
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title An Adaptive VM Provisioning Method for Large-Scale Agent-Based Traffic Simulations on

the Cloud

Authors(s) Hanai, Masatoshi; Suzumura, Toyotaro; Ventresque, Anthony; Shudo, Kazuyuki

Publication date 2014-12-18

Conference details 2014 IEEE 6th International Conference on Cloud Computing Technology and Science

(CloudCom), Singapore, 15 - 18 December, 2014

Publisher Institute of Electrical and Electronic Engineers (IEEE)

Item record/more information http://hdl.handle.net/10197/7140

Publisher's statement © © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

Publisher's version (DOI) 10.1109/CloudCom.2014.164

Downloaded 2022-08-23T08:30:26Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FCloudCom.2014.164&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F7140

An Adaptive VM Provisioning Method

for Large-Scale Agent-based Traffic Simulations

on the Cloud

Masatoshi Hanai∗§, Toyotaro Suzumura†‡§, Anthony Ventresque†§¶, and Kazuyuki Shudo∗

∗Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, Japan

Email: {hanai.aa, shudo}@{m, is}.titech.ac.jp
†IBM Research, Damastown Industrial Estate, Mulhuddart, Dublin 15, Ireland

Email: suzumura@acm.org
‡JST CREST

§School of Computer Science and Informatics, University College Dublin, Ireland

Email: anthony.ventresque@ucd.ie
¶Lero, the Irish Software Engineering Research Centre

Abstract—Using the Cloud for large-scale distributed simula-
tions, such as agent-based traffic simulations, sounds like a good
idea, as it is possible to provision and release easily processing
nodes (e.g., virtual machines) in the Cloud. However, the question
is complex as it involves users’ objectives, such as, time to
process the simulation and cost of the simulation, and because
the workload evolves in distributed simulations, in each node
and the whole system, and this impact the resource provisioning
plans. This paper proposes two main contributions: (i) a method
for efficient utilization of computational resources for distributed
agent-based simulations, providing a mechanism that adapts the
resource provisioning to users’ objectives and workload evolution;
and (ii) a staged asynchronous migration technique to limit the
migration overhead when the number of workers change. Our
preliminary experimental results on a 24 hour scenario of traffic
in the city of Tokyo show that our system outperforms a static
provisioning by 12% in average and 23% during periods when
workload changes a lot.

Keywords—Large-scale Agent-based Simulation, Traffic Simu-
lation, Cloud Computing, Resource Provisioning, Monetary Cost.

I. INTRODUCTION

Research on agent-based simulation has been essential
for areas such as, transportation, environmental protection,
prediction of global economic evolution [24]. Working on
realistic situations, e.g., large urban areas or large social
systems, is a challenging problem giving the scale considered.
Several simulating methods and simulators have been proposed
in the past to run the simulations on distributed systems [15],
[27], each computing node of the distributed system hosting a
simulator and a partition of the simulation model.

There are two main problems with distributed simulations
though: (i) depending on users’ preferences and objectives,
finding a right combination of number and characteristics of
computing nodes can be difficult; this is particularly evident
in the Cloud, where there are numerous (different) options
and provisioning is easy; and (ii) workload keeps changing
in large-scale simulation models, at a global level (e.g., more
vehicles at peak commuting times than during the night) and
at a local level (e.g., vehicles moving from one partition to
another); previous work show that this can lead to comput-

ing imbalance [26] and/or increased communication between
computing nodes.

In this paper, we propose a framework for adaptive resource
provisioning, which enables to increase and decrease the
number of machines during the execution of the simulation,
in order to achieve an efficient utilisation of computational
resources. Our framework makes prediction on the evolution of
the workload and decides on the characteristics and the number
of virtual machines that need to be provisioned or released.
We also propose a novel solution for efficient migration of
workload between computing nodes. Our staged asynchronous
migration achieves the very fast migration by overlapping the
migration to the original simulation processing while the sim-
ulating results are exactly same as non migrating simulation.
Our proposal finally achieves to reduce the payment cost by 12
% in average and 23 % during periods when workload changes
a lot in all of Tokyo traffic simulation.

