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1 Introduction

On Ω = (0,1)n, and with ΓD the union of one or more (n− 1)-dimensional faces of
∂Ω , for given f ∈ (H 1

0,ΓD
(Ω))′, we study the numerical solution of the problem of

finding u ∈ H 1
0,ΓD

(Ω) such that

a(u, v) :=
∫

Ω

c0uv +
n∑

m=1

cm∂mu∂mv = f (v)
(
v ∈ H 1

0,ΓD
(Ω)

)
, (1.1)

where c0 ≥ 0 and cm > 0 (m = 1, . . . , n) are constants.
PDEs such as (1.1) in spatial domains of high dimension arise in numerous areas.

We only mention mathematical finance (valuation of derivative contracts on large bas-
kets), elliptic homogenization problems with multiple separated length scales (e.g.,
[23]), deterministic methods for stochastic PDEs [28], the N -electron Schrödinger
equation in molecular dynamics [29] and problems from molecular biology.

Since the work of R. Feynman [13], (strong) solutions u(x) at a point x ∈ Ω of
the Dirichlet Problem (1.1) are well known to be characterized by the first exit-time
of the n-dimensional Wiener process Wx

t started at t = 0 in x ∈ Ω (see, e.g., [14] and
the references therein for a detailed account). For large dimension n, this probabilistic
characterization of u(x) can be used, in conjunction with the Monte Carlo Simulation
of sample paths of Wx

t , to obtain numerical approximations to u(x) in a single point
x ∈ Ω of accuracy O(1/

√
m), where m denotes the number of sample paths; the

work for generating m paths in R
n scales linearly with n.

Here, our aim is to develop deterministic approximations of u(x) at all points
x ∈ (0,1)n that are efficient for large n. With a standard, piecewise polynomial ap-
proximation procedure in (0,1)n, the error in energy norm

||| · ||| := a(·, ·) 1
2 (1.2)

on H 1
0 (Ω) behaves at best as ∼N−(d−1)/n, where d ≥ 2 is the polynomial order

and N is the number of degrees of freedom. The rate (d − 1)/n being inversely
proportional to the space dimension n is known as curse of dimensionality.

Using that Ω = (0,1)n is a tensor product domain, the curse of dimensionality
can be circumvented by applying hyperbolic cross approximation or sparse grids [2,
30]. With this approach, for any fixed n the error behaves as ∼(logN)(n−1)(d−1) ×
N−(d−1), or, with some small modification (see [20]), even as ∼N−(d−1), assum-
ing that u ∈ ⋂n

k=1
⊗n

m=1 Hd−1+δkm(0,1) or, for some ε > 0, u ∈ ⋂n
k=1

⊗n
m=1 ×

Hd−1+δkm+(1−δkm)ε(0,1), respectively. It can be shown that these regularity condi-
tions are satisfied for smooth f that satisfy homogeneous Dirichlet boundary condi-
tions of a sufficiently high order (for n ≥ 2, an order larger than d− 5

2 − 1
n

suffices). In
a forthcoming work [10], we will show that for n ≥ 2, ΓD = ∂Ω and general smooth
f that do not vanish at the boundary, the solution u ∈⋂n

k=1
⊗n

m=1 Hs+δkm(0,1) if
and only if s < 1

2 + 1
n

, essentially thus being the rate of these sparse approximations
regardless of d .
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The key to overcoming regularity restrictions is to apply nonlinear approximation.
Let us write the Dirichlet boundary as

ΓD :=
n⋃

m=1

[0,1]m−1 × zm × [0,1]n−m,

where for 1 ≤ m ≤ n, zm ⊆ {0,1} with
⋃n

m=1 zm 	= ∅. For z ⊆ {0,1}, let {ψ(z)
λ :

λ ∈ ∇z} be a Riesz basis for L2(0,1) consisting of wavelets of order d , such that
{2−|λ|ψ(z)

λ : λ ∈ ∇z} is a Riesz basis for H 1
0,z(0,1). As usual, here |λ| ∈ N0 denotes

the level of ψ
(z)
λ , and for 	 ∈ N0, #{λ ∈ ∇z : |λ| = 	} is of the order of 2	. Now for

any n, the normalized tensor product basis

� :=
{

ψλ :=
n⊗

m=1

ψ
(zm)
λm

/∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n⊗
m=1

ψ
(zm)
λm

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ : λ ∈ ∇ :=

n∏
m=1

∇zm

}
(1.3)

is a Riesz basis for H 1
0,ΓD

(0,1)n, even uniformly in c0 ≥ 0 and cm > 0 (m = 1, . . . , n)
when this space is equipped with norm ||| · |||. This means that the condition number
of � with respect to ||| · |||, being the quotient

sup
0	=v∈	2(∇)

|||∑λ∈∇ vλψλ|||2
‖v‖2

	2(∇)

/
inf

0	=v∈	2(∇)

|||∑λ∈∇ vλψλ|||2
‖v‖2

	2(∇)

(1.4)

is bounded, uniformly in c0 ≥ 0 and cm > 0 (m = 1, . . . , n). With |λ| := (|λ1|, . . . ,
|λn|), for any 	 ∈ N0, {ψλ : λ ∈ ∇,‖|λ|‖1 ≤ 	} spans the corresponding sparse grid
space of dimension N being of the order of 2		n−1.

