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Abstract. In this paper we present ASPOGAMO, a vision system capable of es-

timating motion trajectories of soccer players taped on video. The system per-

forms well in a multitude of application scenarios because of its adaptivity to

various camera setups, such as single or multiple camera settings, static or dy-

namic ones. Furthermore, ASPOGAMO can directly process image streams taken

from TV broadcast, and extract all valuable information despite scene interrup-

tions and cuts between different cameras. The system achieves a high level of

robustness through the use of modelbased vision algorithms for camera estima-

tion and player recognition and a probabilistic multi-player tracking framework

capable of dealing with occlusion situations typical in team-sports. The continu-

ous interplay between these submodules is adding to both the reliability and the

efficiency of the overall system.

1 Introduction

The automatic observation of team-sport games is gaining increased attention for dif-

ferent reasons. As such games, particularly soccer, are enjoyed by millions, television

broadcasting companies are constantly seeking new ways to improve the viewers’ expe-

rience. During the last FIFA World Cup in Germany, highlights and critical scenes were

virtually reenacted after the game, accompanied by expert discussions and analyses.

Animations and replays of goals viewable from arbitrary virtual camera positions were

made available on the internet some hours after the game. Such recreations of game

scenes are done mostly manually, and require a massive amount of human intervention

for estimating the needed 3D position data of the players and the ball. An automatic

acquisition of this data could drastically speed up the recreation while cutting down

costs. The position data could also be used to save bandwidth when broadcasting soc-

cer games to mobile devices, where scenes could be redisplayed using a game-like

computer graphics API.

Trainers and major sports clubs are interested in statistics and analyses of their own

as well as the opposing team. Having a detailed representation of a game facilitates the

automated study of tactics and weak spots. A number of top teams already equipped

their stadiums with semi-automatic player tracking systems. However, the downside of

these commercially available systems to date is the need for an expensive hardware

setup bound to a single stadium, as they rely on multiple static cameras that need an

exact calibration of their positions and parameters.



Scientifically, abstract and symbolic representations allow to analyze games and hu-

man activities in a manner not able until today. This holds for sports as well as computer

scientists. For instance, the huge amount of position data representing real-world multi-

agent activities without artificial patterns usually found in simulated data provides in-

teresting opportunities for AI research. The acquisition of such 3D position data poses

interesting problems in the computer vision domain, amongst them initialization and

tracking of camera models, the reliable realtime recognition of small-sized players, the

tracking of multiple players through occlusions and automated scene analysis.

Fig. 1. Example applications made possible using ASPOGAMO: virtual camera views (left), statis-

tical heatmap showing main player distributions (center), tactical scene analysis (right)

In this paper we present ASPOGAMO (Automated SPOrt Game Analysis MOdel), a

computer vision system that is able to extract consistent motion trajectories of soccer

players from camera recordings automatically and reliably with little human interaction.

One of the main contributions of ASPOGAMO to date is the integration of several state-

of-the-art computer vision algorithms to form a robust and reliable system that can

deal with low-quality input, bad lighting situations and game-typical occlusions while

still running almost in realtime on standard desktop PCs. Another contribution is its

adaptivity with respect to the source of input: (1) it can run using only the standard TV

broadcast stream, gathering the required data despite cuts between different cameras or

scene interruptions like close-ups or replays; (2) it can deal with uncalibrated cameras

constantly changing zoom and direction while pointing towards the game action; (3) if

wanted, multiple synchronized cameras can be used to improve both the field coverage

and the tracking accuracy through sensor fusion. This adaptivity makes ASPOGAMO

flexible and easy to set up without special requirements. Figure 1 shows some example

applications that were developed using the motion data generated by ASPOGAMO.

Due to the space limits in this paper we will try to provide a comprehensive overview

of ASPOGAMO without giving in-depth explanations of the underlying algorithms. We

start in Chap. 2 with an introduction to the system architecture, and then describe in

more detail the Vision Modules (Chap. 3). Chapter 4 addresses the creation of con-

sistent player trajectories. We finish with experimental results (Chap. 5), related work

(Chap. 6) and our conclusions (Chap. 7).