The rest of paper is organized as follows. In Section II, we
describe the context of our research. In Section III, we give an
overview of our proposed system. In Section IV, we discuss
some more efficient way to migrate simulation object at run
time. In Section V, we describe the implementation of our
system and some evaluation based on a 24 hour scenario of
traffic in the whole urban area of Tokyo. Section VI discussed
some related work and finally we conclude in Section VII.

II. BACKGROUND

This section aims at providing the reader with a detailed
description of two important elements of the context of our
research, i.e., IBM Mega Traffic Simulator and the Cloud’s
cost model (extended recently to supercomputers).

A. The IBM Mega Traffic Simulator

In our study we use Megaffic, a large-scale distributed
agent-based traffic simulator developed by IBM [22], [23],
[27]. The advantage of using Megaffic for traffic simulations
is twofold. On the one hand Megaffic optimises some of
the agents (i.e., drivers) decisions by estimating some of the
parameters of the model from probe-car data, differentiating
Megaffic from many other agent-based traffic simulator which

need to calibrate these parameters during the simulation. In
short, Megaffic precomputes some of the simulation data,
such as, road segments and lanes chosen by the drivers on
their route, speed of the vehicles on the road. On the other
hand Megaffic is designed for running on massively parallel
computers and has proven to be able to simulate microscopic
(i.e., agent-based) models of vehicular traffic in several cities
and even the whole island of Japan. To do so, Megaffic is
built on top of X10-based Agent eXecutive Infrastructure for
Simulation (XAXIS), a platform for distributed agent-based
simulations acting as a middleware between the complexity of
the distributed systems and the applications (Megaffic in our
case). XAXIS is based on X10 [14], a parallel programming
language suitable for multi-core architectures, which is being
developed by IBM Research.

In Megaffic, an agent represents a driver of a vehicle, who
travels along the road. There are three elements defining the
simulation model that need to be set up before execution: route
selection, speed selection and lane selection. Execution steps
are divided in two: pre-iteration and iteration. During the pre-
iteration phase, the origin, the destination and the departure
time of each agent are generated according to the model. The
iteration phase then starts, agents interact with other agents
according to the defined behavior model. Agents select a route
from the origin to the destination, change speed and select
a lane. Finally when an agent reaches its destination, it is
removed from the simulation. Megaffic also creates new agents
at their origin whenever their departure time is reached.

In our research, the computation model and the agent
behavior are based on Megaffic. Thus each agent has a tentative
path, driver preference and origin-destination data in advance.

Other microscopic traffic simulators have been proposed
in the past, with the objective of simulating large-scale urban
areas. Bragard et al. [11] have defined dSUMO, a distributed
version of the free and open traffic simulation suite SUMO [9].
SUMO offers tools and algorithms for developers of trans-
portation scenarios and helps them to import road networks
(e.g., extracted from OpenStreeMap data [19]), generate traffic
and define some of the parameters such as, vehicle following
model and driving behaviors. dSUMO runs several instances
of SUMO on different computing nodes and manages the
interactions between them: mostly the transfer of vehicles
from one node to another and the border between nodes
(a.k.a., interest management). Another example is Matsim [4],
which achieves a large-scale microscopic traffic simulation on
a single computer. For example, the traffic in all of Switzerland
was simulated using Matsim, but some of the details were
omitted from their simulation models for scalability [25].

B. Pay-as-you-go Cost Model for Computing Resources

Renting computing resources as you need them or as you
use them, sometimes referred to as pay-as-you-go, is a recent
trend in computing that started with the advent of cloud
computing. Amazon, through its Amazon Elastic Compute
Cloud (Amazon EC2 [1]) service, has been a pioneer in this
area and offers to run computing nodes (virtual machines) and
pay only for the time for which they are in use (i.e., the time
between their launch and release. This economic model for
computing infrastructure has spread widely since and it is now
also implemented in the older high performance computing
world.

1) IaaS in the Cloud:

Infratructure as a Service, or IaaS, is one of the way to
consume services in the Cloud. It consists in virtual machines,
accessible over the Internet: some specific commands (or APIs)
allow to start virtual machines, interact with them and shut
them down. In Amazon EC2, you can rent virtual machine
environment in hourly units. You can choose memory size and
networks bandwidth as well as the performance of CPU. You
can also go for supercomputer-like characteristics, with high
performance CPU and sometimes GPU, and high bandwidth
network.