Instead of restricting ourselves to sparse grid approximation, we consider approx-
imations to u from the span of {ψλ : λ ∈ �N }, where �N ⊂ ∇ is any subset with
#�N = N . Because of the boundedness of the condition number, approximating u

by
∑

λ∈�N
vλψλ in ||| · ||| is equivalent to approximating its representation u with re-

spect to � by (vλ)λ∈�N
in ‖ · ‖	2(∇). We have inf{v∈	2(∇):supp v⊂�N } ‖u − v‖	2(∇) =

‖u − u|�N
‖	2(∇), where u|�N

is the vector in 	2(∇) that coincides with u on its sup-
port being �N . For approximating u in ‖·‖	2(∇), a best choice for �N is one such that
u|�N

is a best N -term approximation to u, denoted as uN , meaning that it contains
the N largest coefficients in modulus of u.

The class

As∞ :=
{

v ∈ 	2(∇) : ‖v‖As∞ := sup
ε>0

ε× [min
{
N ∈ N0 : ‖v− vN‖	2(∇) ≤ ε

}]s
< ∞

}
1

gathers under one roof all v whose best N -term approximations converge to v with
rate s > 0. Since for ε < ‖v‖, the value of N in the definition of ‖v‖As∞ is positive,
note that ‖v‖As∞ ≥ supε<‖v‖	2(∇)

ε = ‖v‖	2(∇). Although As∞ is non-empty for any

1 We have 2−s ||| · |||As∞ ≤ ‖ · ‖As∞ ≤ ||| · |||As∞ , where |||v|||As∞ := supN∈N0
(N + 1)s‖v− vN‖	2(∇) is the

common definition of the (quasi) norm on As∞.
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s, as it contains any finitely supported vector, in view of the order d of polynomial
reproduction being applied, the representation v of an arbitrarily smooth v cannot be
expected to be in As∞ for s > d − 1. On the other hand, in [26], Nitsche showed that
for sufficiently smooth wavelets, e.g., spline wavelets, for 0 < s < d − 1 and with
τ = (s + 1

2 )−1,

v ∈ As
τ ⇐⇒ v ∈

n⋂
k=1

n⊗
τ

m=1
Bs+δmk

τ

(
Lτ (0,1)

)
,

where As
τ := {v ∈ 	2(∇) :∑N∈N

(Ns‖v − vN‖	2(∇))
τN−1 < ∞}, Bt

p(Lp(0,1)) is
a Besov space measuring “t orders of smoothness in Lp”, and

⊗
τ denotes the so-

called “τ tensor product”. Note that As
τ is even (slightly) smaller than As∞.

The upshot of this result is that
⋂n

k=1
⊗ n

τm=1 B
s+δmk
τ (Lτ (0,1)) is much larger,

with an increasing difference when s and n get larger, than
⋂n

k=1
⊗n

m=1 Hs+δkm(0,1),
membership of which is needed to guarantee the same rate with sparse grid approxi-
mation.

In particular, for two and three space dimensions, in [25] it was shown that for
general, sufficiently smooth f , the solution u of (1.1) is in As∞ for any s < d − 1,
and actually even that the best N -term approximations converge with rate d − 1 up
to some log-factors (in a forthcoming paper, we will even show that u ∈ Ad−1∞ ). The
proof in [25] makes use of the splitting of u into known singular functions and a
smooth remainder, which is also available for (1.1) in more than three dimensions
in [8]. It indicates the potential of best N -term approximation in tensor product bases.
For background on nonlinear approximation, we refer for example to [3, 9].

The above considerations concern best N -term approximations that, however, are
not feasible in practice, already because u is not given explicitly. It can be found as
the solution of the infinite matrix-vector problem

Au = f, (1.5)

with “stiffness matrix” A = [a(ψμ,ψλ)]λ,μ∈∇ and f = [f (ψλ)]λ∈∇ . This infinite
matrix problem is equivalent to (1.1).