2 System Architecture

The general architecture of ASPOGAMO is shown in Fig. 2. All modules are running

as standalone processes and communicate through well defined interfaces. Being de-



signed on an abstract level, modules can easily be exchanged with other implemen-

tations. CORBA is used as intermediate layer for communication which enables the

system to be flexible, distributed and scalable.

Fig. 2. Architecture of the ASPOGAMO system

The system is designed to process arbitrary camera input streams consisting of

recorded footage from either static or dynamic cameras. Furthermore, input streams

recorded from TV broadcast can be used. Each stream is associated with a Vision Mod-

ule, whose main task is to determine possible player positions and their uncertainties

in the world coordinate frame and forward these observations to the Tracker. As the

Vision Modules are running asynchronous (probably distributed on different machines),

and the Tracker expects the observations in the right temporal order, an intermediate

Trigger module is used to abstract and hide the acquisition of player observations from

the trajectory generation. It synchronizes all observations received from registered Vi-

sion Modules, forwards them to the Tracker, and sends back the predicted object hy-

potheses for the next timestep. The Tracker generates consistent trajectories according

to the observations and its internal predictions and writes them into the Game Database.

The Game Database is the access point for all higher level applications depending on

the data generated by ASPOGAMO. Because player trajectories generated by the Tracker

might be split or incomplete, they can be post-processed via a GUI in the Post Processor

modules. Apart from editing the trajectories directly, users can also add metadata like

player identifications. Due to the distributed nature of our system, an arbitrary number

of these modules can be started simultaneously, even when the trajectory generation

is still running. The Post Processing Distributor (PPD) is responsible for keeping the

Game Database and the Post Processor modules consistent all the time.

3 Camera-specific Vision Modules

The Vision Modules are responsible for generating player observations from the input

video streams. An observation consists of a player position on the field plane includ-

ing uncertainty and the team affiliation. Each module is responsible for processing all

scenes recorded by a single physical camera associated with the module. To be able

to calculate the player positions on the field plane, the intrinsic and extrinsic parame-

ters of this camera need to be estimated. In the case of dynamic cameras, parameters

like pan, tilt and zoom factor are constantly changing and have to be determined for

each frame. Furthermore, when a broadcasted input stream with scene cuts is provided,

scenes processable by the module have to be identified.



The internal design of the Vision Modules is shown in Fig. 3. A continuous scene

from the input stream is processed frame by frame in the Scene Processor by first es-

timating the unknown camera parameters (Sect. 3.2) and then detecting the players

(Sect. 3.3). If a shot cut is found in the input stream, scene processing is stopped and

the Scene Filter selects the next processable scene.

Fig. 3. Design of the Vision Module

3.1 Initialization and Shot Cut Handling

Before starting the image processing, a couple of initializations need to be performed.

First, the constant intrinsic and extrinsic camera parameters need to be estimated, along

with the field size which (according to FIFA regulations) may vary and usually is un-

known. Furthermore, as the utilized vision algorithms heavily rely on colors (because

colors are chosen to be visually distinctive in soccer games), color models aligned to

the physical camera’s color perception are precomputed to speed up processing.

Constant Camera Parameter Estimation: The estimation of all camera param-

eters is difficult, as there is usually no possibility to use standard calibration methods

without access to the original cameras. The intrinsic parameters (except the principal

point but including radial distortion), the position of the camera and the field size are

thus estimated semi-automatically and simultaneously by selecting several correspond-

ing field positions out of different views of the respective camera. Uncertainties are

assigned to the correspondences by the user specifying an ellipse around the image-

points defining a 95% quantile. A system of equations is set up and solved using least

squares optimization considering the uncertainties. Besides the needed parameters, its

covariances are also estimated. To get the best results, the selected views should corre-

spond to all sides of the field.

Color Model Initialization: Color classes are modeled as mixture of Gaussian in

RGB space, which allows to model e.g a field with a cast shadow from a stadium roof.

For efficiency reasons, the color space is compressed to 16bit, so that lookup tables with

Mahalanobis distances and densities can be precomputed. Color classes are learned

semi-automatically using clustering methods, and their distributions are readapted con-

stantly during the game to account for lighting changes.