There are other IaaS with finer cost models than Amazon
EC2, such as Microsoft Azure [5], Google Compute Engine
[2] and Rackspace [6] that charge by minutes. Thus you can
increase and decrease the resources and can reduce the total
cost by using resources according to your exact needs.

2) Supercomputers with Flexible Cost Models:

Recently, supercomputer have entered the pay-as-you-go
model that has been popular in the Cloud. We give here two
examples that we use in our work (not in this paper).

Tsubame 2.5 [8] is one of the fastest supercomputer in
Japan: it is ranked eleventh in the of TOP 500 supercomputers
ranking in November 2013, with peak performance of 5609.4
TFLOPS [7]. It is operated by the Global Science Information
and Computing Center (GSIC) of the Tokyo Institute of
Technology. Tsubame includes various kind of machines, from
single node with middle performance to large number of nodes
with high performance including GPU; you are billed by the
second for your work on Tsubame.

K computer [3] is also one of the fastest supercomputer
in Japan: it was ranked fourth at TOP 500 in November 2013
with peak performance of 11280.4 TFLOPS [7]. It is produced
by Fujitsu and operated by RIKEN Advanced Institute for
Computational Science (AICS). The billing interval is an hour.

III. SYSTEM OVERVIEW

This section focuses on a description of our system for
adaptive VM provisioning for large-scale agent-based traffic
simulations.

A. General Description

Our system shares many of its concerns with other large-
scale computing systems on commodity machines (e.g., the
Cloud or supercomputers) and we do not pretend we built
it from scratch. However, our solution systematises various
approaches and methods and proposes to organise them in a
coherent set of modules, addressing what we consider the three
main concerns of such a large-scale computing on a variable
number of running nodes:

• Workload prediction: This is logically the first step
of any distributed computing when the number of
machines can vary depending on users’ preferences
and objectives, and the context (e.g., variability in
price or complexity of the processing). An accurate
prediction of what is required/available overall and for
each machine will help determine the characteristics
and number of machines needed.

• Data partitioning: Given users’ preferences and objec-
tives, the question is now to determine the best plan, in
terms of number of machines to run and partitioning

of the data. This covers a series of crucial issues that
have been addressed extensively in the literature.

• Resource management: This is the last concern, the
more applied too. It regards the implementation of the
plan defined at the previous step in accordance with
the objectives of the users. The issue here is that the
implementation of the plan needs to be looked after
well or it will lead to inefficient solutions that do not
scale.

Figures 1 and 2 give a more detailed description of how we
want to achieve our objective of adaptive resource provisioning
for large-scale distributed traffic simulation. Figure 1 shows the
fundamental elements of our system, and in particular the three
modules that manage the resources provisioning: the workload
predictor, the state partitioner and the resource controller.
The system is totally composed by master-worker architecture.
The master node controls resource provisioning and simulation
itself. The workers process the actual simulating scenario. Our
framework is constructed as a extension of the master in the
existing simulator.

Fig. 1: System Overview

Figure 2 shows the order in which each module is applied
by the master node. Before processing simulation scenar-
ios, in the workload predictor and the state partitioner, the
precomputation occurs to predict the simulation workload
and to partition the simulation state in advance. After that,
the actual simulation starts, which consists of the series of
iterations. In the iteration, the simulator’s master passes the
simulation progress to the modules. According to the progress
information, the modules defines appropriate resources in the
next iteration.

In the next subsections we give a detailed overview of the
three main modules in our solution.

B. Workload Predictor

The workload predictor predicts next steps’ workload of
each worker based on the precomputed result of the input
trips data, such as, departing time and precise route of each
vehicle. It is then possible for the predictor to totally predict
the workload in advance by using only the input trip data if
we assume followings:

1 // Initializing and precomputing

2 TrafficSimulator trafficSim = new TrafficSimulator();

3 WorkloadPredictor predictor

4 = new WorkloadPredicter(inputScenairoData);

5 StatePartitioner statePartitioner

6 = new StatePartitioner(inputScenarioData);

7 ResourceController controller = new ResourceController();

8 // Iteration

9 while (time < TIMETOFINISH) {

10 WorkloadInfo workloadInfo

11 = predictor.predictWorkload(time);

12 ResourceArrangement arrangement

13 = statePartitioner.partition(workloadInfo);

14 resourceController.provision(arrangement);

15 CrossPointsMeta cps = trafficSim.migrate(arrangement);

16 trafficSim.refreshCPsMetaData(cps);

17 time = trafficSim.runIteration();

18 resourceController.release(cps);

19 }

Fig. 2: The Computation Flow in Master

• The workload strongly depends on the number of
departing vehicles.