In [4, 5], optimal adaptive algorithms were introduced for solving (1.5). It was
shown that whenever for some s > 0, u happens to belong to As∞, then, under two
assumptions discussed below, the sequence of approximations produced by these al-
gorithms converge to u with this rate s, requiring a number of operations equivalent
to their length. The first assumption is that one has available a routine RHS that given
an ε > 0 produces an approximation fε := RHS[ε] with ‖f − fε‖ ≤ ε and

rhss := sup
0<ε<‖f‖	2(∇)

ε × [
# operations required by the call RHS[ε]]s < ∞. (1.6)

The second assumption is that for some s∗ > s, A is s∗-computable, which is a
quantitative measure of how well A can be approximated by computable sparse ma-
trices. This assumption implies that A : As∞ → As∞ is bounded [4], and thus that
‖f‖As∞ � ‖u‖As∞ , where the � symbol has its usual definition recalled at the end of
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this introduction. So in any case if we could realize (quasi-) best N -term approx-
imations for f in O(N) operations, then the resulting routine RHS would satisfy
rhss < ∞, in particular with rhss � ‖u‖As∞ .

In the tensor product basis setting, applying as a building block univariate
biorthogonal spline wavelets, in [27] we proved that A is s∗-computable for some
s∗ > d − 1, which s∗ is thus larger than any s for which u ∈ As∞ might be expected.
We showed this result in a more general setting than we consider here. Most impor-
tantly, we allowed general, i.e., non-separable, smooth variable coefficients in the dif-
ferential operator, meaning that we had to design and analyze a quadrature scheme.
Our results imply that for any n, and s ∈ [0, d − 1], the adaptive wavelet schemes
produce an approximation to u ∈ As∞ within any given tolerance 0 < ε � ‖f‖	2(∇) in
‖ · ‖	2(∇) with a support length not exceeding

D1ε
−1/s |u|1/s

As∞ ,

taking a number of operations not exceeding

D2ε
−1/s |u|1/s

As∞ + D3ε
−1/srhs1/s

s ,

where D1, D2 and D3 are some constants, independent of c0 ≥ 0 and cm > 0
(m = 1, . . . , n). Only knowing that u ∈ As∞, up to the factors D1 or D2 +
D3[rhss/|u|As∞]1/s , this length or number of operations are indeed the best that
generally can be expected.

What we did not analyze, however, is the

dependence of the constants D1, D2, D3 and the condition number of � with
respect to ||| · ||| on the space dimension n.

Concerning the latter, note that instead of approximating u, our ultimate goal is to
approximate u in ||| · ||| within some given tolerance with, up to some constant factor,
the smallest linear combination of wavelets.

The condition number of � with respect to ||| · ||| is equal to the spectral condi-
tion number κ(A) of A, which for biorthogonal wavelets can be expected to grow
exponentially with n. Since in any case also D2 is an increasing function of κ(A), it
may be that, although optimal for any fixed n, the method has only practical value for
relatively small values of n.

In view of this, in the current paper we apply univariate L2(0,1)-orthonormal,
piecewise polynomial wavelets as introduced in [11, 12, 19]. In this case, κ(A) is
bounded uniformly in n, and c0 ≥ 0 and cm > 0 (m = 1, . . . , n). Thanks to both the
L2-orthonormality and the fact that the wavelets are piecewise polynomial, the stiff-
ness matrix A appears to be very close to a sparse matrix. We give a detailed descrip-
tion of an adaptive wavelet algorithm for which aforementioned statements are valid
with

D1,
D2
n

,D3 constants, independent of n and c0 ≥ 0, cm > 0 (m = 1, . . . , n).

So only the constant involved in the operation count may grow with the space dimen-
sion, but only linearly.
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The algorithm we use is a modification developed in [16] of the adaptive wavelet
method from [4]. With this modification, the recurrent coarsening of the iterands is
avoided, which yields a quantitatively better performing algorithm. In the current pa-
per, an additional quantitative improvement will be obtained by the use of a modified
approximate matrix vector routine APPLY that will use a posteriori information to
optimize the accuracies with which the columns of the infinite stiffness matrix are
approximated.

The remainder of this paper is organized as follows. In Sect. 2, from [11] we recall
the construction of L2(0,1)-orthonormal, piecewise polynomial wavelets. We show
that, as a consequence of the L2(0,1)-orthonormality, the stiffness matrix A of the
n-dimensional Laplacian in tensor product wavelet coordinates is well-conditioned
uniformly in n.

In Sect. 3, we construct sparse approximations to A. Using that the wavelets are
L2(0,1)-orthonormal and piecewise polynomial, we construct approximations that
with a multiple of jn non-zeros per column have an error of order 2−j/2.

Sect. 4 deals with adaptive wavelet schemes for solving general bi-infinite matrix-
vector equations with symmetric positive definite system matrices. The construction
and the theory behind these schemes from [4, 16] is summarized. The most time-
consuming ingredient of such schemes is the approximate matrix-vector routine AP-
PLY. We develop a new version of this routine that performs an optimization based
on a posteriori optimization, and which has strongly improved quantitative properties.

In Sect. 5, we specialize the results about adaptive wavelet schemes to the appli-
cation of solving problem (1.1) in high space dimensions.

