable of high accuracy, with con-
trollable errors, that routinely outperforms UCCSD. Its compat-
ibility with classical routines for compiling state preparation
circuits and quantum-parallelism should make ADAPT-VQE
extremely useful for simulations of molecules on both currently
available and future quantum computers.

Data availability
The data for the numerical simulations is available upon reasonable request.

Code availability
The code for the numerical simulations is available upon reasonable request.
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