• Individual vehicles’ trip patterns do not impact the
total workload.

• Only statistical properties (e.g., total number of vehi-
cles, average trip path length) impact the workload.

C. Simulation State Partitioner

The simulation state partitioner decides on the number and
characteristics of simulation workers required. Partitioning a
model’s data for distributed simulation is another critical issue
that attracted a lot of research in the area (see for instance
[29]). Recently, some flexible partitioning has been proposed
by Bragard et al. [12], [13] and they claim it is applicable
to traffic simulation. We believe it would be possible to use
such adaptive partitioning in our own system and we actually
consider it for some future work.

In the current version of our system, we assume the
following property about the input data (see Section V for
more details):

• The distribution of vehicles’ departing points is uni-
form, thus the workload pattern depends on only the
number of departing vehicles and not their location (in
practice we use a randomization).

• We run the simulation many times with very minor
changes, which does not impact the total performance.
Thus, we can totally find the execution time from the
second time. For example, we simulate what happens
if the new road are added, what happens if the road are
blocked, and so on. And the execution time is hardly
changed in such minor changes.

Based on these assumption, we can define the appropriate
number of workers at each iteration in following ways. In
advance, we find elapsed time saturation numbers of workers
by analysing the strong scaling with each workload pattern. For

example, if the elapsed time does not improve by adding the
worker from 4 to 5 with 500 departing vehicles, the saturation
number of 500 departing vehicles is 4. After that, in the traffic
simulation, the partitioner receives predicted workload from
the predictor and defines the appropriate number of workers.
According to the number of workers, the partitioner partitions
the road map by the same way as Megaffic, which use k-ways
graph partitioning algorithms.

D. Resource Controller

The resource controller controls physical or virtual ma-
chines, depending on the environment. What we have in
mind is an Infrastructure as a Service (IaaS) model with
virtual machines provisioned when needed and released when
not required anymore; but obviously other systems can be
envisaged.

In this IaaS context, the controller gets its orders from the
partitioner and either launches new machines via the relevant
IaaS API if it requires the extra machine, or releases unused
machines. Resource provisioning procedures such as starting
VMs and setting up their configuration is independent of the
simulation. Therefore it can be done in the background.

It is important to notice that the resource controller works
better if the prediction is made in advance, and not at the last
minute (e.g., need for new VM decided when more computing
power is already needed and not before it is required). The time
required for provisioning and configuring machines has to be
included in the state partitioning plan.

IV. EFFICIENT SIMULATION STATE MIGRATION FOR

TRAFFIC SIMULATION

This section focuses on synchronisation and communica-
tion for a large-scale agent-based traffic simulation such as
Megaffic. We first detail the synchronisation mechanisms in
Megaffic. Then we discuss some naive, synchronous, solution
which does not destroy consistency of the simulating result.
After that, we describe two techniques to make the migration
faster than using naive synchronous migration: asynchronous
and staged asynchronous migration. The key idea of the tech-
niques is overlapping the migration cost with the simulation
execution, where there is workload imbalance between workers
and some workers idle until all workers finish processing.

A. Synchronisation and Migration in Megaffic

As we said above, our system is based on a Java im-
plementation of Megaffic (see also Section V for more de-
tails). Megaffic uses a bulk synchronous processing, with one
iteration representing 10 seconds in the real world. Each
iteration consists of two phases, individual tasks first and then
communication of vehicles between workers. In the individual
task phase, each worker processes vehicles situated on roads
assigned to it and computes where each vehicle shall be at the
next iteration. After the vehilces’ positions computation comes
the communication phase: vehicles are exchanged between
workers according to where vehicles should be at the next
iteration point. In order to keep the simulation internal clock
synchronised and keep consistency for the simulating result, a
barrier synchronization occurs among the workers at the end
of individual task phase and of communication phase. See
for example iteration 1 in Figure 3 for an illustration of the
three steps mentioned above: individual tasks (computation

of vehicles’ position), communication and synchronisation
barrier.