Finally, in Sect. 6 we discuss the implementation of the scheme and present nu-
merical results.

In this paper, unless explicitly stated otherwise, by C � D we will mean that C

can be bounded by a multiple of D, independently of parameters which C and D may
depend on, in particular the space dimension n or the coefficients cm (0 ≤ m ≤ n).
Obviously, C � D is defined as D � C, and C � D as C � D and C � D.

We use notations like �v or �B to indicate vectors in 	2(∇z) or linear mappings
	2(∇z) → 	2(∇z), respectively, and v or B to indicate vectors in 	2(∇) or linear
mappings 	2(∇) → 	2(∇). We use the notation ‖ · ‖ to abbreviate all of ‖ · ‖L2(0,1),
‖ · ‖L2(0,1)n , ‖ · ‖	2(∇z), ‖ · ‖	2(∇z)→	2(∇z), ‖ · ‖	2(∇) and ‖ · ‖	2(∇)→	2(∇). We write
〈·, ·〉 instead of 〈·, ·〉	2(∇z) or 〈·, ·〉	2(∇). We use the notation ||| · |||, earlier defined as

a(·, ·) 1
2 , also to denote 〈A·, ·〉 1

2 . Note that for any v ∈ 	2(∇), |||v||| = |||∑λ∈∇ vλψλ|||.

2 Univariate L2(0,1)-orthonormal, Piecewise Polynomial Wavelets

For z ⊆ {0,1}, let {ψ(z)
λ : λ ∈ ∇z} be a Riesz basis for L2(0,1), normalized with

respect to ‖ · ‖, such that {2−|λ|ψ(z)
λ : λ ∈ ∇z} is a Riesz basis for H 1

0,z(0,1). Let

λ
(0,z)
max , λ

(1,z)
max (≥ 1) and λ

(0,z)
min , λ

(1,z)
min (≤ 1) be the smallest or largest constants such

that
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λ
(0,z)
min ≤

∥∥∥∥
∑
λ∈∇z

�vλψ
(z)
λ

∥∥∥∥
2/∥∥�v∥∥2 ≤ λ(0,z)

max ,
(�v ∈ 	2(∇z)

)
,

(2.1)

λ
(1,z)
min ≤

∥∥∥∥
∑
λ∈∇z

�vλψ̇
(z)
λ

∥∥∥∥
2/∑

λ∈∇z

∣∣�vλ

∣∣2∥∥ψ̇(z)
λ

∥∥2 ≤ λ(1,z)
max ,

((
2|λ| �vλ

)
λ
∈ 	2(∇z)

)
.

(Throughout this paper, a “dot” on top of a univariate function denotes its derivative).
Then, with ∇ :=∏n

m=1 ∇zm , by a tensor product argument we have

n∏
m=1

λ
(0,zm)
min ≤

∥∥∥∥∥
∑
λ∈∇

vλ

n⊗
k=1

ψ
(zk)
λk

∥∥∥∥∥
2/

‖v‖2 ≤
n∏

m=1

λ(0,zm)
max ,

(
v ∈ 	2(∇)

)
,

λ
(1,zm)
min

∏
k 	=m

λ
(0,zk)
min ≤

∥∥∥∥∥
∑
λ∈∇

vλ∂m

n⊗
k=1

ψ
(zk)
λk

∥∥∥∥∥
2/∑

λ∈∇
|vλ|2

∥∥ψ̇(zm)
λm

∥∥2 ≤ λ(1,zm)
max

∏
k 	=m

λ(0,zk)
max

(1 ≤ m ≤ n, (2|λm|vλ)λ∈∇ ∈ 	2(∇)), with bounds that cannot be improved. By sum-
ming over these inequalities, multiplied by c0 or cm (1 ≤ m ≤ n), we infer that

min
m

min
(
λ

(0,zm)
min , λ

(1,zm)
min

) ∏
k 	=m

λ
(0,zk)
min

≤ |||∑λ∈∇ vλ
⊗n

k=1 ψ
(zk)
λk

|||2∑
λ∈∇[c0 +∑n

m=1 cm‖ψ̇(zm)
λm

‖2]|vλ|2
≤ max

m
max

(
λ(0,zm)

max , λ(1,zm)
max

) ∏
k 	=m

λ(0,zk)
max

(([c0 +∑n
m=1 cm4|λm|] 1

2 vλ)λ ∈ 	2(∇)). In view of the definition of � in (1.3) and

that of the stiffness matrix A, using that |||⊗n
m=1 ψ

(zm)
λm

|||2 = c0 +∑n
m=1 cm‖ψ̇(zm)

λm
‖2,

we arrive at

min
m

min
(
λ

(0,zm)
min , λ

(1,zm)
min

) ∏
k 	=m

λ
(0,zk)
min

≤ 〈Av,v〉
‖v‖2

= |||∑λ∈∇ vλψλ|||2
‖v‖2

≤ max
m

max
(
λ(0,zm)

max , λ(1,zm)
max

) ∏
k 	=m

λ(0,zk)
max ,

where moreover � is a basis for H 1
0,ΓD

(0,1)n (cf. [21]).