Shot Cut Handling: After initialization, scene processing on the input stream is

started. If the input stream is interrupted by shot cuts (Fig. 4), these are detected from in-

consistencies in the optical flow generated during camera parameter estimation (Sect. 3.2).

The processing is stopped, and the Scene Filter tries to find the next scene that can be

processed. To do so, a given scene is classified as slow motion, out of field view or field

view. By looking at the color histogram and the number of pixels classified as field



color, out of field views and most close-up views can be skipped. Slow motion segments

that are out of the timeline and thus of no value are detected using a zero-crossing mea-

sure [10]. The remaining candidate scenes are evaluated if they match with the given

camera model. Currently this is done through user interaction, but we are working on

an automatic matching process using segmented field lines. If a match is found and the

dynamic camera parameters (pan, tilt, zoom) are reinitialized, processing is once again

handed over to the Scene Processor.

In case of continuous input streams, no shot cuts will be detected so that the pro-

cessing runs uninterrupted. If a broadcasted image stream consists of more than one

evaluable camera view, one Vision Module for each camera must be registered and as-

signed the same input stream.

Fig. 4. Scenes contained within broadcasted image stream

3.2 Camera Estimation

As already mentioned, not all camera parameters stay constant during the game. Stan-

dard TV cameras track the game actively, and are continuously changing their pan and

tilt orientations as well as the zoom factor (focus). Even the position of the optical center

changes, when the camera is rotated on a tripod, but the parallax effects are negligible

due to the big distance of the camera from the field. ASPOGAMO uses a modelbased

localization for estimating the missing parameters in each frame. A virtual model of the

field is projected into the image, and an objective function made up from the real-world

distances between virtual field points and corresponding image points is minimized to

obtain the best match. Because the estimation is done frame by frame and the cam-

era motions are fluid, this can be described as a tracking problem and solved using an

Iterative Extended Kalman Filter (IEKF).

Correspondences for the objective function are found by projecting points on virtual

field lines into the image using predicted parameter values. The corresponding image

points are searched in perpendicular directions to the virtual lines inside a search win-

dow that is determined according to the parameter uncertainty. Due to inhomogeneous

lighting conditions, low resolutions, bad image quality and fast camera movements

(Fig. 5), field lines (especially distant ones) are hard to identify using uninformed line

detectors. Field lines do not appear as white, but as slightly lighter green. Using our

probabilistic mixture of Gaussian color models, we reduce the search for line corre-

spondences to the problem of finding the most probable transition between the field

color class and the line color class within the search window. Matches are thresholded

depending on the expected linewidth in pixels, determined with the predicted camera

parameters. Covariance matrices of the correspondences are estimated heuristically by

their probability and uniqueness.



To improve the prediction of the parameters from the IEKF, we additionally estimate

the homography describing the perspective transformation between two subsequent im-

ages. This transformation maps points between two images regardless of their real 3D

positions. It is estimated by calculating the optical flow with the Lucas Kanade method

to find 100 point-matches around the image border. To eliminate outliers, we deter-

mine the homography using the RANSAC algorithm [3] and remove all non-confirming

matches. All other matches are used to find the relative motion of the camera with the

M-Estimator [12] using the weight-function from Huber. Predictions generated solely

from the homographies are accurate enough to stay within the convergence-rate of the

estimator for about 100-150 frames. Thus they can be used to temporarily track the

camera parameters when not enough line correspondences are found, i.e. when no field

lines are actually visible. Cases where the drift of the field model is unavoidable are

detected by the Shot Cut Detection, and a reinitialization is triggered.

Fig. 5. Hard scenes that have to be dealt with: Small player sizes (left), field with cast shadow

(center), camera motion blur (right)

3.3 Player Detection

As seen in Fig. 5, the detection of players is a difficult task. Typical player sizes in

the image are below 30 pixels height, players often occlude each other, and shapes and

colors tend to be blurred and nondistinctive. Furthermore, the detection should run in

realtime, but images need to be processed at full resolution because of the small player

sizes.