Fig. 3: Naive Synchronous Migration

Beside, in order to change the number of workers during
the simulation while keeping consistency of the simulating
result, we need to migrate part of the simulation state between
workers. But migration cost is high as it requires a lot of
communication between workers, and serialization and deseri-
alization of simulation objects, which increases execution time
and CPU cost. Suppose Ca is the cost to migrate 1 agent, Cr

is the cost to migrate 1 road, Na(i) is the number of migrating
agents in roadi, and Nr is the number of migrating roads. The
total cost of migration Ctotal is:

Ctotal = Cr ×Nr +
∑

i=0,1,2,,..Nr

{Ca ×Na(i)} (1)

Each road migration is independent, thus you can easily
parallelize it and if there are enough processes and enough
network bandwidth, the execution time is:

TparaTotal = max
i∈{0,1,2,··· ,Nr}

{T ime(Cr +Na(i)× Ca), } (2)

where T ime(x) gives the time required to process the corre-
sponding cost.

B. Basic Ideas for a Migration Process in Megaffic

Now, to migrate the simulation state safely, there are two
requirements.

First, migrations cannot go at a more fine-grained level
than the road segment level. In Megaffic, the simulation state
is represented by a set of roads with cross points and the
simulation is processed by road segments. Thus if a road is
divided by the migration, the simulation state is changed and
the minimum unit of processing is changed, which we do not
want here.

Second, migrations have to occur after all vehicles are
exchanged between workers during the communication phase,
i.e., when no more vehicle needs to move between workers.
Otherwise, if there are still vehicles which need to move while
workers and partitions are being modified, there are clear risks
of inconsistencies.

In our system, the resource controller has to wait for all
the workers to finish the synchronisation of all the vehicles.
The resource controller can then repartition the model and
crosspoints, roads and vehicles are exchanged between workers
before the next iteration. Figure 3 shows a basic example
of such a migration process, that we call naive synchronous
migration: the scenario on the top shows a passage from 4
workers to 3 workers, while the scenario on the bottom of
the figure represents a simulation with 3 workers that grows
to 4 workers. In both scenarios the migration happens after
the processing of individual tasks and the communication/syn-
chronisation. This makes sure that everything is coherent in
the simulation model, and that, for instance, worker B’s data
is given to the other workers correctly (top scenario) or that
workers A, C and D’s data is shared with worker B (bottom
scenario).

C. Basic and Staged Asynchronous Migration

To reduce the migration overhead that we can observe in
Figure 3 we propose two asynchronous migration schemes
that overlap migration and individual tasks’ processing, hence
limiting the waiting time of the different workers.

Fig. 4: Asynchronous Migration

A basic asynchronous migration (see Figure 4) (i) happens
after the individual tasks’ processing when the number of
workers decreases and gives to each worker the new data
to process before the synchronisation (top example); or (ii)
happens before each workers’ own processing and after the
processing of the data that is going to be exchanged, when
a new worker is introduced in the system (bottom example).
In both cases the processing of the new/old data is done in
parallel.

A staged asynchronous migration is another scheme where
the migration is processed step by step during several iter-
ations. This allows the migration to overlap better with the
individual tasks’ processing and to be faster. Figure5 shows
the example of a staged asynchronous migration divided in 3
iterations.

V. EVALUATION

This section has two distinct objectives:

• The first one is a study of the performance of the
distributed simulation when the number of workers
varies, through a strong scalability evaluation. This
gives us an interesting insight into what the simulator
is able to cope with depending on the number of
workers and the load.

• The second objective consists in a performance eval-
uation of the adaptation mechanism, in particular the
migration techniques and the gains in simulation time
offered by the modification of the number of workers.

A. System Setups

Our simulator is based on a Java implementation of
Megaffic. The Java standard serialization is known to be a
bottleneck when there are a lot of serialisation; we then
decided to use Messagepack (version 0.6.6), an efficient binary
serialization format. Moreover, as serialisation in our system
occurs during the migration (of states between workers) and
the communication (of vehicles between workers), we need an
efficient communication library, to make sure the performance
of the simulation is not impacted. We then use Netty (ver-
sion 3.2), an NIO communication framework that has good
throughput and low latency.