So if for all z ⊆⋃n
m=1 zm, λ

(0,z)
max = λ

(0,z)
min , i.e., {ψ(z)

λ : λ ∈ ∇z} is an orthonormal
basis for L2(0,1), then

‖A‖ ≤ max
z

λ(1,z)
max ,

∥∥A−1
∥∥≤ max

z
1/λ

(1,z)
min , (2.2)

which bounds are thus independent of n, c0 ≥ 0 and cm > 0 (1 ≤ m ≤ n). On the other
hand, if for some z ⊆⋃n

m=1 zm, λ
(0,z)
max > λ

(0,z)
min , then one may verify that κ(A) :=

‖A‖‖A−1‖ grows exponentially with the number of coordinate directions that have
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Fig. 1 L2(R)-orthonormal, continuous piecewise linear scaling functions and wavelets. Their values in
1
4 Z or 1

8 Z can be found in [11]

these Dirichlet boundaries. So in order to be able to obtain satisfactory results for
large n, there is no option other than to start with univariate L2(0,1)-orthonormal
wavelet bases.

In view of obtaining a stiffness matrix that can be sufficiently well approximated
by sparse matrices, in addition we need compactly supported wavelets. Examples
of orthonormal compactly supported wavelet bases are given by those from the
Daubechies family [7]. With those wavelets,

∫ 1
0 ψ̇

(z)
μ ψ̇

(z)
λ can only be expected to

be zero when the supports have empty intersection. In contrast, for compactly sup-
ported, orthonormal piecewise polynomial wavelets, say of order d ,

∫ 1
0 ψ̇

(z)
μ ψ̇

(z)
λ is

already zero when the singular support of one wavelet, say ψ
(z)
λ , has empty inter-

section with the interior of the convex hull of the support of the other. Indeed, in
that case

∫ 1
0 ψ̇

(z)
μ ψ̇

(z)
λ = − ∫ 1

0 ψ
(z)
μ ψ̈

(z)
λ = 0, since on the convex hull of suppψ

(z)
μ ,

ψ̈
(z)
λ ∈ Pd−3, and ψ

(z)
μ has d ≥ d − 2 vanishing moments, i.e., ψ

(z)
μ ⊥ Pd−1 (when

suppψ
(z)
μ has non-empty intersection with the Dirichlet boundary z, the latter, and

thus
∫

ψ̇
(z)
μ ψ̇

(z)
λ = 0, is not necessarily valid).

Compactly supported, orthonormal, piecewise polynomial (multi-) wavelets were
constructed in [11, 12, 19]. In [11], it was shown that if · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂
· · · is a multiresolution analysis with finitely many generators (scaling functions),
then for some m,q ∈ N0, there exists a multiresolution analysis · · · ⊂ V̆−1 ⊂ V̆0 ⊂
V̆1 ⊂ · · · with Vq ⊂ V̆0 ⊂ Vq+m that has finitely many orthogonal generators. From
those, finitely many orthogonal generators (wavelets) for the orthogonal complements
V̆	 �⊥L2(R) V̆	−1 can be constructed. In [12], explicit constructions were given for V	

being the spline space

{
u ∈ L2(R) ∩Cr(R) : u|[i2−	,(i+1)2−	] ∈ Pd−1, i ∈ Z

}

for r ∈ {0,1} and d ≥ r + 2, as well as some examples for r = 2.
For r = 0 and d = 2, i.e., continuous piecewise linears, (q,m) can be taken to

be (1,1), i.e., V1 ⊂ V̆0 ⊂ V2, with generating orthonormal scaling functions and
wavelets illustrated in Fig. 1. For 	 ∈ Z, the collections {φj,	,i := 2	/2φj (2	 · −i) :
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Fig. 2 The scaling functions on the lowest level, for the case z = {1}

j ∈ {1,2,3}, i ∈ Z} and {ψj,	,i := 2(	−1)/2ψj (2	−1 · −i) : j ∈ {1,2,3}, i ∈ Z} are
orthonormal bases for V̆	 and V̆	 �⊥L2(R) V̆	−1, respectively.