We use a number of probabilistic perceptual cues that can be calculated easily using

knowledge of the domain. The processing steps are visualized in Fig. 6. First, all poten-

tial player regions that are lying inside the field are segmented based on our color model

(Fig. 6a). Then, we use special templates to calculate likelihood-maps for player loca-

tions based on color distributions, compactness of the segmented region and the vertical

spacing inside the regions (Fig. 6b). These likelihood-maps are fused, and predictions

generated by the tracker are integrated (Fig. 6c). Player detections are then generated

from the strong modes in the combined likelihood-map.

The segmentation of the player regions is achieved by first segmenting the field

using the precomputed Mahalanobis distances from the field color class. Morphology



is used to remove noise in the segmentation and to combine split field regions. The field

region is then inverted and intersected with its convex hull, yielding the potential player

regions that may consist of one or more persons, none or only part of a person. The

templates used for the calculation of the likelihood-maps are scaled to the expected size

of a player at a specific image position according to the predicted camera parameters.

The template used for color template matching is divided into three square regions, one

for the shirt color, one for the short color and one for the socks color of each team.

The use of square regions allows to optimize the calculations using integral images.

Furthermore, the shirt region can be shifted horizontally, so that inclined players are

also detected. The template is moved across every pixel in the potential player regions,

and a likelihood is calculated based on the Mahalanobis distances of the colors inside

the template to the color classes that have been associated to the template. Another

likelihood is calculated based on the number of non-field pixels inside the template.

This ensures that the overlap between the player template and the segmented region is

high, which we call the Compactness Constraint. The last likelihood calculated is called

the Height Constraint, and produces high likelihoods near locations where either the

distance to the upper or the lower contour of the segmented region is near the optimum

for the expected player size. This improves the accuracy of the player localization.

After fusing the calculated likelihoods with the hypotheses generated by the tracker, the

detected observations are transformed into real-world coordinates on the field plane and

sent to the tracker.

Fig. 6. Player Detection: a) rough segmentation of non-field blobs b) calculation of likelihood-

maps based on color template matching, compactness and height constraints c) fusion of

likelihood-maps and integration of tracker predictions

4 Trajectory Generation

The Vision Modules described in the previous section provide observations of players,

i.e. positions on the field plane including uncertainties and the team affiliation. So far,

these observations lack any temporal correlation. Furthermore, players can be missed,

e.g. if temporarily occluded, and the observations might be erroneous or imprecise. It

is therefore necessary to combine observations into consistent trajectories belonging to

single players.



ASPOGAMO uses a Multiple Hypothesis Tracker (MHT) [9] to automatically cre-

ate affiliations between observations and previous trajectories using the positions and

covariance matrices of the observations. The MHT can keep different hypotheses dur-

ing ambiguous situations (mainly resulting from occlusions) to resolve these situations

when time progresses. The maximum time interval allowed for keeping hypotheses de-

pends on the quality and distinctiveness of the observations (we are currently using a

maximal depth of 15 frames). Observations made by multiple cameras can be used to

improve accuracy through fusion of corresponding observations that is inherently sup-

ported by the MHT. A more detailed description of the player tracking can be found in

Beetz et al. [1].

Once a trajectory is assured or can no longer be continued, i.e. a player has left the

camera field of view or an ambiguous situation could not be resolved, the trajectory is

written to the Game Database. For some applications it might be necessary to add ad-

ditional information to a trajectory, e.g. the name and ID of a player. Such assignments

can be done using the Post Processor modules. It is also possible to join, split or delete

trajectories. We are currently researching ways to extract metadata such as player IDs

automatically using a combination of visual and acoustical cues.

5 Experimental Results and Applications

ASPOGAMO has been under public display during FIFA World Cup 2006 in Germany.

Extensive experiments have been conducted with input streams broadcasted live during

the World Cup (more than 40 games) as well as other input streams retrieved either

unaltered from TV cameras directly or from our own multiple camera setups.

Fig. 7. Camera estimation (left), player observation (center) and trajectory generation (right)

Using original television camera streams without shot cuts, the camera estimation

is able to track the camera parameters up to 20 min without the need for reinitialization.