We use Google Compute Engine as our Infrastructure as a
Service solution (see Table I), with a maximum of 17 n1–
standard–1 instances (16 workers and 1 master). The n1–
standard–1 instances have 1 virtual CPU and 3.8 GB of
Memory. All instances belong to the same zone (Europe-
West1-b) and run a CentOS–6–v20140619 image with Java
SE 7 installed.

Service Google Compute Engine

Instance Type n1–standard–1

(1 vCPU, 3.8GB Mem)

Zone Europe-West1-b

OS image CentOS–6–v20140619

Java VM Java SE 7 Update 65

(OpenJDK 64-Bit Server)

TABLE I: Virtual machines’ configurations.

Table II shows the simulation setups of our main scenario.
It consists of 24 hrs of traffic data of Tokyo collected by
the MLIT (Ministry of Land, Infrastructure, Transport and
Tourism) in 2011.

Figure 6 shows the typical number of departing vehicles
per 10 seconds of real time in Tokyo (it corresponds to the
workload for the simulation). We use the full road network of
Tokyo, i.e., 770,192 cross points and 2,089,374 road segments.
One thing that is missing in the data collected by the MLIT
is the OD matrix (origin and destination for each trip). We
generate it randomly, as well as the exact route of every

Fig. 5: Staged Asynchronous Migration

Road Map Full road network of Tokyo

– # of Cross Points 770,192

– # of Roads 2,089,374

Scenario 24 hrs of Tokyo’s traffic

– Sum of Departing Vehicles 10,000,000

– Trips Origin/Destination Random

– Time Unit 10 sec/iteration

TABLE II: Scenario’s input data.

vehicle. Each iteration of the simulation corresponds to 10
seconds of real time, hence the 24 hour scenario corresponds
to 8,640 iterations in the simulator.

Fig. 6: Number of departing vehicles in a typical 24 hr scenario
of Tokyo.

B. Evaluation of the Optimal Number of Workers

Here we want to study the impact of the number of vehicles
(i.e., the load) on the system depending on the number of

workers. This will give us an evaluation of the optimal number
of workers required by the system depending on the load. We
create a strong scaling evaluation of the system, with 5 to 16
workers, and 400 to 1,700 departing vehicles at each step (the
extreme values given by the scenario, see Figure 6). The results
of this evaluation are given in Figure 7, with the corresponding
saturation points, i.e., when adding workers does not impact
performance anymore. Note that saturation points for more
than 1,000 vehicles is higher than the 16 workers limit that
we have so we stick to this value of 16. From that study we

Fig. 7: Strong scaling evaluation and saturation points for each
rate of departing vehicles.

extract the optimal values of number of workers per load as
given in Table III.

C. Performance Evaluation of the System

Here we evaluate the performance of the migration tech-
niques and our system as a whole using the number of
departing vehicles given by the Tokyo 2011 scenario.

of departing vehicles # of workers

400 to 499 10

500 to 599 11

600 to 699 12

700 to 799 13

800 to 899 14

900 to 999 15

1000 to 1700 16

TABLE III: # of workers suggested depending on the load.

Figure 8 shows the average elapsed time of one iteration
(including staged asynchronous migration) when changing the
number of workers. In staged migration, the more migrating
smaller parts, the more overlapped with individual tasks. And
finally, each migrating execution is almost all overlapped. For
example, in the migration from 10 workers to 11 workers, the
execution is approximately fully overlapped in 50 separations
and finally became 26 milliseconds at one iteration, which
is approximately 3% of naive synchronous migration (876
milliseconds), as mentioned in Section IV. In the migration,
even if the staged migration, some overhead for the migration
remains. The overhead is influenced by the number of migrat-
ing workers (not by the number of vehicles) and the more
workers are migrating, the more overhead it causes. Thus, the
elapsed time are increasing from ”10 to 11” to ”15 to 16”.

Fig. 8: Time of one iteration including (staged) migration.

Figure 9 shows the cost performance of the system by 50
separated staged migration compared to the non elastic way
with 10, 12, 14 and 16 workers. “Cost” is defined as the sum
of instances’ running time from starting to releasing. In the 24
hour scenario, the system can reduce the cost of the simulation
by up to 12 % with 16 workers compared to a non elastic way.
If we focus to the 8 p.m. to 6 a.m scenario, where the number
of departing vehicles changes a lot, the reduction is even bigger
(23%) compared to the non elastic execution with 16 workers.