These scaling functions and wavelets on the line can be used to construct such
functions on the interval. With V̆

(z)
	 := V̆	|[0,1] ∩ H 1

0,z(0,1), for the choice z = {1},
i.e., homogeneous Dirichlet boundary conditions at the right boundary, L2(0,1)-
orthonormal bases for V̆

(z)
0 and V̆

(z)
	 �⊥L2(0,1) V̆

(z)
	−1 are given by {φ(z)

1 , φ
(z)
2 , φ

(z)
3 },

illustrated in Fig. 2, and
{
ψ1,	,i : 0 ≤ i ≤ 2	−1 − 1

}∪ {ψj,	,i : 1 ≤ i ≤ 2	−1 − 1, j = 2,3
}

∪
{

ψ2,	,0|[0,1]
‖ψ2|[0,1]‖L2(0,1)

}
∪
{

ψ3,	,2	−1 |[0,1]
‖ψ3|[−1,0]‖L2(−1,0)

}
,

respectively.
The collection {φ(z)

1 , φ
(z)
2 , φ

(z)
3 } was constructed as follows: As initial choice for

a basis for V̆
(z)
0 , we took the orthonormal collection { φ1|[0,1]

‖φ1|[0,1]‖L2(0,1)
, φ2, φ3}. By ap-

plying suitable rotations to the pairs of the first and the second and the first and the
third basis functions, the resulting modified second and third basis functions were
given one vanishing moment. By again applying a suitable rotation to these modi-
fied second and third basis functions, the resulting final third basis function got two
vanishing moments.

Our experiments, reported in Sect. 6, are carried out with these wavelets. That is,
we took (z) = {ψ(z)

λ : λ ∈ Λz} to be the union of the basis for V̆
(z)
0 and that for

V̆
(z)
	 �⊥L2(0,1) V̆

(z)
	−1 for all 	 ∈ N, where, as usual, we define the level |λ| of ψ

(z)
λ to be

0 or 	, respectively. Since these wavelets satisfy appropriate Jackson and Bernstein
estimates, (z) and {2−|λ|ψ(z)

λ : λ ∈ ∇z} are Riesz bases for L2(0,1) and H 1
0,z(0,1),

respectively. Only one scaling function and, on each level 	 > 0, the rightmost wave-
let of type 3 have no vanishing moments.

For other choices of z ⊆ {0,1}, the adaptation of the bases from [12] on the line to
the interval can follow similar lines.

3 Near Sparsity of A

For a class of univariate wavelet bases that contains those discussed above, in this
section, we investigate how well the stiffness matrix A with respect to the resulting
tensor product basis can be approximated by sparse matrices. As outlined in the intro-
duction, near sparsity of A is an essential ingredient of an adaptive wavelet method.
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We consider (z) = {ψ(z)
λ : λ ∈ ∇z} to be an orthonormal basis for L2(0,1), such

that {2−|λ|ψ(z)
λ : λ ∈ ∇z} is a Riesz basis for H 1

0,z(0,1). Apart from that, we assume
that

(i) diam(suppψ
(z)
λ ) � 2−|λ|

(ii) For some d ∈ N, each wavelet ψ
(z)
λ is piecewise polynomial of order d , that

(iii) Has a singular support that consists of a bounded number of points, uniformly
in λ

(iv) Each point in [0,1] is contained in the interior of the convex hull of the support
of at most a bounded number of ψ

(z)
λ with |λ| = 	, uniformly in 	 ∈ N0

(v) ‖ψ(z)
λ ‖L∞ � 2

1
2 |λ|, ‖ψ̇(z)

λ ‖L∞ � 2
3
2 |λ|

(vi) Wavelets on levels larger than 0 whose supports have empty intersection with z

have d − 2 vanishing moments

Remark 3.1 By the above assumptions we have #{λ ∈ ∇z : |λ| = 	} � 2	. Actually,
for  being a basis for L2(0,1), it is also needed that #{λ ∈ ∇z : |λ| = 	} � 2	.

Remark 3.2 Thinking of a wavelet basis of order d , i.e., a basis that locally repro-
duces any polynomial of order d that vanishes at the Dirichlet boundary, the orthog-
onality of the basis implies assumption (vi) with d − 2 reading as d .

Because of the form of the bilinear form (1.1), and the use of tensor product
wavelets, the stiffness matrix A will be a sum of tensor product operators involving
factors that are stiffness matrices of one-dimensional Laplacians in wavelet coordi-
nates. The following result concerns near-sparsity of these matrices:

Proposition 3.3 Let �Az = [
∫ 1

0 ψ̇
(z)
μ ψ̇

(z)
λ

‖ψ̇(z)
μ ‖‖ψ̇(z)

λ ‖ ]λ,μ∈∇z , and for j ∈ N, let �A(j)
z be constructed

from �Az by dropping all entries ( �Az)λ,μ with ||λ|− |μ|| ≥ j . Then the number of non-

zero entries in each row or column of �A(j)
z is O(j), and

∥∥ �Az − �A(j)
z

∥∥≤ Cz,sp2−j/2,

for some constant Cz,sp.