The mean time for tracking the main center camera without getting lost is about 8 min,

while other cameras from broadcast having more abrupt motions could be tracked be-

tween 1 min and 12 min in our experiments. Using the broadcasted streams with shot

cuts, several goal scenes from World Cup have been tracked without getting lost. Most

of the position data from the broadcasted TV stream with shot cuts from the opening

game between Germany and Costa Rica has been written to our Game Database. The

detection rates for player observations are ranging above 90% for standard scenes, and

still above 70% for especially crowed scenes like corner situations (Table 1). Most of

the missed detections and misclassifications are resulting from occlusions, and are later

resolved in the MHT. The trajectories for the generated scenes usually last as long as



a player is in camera view, unless there are ambiguous occlusion situations in heav-

ily crowded scenes that couldn’t be resolved by the MHT. In such a case, trajectories

are split and have to be joined manually during post-processing. In one experiment we

recorded a soccer game with a HDV (high definition) camcorder that could cover most

of the field, and got single player trajectories lasting for more than 5 minutes, before

the spectators in front of the camera jumped up and spoiled the scene. In other exper-

iments we were successfully tracking games with difficult lighting situations such as

cast shadows on the field (e.g. Portugal vs. Iran).

game player count missed players misclassified false positives

Germany - Costa Rica 2353 4.78% 0.38% 2.37%

Argentina - Serbia-Montenegro 1605 5.51% 1.88% 1.23%

Portugal - Iran 592 21.96% 3.72% 0.34%

Corner Situation 462 17.53% 3.68% 6.06%

Table 1. Manually verified detection rates for player observations

To test the constant camera parameter estimation, we have recorded a soccer match

with 4 calibrated cameras and measured the camera positions and the field size using

laser as ground truth. Table 2 shows the resulting mean errors in the estimation.

pos-x pos-y pos-z field-width field-length

field size known 0.19 m 0.41 m 0.43 m - -

field size unknown 0.19 m 1.68 m 0.34 m 0.68 m 1.87 m

Table 2. Mean estimation errors of position and field size estimation

The inaccuracies of the camera estimation range from about 5 cm to 1.0 m, deter-

mined through back-projections on the field-model. The inaccuracies of the player de-

tection are typically lower than 0.5 m, and have been estimated by comparison with

manually determined player positions on the field-model. Position inaccuracies increase

with the distance of the players from the camera. When fusing observations from mul-

tiple cameras, position accuracy is improved, as the uncertainties decrease. Similar ef-

fects are achieved when smoothing the trajectories in post-processing. Figure 7 shows

visualizations of the camera estimation, the player detection and the final output tracks.

We have created some videos showing example applications that can be generated

from the position data. Figure 1 shows some screenshots. The full videos can be down-

loaded from the ASPOGAMO webpage at http://aspogamo.cs.tum.edu.

6 Related Work

Some relevant work in sports video processing is surveyed by Yu and Farin [11]. Other

recent contributions are Kang et al. [6], Figueroa et al. [2] and Nillius et al. [7], but

they are bound to static cameras. This drastically simplifies both the camera estima-

tion and the player recognition. Hayet et al. [4] and Okuma et al. [8] (tracking hockey

players) use dynamic camera settings, but lack discussions of the reliability, efficiency

and accuracy of the tracking. Related work can also be found in the domain of visual

surveillance (see Hu et al. [5] for a survey), although different assumptions are made in

team-sport games than in surveillance scenarios (known team/field colors).



7 Conclusions

We have presented ASPOGAMO, a vision system used for retrieving the motion trajecto-

ries of all visible players during a soccer game. ASPOGAMO reliably handles a number

of difficult situations like fast moving and zooming cameras, occlusions and changing

lighting conditions while still being efficient and requiring only little human interaction.

Being capable of processing inputs from different camera settings, ASPOGAMO meets

many demands of a variety of applications. It is possible to create a complete and accu-

rate motion trajectory database of a 90 minutes game fully covered by multiple cameras,

or to extract all informative position data from a broadcasted stream on TV with shot

cuts. The retrieved motion data can be used for tactical and statistical analyses, for in-

ferring abstract activity models of players and teams, and for enhancing broadcasted

scenes with virtual information of scene replays.
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