VI. RELATED WORK

The potential of the high performance application on the
cloud computing environment has been investigated in several

Fig. 9: Cost reduction.

groups. For example in [20], they analyzed the typical scientific
applications on the Amazon EC2 and they compared the per-
formance with their supercomputer and computer cluster. They
showed the detail performance characteristic and limitation of
Amazon EC2 compared to the supercomputer and computer
cluster. Also as with our proposal in [16], they proposed the
payment cost reducing way for scientific application. They
used the resource provisioning based on the task scheduling
technique. They proposed the two novel heuristic scheduling
algorithms for reducing the payment cost of scientific applica-
tion.

Shengming Li, et al. [21] proposed the multi-VM provi-
sioning technique similar to our approach. Their proposal is a
combination of TBAMP (Time-based Billing Aware Multi-VM
Provisioning algorithm) and ARIMA (autoregressive integrated
moving average) and enables to reduce the cloud comput-
ing payment cost. This provisioning method is composed of
prediction module and partitioning module, which is very
similar to our proposed way. The main difference between our
research and their research is that in our traffic simulation,
the workers have simulation state during execution while
their target applications do not have any state in process,
for example, cache server or web server. In such application,
it is not important to keep consistency between workers or
each worker has same state during execution. In contrast,
our traffic simulation requires to keep consistency even if the
number of worker is changed during execution, and to move
the simulation state of the workers.

Recently, a lot of works about efficient computational
resource allocation are proposed by the resource provider.
For example, in the research [17], they proposed a new
method to reduce the energy cost and provision resources
as long as keeping some SLAs. This technique consists of
prediction workload scheme and reactive allocating scheme
like ours. In this research they divide the workloads into
two types, coarse time scale (e.g., hours or days) and finer
time scales (e.g., minutes). And then if the workload is
typed as ”coarse”, resources are provisioned based on the
result of prediction; if it is typed as ”finer”, resources are
provisioned based on reactive allocation technique. There are
several similar approaches using combination of prediction and
reactive provisioning [10] [18] [28]. Unlike these research,
our research is for users or customers of computer resources,
not for the computer resource provider. Therefore, there are

some differences in assumptions. First, we can use application
specific and semantic data. For example, we can get the
number of vehicles in advance. Thus we can predict based
on traffic semantics such as ”it is the noon” or ”it is the early
morning”. These accurate the more detail and easier prediction
than using general profiling. Second, we assume unlimited use
of resources. We can provision as many machines as we pay.

VII. CONCLUSION

In this research, we presented the framework for adaptive
resource provisioning in traffic simulation, which provides the
method to reduce the utilization cost of computer resources.
Also, we proposed the technique to migrate the simulation
objects efficiently by overlapping the simulating processes.

For future works, the modules of the system should be
sophisticated. In the predictor, we should make the prediction
more accurate with mathematical ways or machine learning
techniques. In this proposal, we assumed that the simulation
workload depends on only statical property of departing vehi-
cles. Such assumption is not accurate, for example, in the case
that there is traffic congestion in the simulation. In such cases,
individual vehicle trips impact the total performance. To solve
the problem, for example, we can predict traffic flows more
precisely by using ARIMA (autoregressive integrated moving
average), which has been proposed in previous researches. To
sophisticate the simulation state partitioner, we should solve
the optimization problem. Actually, the partition problem can
be represented as the cost minimum problems subject to the
admissible maximum execution time, the execution time of
individual tasks, the execution time of vehicle communication
and the elapsed time of migration. To solve this problem, for
example, by using incremental graph partitioning technique,
we can optimize the cost performance more accurately and
effectively than this proposal.

ACKNOWLEDGMENT

This work was supported, in part, by JST CREST and
JSPS KAKENHI, grant numbers 25700008 and 26540161,
by Science Foundation Ireland grant 10/CE/I1855 to Lero
(the Irish Software Engineering Research Centre, www.lero.ie)
and by Science Foundation Ireland Industry Fellowship grant
13/IF/12789.

REFERENCES

[1] Amazon EC2. https://aws.amazon.com/ec2/.

[2] Google Compute Engine. https://cloud.google.com/products/compute-
engine/.