Proof If suppψ
(z)
μ ⊂ (0,1), and the interior of the convex hull of suppψ

(z)
μ has empty

intersection with sing suppψ
(z)
λ , then

∫ 1
0 ψ̇

(z)
μ ψ̇

(z)
λ = − ∫ 1

0 ψ
(z)
μ ψ̈

(z)
λ = 0 by (ii) and

(vi). By (iii) and (iv), we conclude that the number of non-zero entries ( �Az)λ,μ for
|μ| = 	 is bounded uniformly in λ and 	. By symmetry, the first statement follows.

From
∣∣∣∣
∫ 1

0
ψ̇(z)

μ ψ̇
(z)
λ

∣∣∣∣≤ diam
(
suppψ(z)

μ ∩ suppψ
(z)
λ

)∥∥ψ̇(z)
μ

∥∥
L∞
∥∥ψ̇(z)

λ

∥∥
L∞

� 2−max(|μ|,|λ|)2
3
2 |μ|2

3
2 |λ| � 2− 1

2 ||λ|−|μ||∥∥ψ̇(z)
μ

∥∥∥∥ψ̇(z)
λ

∥∥
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by (v) and (vi), together with the previous observation, the second statement follows
by an application of the Schur lemma. �

Remark 3.4 If z = {0,1} and the wavelets satisfy the additional smoothness condition

‖ψ̈(z)
λ ‖L∞ � 2|λ| 5

2 , then from | ∫ 1
0 ψ̇

(z)
μ ψ̇

(z)
λ | = | ∫ 1

0 ψ
(z)
μ ψ̈

(z)
λ | ≤ diam(suppψ

(z)
μ )×

‖ψ(z)
μ ‖L∞‖ψ̈(z)

λ ‖L∞ � 2
3
2 (|λ|−|μ|)2|λ|+|μ|, one infers that even ‖ �A − �A(j)‖ � 2−3j/2.

Even ‖ �A − �A(j)‖ � 2−5j/2 could be obtained when additionally ‖...
ψ

(z)

λ ‖L∞ � 2|λ| 7
2

and all wavelets on positive levels have at least one vanishing moment. For orthogo-
nal wavelets, however, the last requirement is in conflict with z = {0,1} that was used
for the integration by parts.

Using the above univariate wavelets, let � := {ψλ : λ ∈ ∇} be defined as in (1.3).

Theorem 3.5 For j ∈ N, let A(j) be the matrix created from A = a(ψμ,ψλ)λ,μ∈∇
with a(·, ·) from (1.1) by dropping all entries Aλ,μ for which ‖|λ| − |μ|‖∞ ≥ j . Then
the number of non-zero entries in each row or column of A(j) is bounded by some
absolute multiple of jn, and

∥∥A − A(j)
∥∥≤ max

z

∥∥ �Az − �A(j)
z

∥∥ (≤ max
z

Cz,sp2−j/2).
Proof In view of Proposition 3.3, we only have to prove the first inequality. Let
�Bz := [∫ 1

0 ψ̇
(z)
μ ψ̇

(z)
λ ]λ,μ∈∇z , �Dz := diag( �Bz), and let �B(j)

z be constructed from �Bz

by dropping all entries ( �Bz)λ,μ with ||λ| − |μ|| ≥ j . From �Az := �D− 1
2

z
�Bz

�D− 1
2

z ,

�A(j)
z := �D− 1

2
z

�B(j)
z

�D− 1
2

z , and since �Az − �A(j)
z is symmetric, we have

−∥∥ �Az − �A(j)
z

∥∥ �Dz ≤ �Bz − �B(j)
z ≤ ∥∥ �Az − �A(j)

z

∥∥ �Dz. (3.1)

(Since these inequalities concern unbounded matrices, they should be interpreted as
inequalities between scalar products involving any finitely supported vector.)

Let

B : =
[
a

( n⊗
m=1

ψ(zm)
μm

,

n⊗
m=1

ψ
(zm)
λm

)]
λ,μ∈∇

= c0 + c1 �Bz1 ⊗ I ⊗ · · · ⊗ I + · · · + cnI ⊗ · · · ⊗ I ⊗ �Bzn,

D : = c0 + c1 �Dz1 ⊗ I ⊗ · · · ⊗ I + · · · + cnI ⊗ · · · ⊗ I ⊗ �Dzn,

B(j) : = c0 + c1 �B(j)
z1 ⊗ I ⊗ · · · ⊗ I + · · · + cnI ⊗ · · · ⊗ I ⊗ �B(j)

zn
.