[3] K computer. http://www.kcomputer.jp/en/.

[4] Matsim. http://www.matsim.org/.

[5] Microsft Asure. http://azure.microsoft.com/.

[6] Rackspace Cloud. http://www.rackspace.com/.

[7] TOP500. http://www.top500.org/.

[8] Tsubame 2.5. http://www.gsic.titech.ac.jp/en/tsubame/.

[9] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. Sumo -
simulation of urban mobility: An overview. In SIMUL, Barcelona,
Spain, 2011.

[10] M. N. Bennani and D. Menasce. Resource allocation for autonomic data
centers using analytic performance models. In ICAC, pages 229–240.
IEEE, 2005.

[11] Q. Bragard, A. Ventresque, and L. Murphy. dSUMO: towards a
distributed SUMO. In SUMO Conference, 2013.

[12] Q. Bragard, A. Ventresque, and L. Murphy. Global Dynamic Load-
Balancing for Decentralised Distributed Simulation. WSC, 2014.

[13] Q. Bragard, A. Ventresque, and L. Murphy. Synchronisation for
Dynamic Load Balancing of Decentralised Conservative Distributed
Simulation. PADS, 2014.

[14] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. ACM SIGPLAN Notices,
40(10):519–538, 2005.

[15] N. Collier and M. North. Repast HPC: A platform for large-scale

agent-based modeling. Wiley, 2011.

[16] H. M. Fard, T. Fahringer, and R. Prodan. Budget-constrained resource
provisioning for scientific applications in clouds. In CloudCom, vol-
ume 1, pages 315–322. IEEE, 2013.

[17] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and M. Marwah. Hybrid
resource provisioning for minimizing data center SLA violations and
power consumption. Sustainable Computing: Informatics and Systems,
2(2):91 – 104, 2012.

[18] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper.
Adaptive quality of service management for enterprise services. ACM

Transactions on the Web, 2(1):8, 2008.

[19] M. Haklay and P Weber. Openstreetmap: User-generated street maps.
Pervasive Computing, 7(4):12–18, October 2008.

[20] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H. Wasserman J, and N. Wright J. Performance analysis of high
performance computing applications on the amazon web services cloud.
In CloudCom, pages 159–168. IEEE, 2010.

[21] S. Li, Y. Wang, X. Qiu, D. Wang, and L. Wang. A workload prediction-
based multi-vm provisioning mechanism in cloud computing. In Asia-

Pacific Network Operations and Management Symposium, pages 1–6.
IEEE, 2013.

[22] T Osogami, T Imamichi, H Mizuta, T Morimura, R Raymond, T Suzu-
mura, R Takahashi, and T Ide. IBM Mega Traffic Simulator. Technical
report, Technical Report RT0896, IBM Research–Tokyo, 2012.

[23] T. Osogami, T. Imamichi, H. Mizuta, T. Suzumura, and T. Ide. Toward
simulating entire cities with behavioral models of traffic. IBM Journal

of Research and Development, 57(5):6:1–6:10, Sept 2013.

[24] M. Paolucci and et al. Towards a living earth simulator. The European

Physical Journal Special Topics, 214(1):77–108, 2012.

[25] B. Raney, N. Cetin, A. Völlmy, M. Vrtic, K. Axhausen, and K. Nagel.
An agent-based microsimulation model of swiss travel: First results.
Networks and Spatial Economics, 3(1):23–41, 2003.

[26] T. Suzumura and H. Kanezashi. Accelerating large-scale distributed
traffic simulation with adaptive synchronization method. In ITS World

Congress, 2013.

[27] T. Suzumura, S. Kato, T. Imamichi, M. Takeuchi, H. Kanezashi, T. Ide,
and T. Onodera. X10-based massive parallel large-scale traffic flow
simulation. In ACM SIGPLAN X10 Workshop, page 3. ACM, 2012.

[28] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In
ACM SIGMETRICS Performance Evaluation Review, volume 33, pages
291–302. ACM, 2005.

[29] A. Ventresque, Q. Bragard, E. S. Liu, D. Nowak, L. Murphy,
G. Theodoropoulos, and J. Qi Liu. SParTSim: A space partitioning
guided by road network for distributed traffic simulations. In DS-RT,
pages 202–209. IEEE, 2012.