Then A = D− 1
2 BD− 1

2 and A(j) = D− 1
2 B(j)D− 1

2 . By applying (3.1) n times, we infer
that

−max
z

∥∥ �Az − �A(j)
z

∥∥(D − c0) ≤ B, −B(j) ≤ max
z

∥∥ �Az − �A(j)
z

∥∥(D − c0),

and so by D − c0 ≤ D, that ‖A − A(j)‖ ≤ maxz ‖ �Az − �A(j)
z ‖. �
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Remark 3.6 For n > 1, the matrix A(j) still has many entries that can be dropped
without significantly increasing the error. Indeed, Aλ,μ and so A(j)

λ,μ can only be non-

zero when λ and μ differ in at most one coordinate, say the ith one. Then A(j)
λ,μ =

‖ψ̇(zi )

λi
‖

|||ψλ|||
�A(j)
λi ,μi

‖ψ̇(zi )
μi

‖
|||ψμ||| , where the pre- and post factor are of the order 2|λi |√∑n

m=1 4|λm| and

2|μi |√∑n
m=1 4|μm| , respectively, which can be very small. Using the Schur lemma, one can

show that in any case elements with modulus less than some multiple of 2−j/2

(j+1)n
can

be dropped from A(j) while keeping the error on the same level.

We recall the following definition from [15]:

A matrix E is said to be s∗-computable when for some constant C and any
j ∈ N0, there exists a matrix E(j) having in each column not more than Cj non-
zero entries, whose joint computation takes not more than Cj operations, such
that for any s̄ < s∗, there exists a constant Ds̄ such that ‖E − E(j)‖ ≤ Ds̄j

−s̄ .

Theorem 3.5 shows that A is s∗-computable for s∗ =∞ with C � n and, for any
s̄, with Ds̄ being an absolute constant (the spectral argument applied in the proof of
Theorem 3.5 prevents that also Ds̄ grows linearly with n, which would be the case if
simply a repeated triangle inequality was applied). In the next sections, it will not be
essential that s∗ =∞, but it suffices that it is larger than d − 1, being the maximum
rate of best N -term approximation that can be expected.

Remark 3.7 We discuss some generalizations of Theorem 3.5. Instead of (1.1), let

a(u, v) =
∫

Ω

c0uv +
n∑

i,j=1

dij ∂ju∂iv,

where the dij are constants such that for some constants Q ≥ q > 0,

q ≤
n∑

i,j=1

dij ξiξj

/ n∑
m=1

cmξ2
m ≤ Q,

(
ξ ∈ R

n
)
.

From

| ∫ 1
0 ψ

(z)
μ ψ̇

(z)
λ |√

‖ψ̇(z)
μ ‖‖ψ̇(z)

λ ‖
� 2||λ|−|μ||,

and, with �(i,j)
k := �D

1
2
zk

for k ∈ {i, j} and �(i,j)
k := I otherwise, from

∑n
i,j=1 dij ⊗n

k=1

�(i,j)
k ≤ Q(D − c0), one may verify that with m(n) := #{dij 	= 0}, there exist A(j)

having O(jm(n)) non-zeros in each column with ‖A − Aj‖ ≤ 2−j/2.
By additionally using results from [27], for variable, sufficiently smooth coeffi-

cients dij that each depend on at most a uniformly bounded number of space vari-
ables xk , one can show that A is s∗-computable for some s∗ > d − 1 with C � m(n)
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and, for any s̄ < s∗, with Ds̄ being an absolute constant. Concluding, we can say that
in these generalized settings the results of this paper are still valid with the factor n

showing up in the operation count of the adaptive wavelet algorithm now reading as
m(n) ∈ [n,n2].

4 The Adaptive Wavelet Scheme

4.1 Underlying Principles

We recall the main ideas behind the adaptive wavelet method introduced in [16]. It is
a modification of the scheme by Cohen, Dahmen, and DeVore from [4], in which the
recurrent coarsening of the iterands is avoided. This modification results in a quan-
titatively better performing method, which was confirmed in numerical experiments
[6, 16].

Throughout this Sect. 4, A : 	2(�) → 	2(�) is some general bounded, symmetric
and positive definite operator that is s∗-computable, where � is some countable index
set. Not until the next section do we return to our particular matrix A and investigate
the issue of the dependence of constants on the space dimension.

For any � ⊂ ∇, with 	2(�) we will mean the subspace of v ∈ 	2(∇) with supports
in �. The trivial embedding of 	2(�) into 	2(∇) will be denoted by I�, and its adjoint
with respect to 〈·, ·〉, i.e., the operator that replaces coefficients outside � by zeros,
will be denoted by P�. We set A� = P�AI�. Using that A is symmetric and positive
definite, one verifies that for v ∈ 	2(∇) and v� ∈ 	2(�),

∥∥A−1
∥∥− 1

2 ‖v‖ ≤ |||v||| ≤ ‖A‖ 1
2 ‖v‖, ‖Av‖ ≤ ‖A‖ 1

2 |||v|||,
∥∥A−1

∥∥− 1
2 |||v�||| ≤ ‖A�v�‖,

which properties will be used often in the following. The solution u� ∈ 	2(�) of
A�u� = P�f is the Galerkin approximation to u from 	2(�). With respect to ||| · |||,
it is the best approximation to u from this subspace.

The methods from [4, 16] generate a sequence of (approximate) Galerkin solutions
with respect to a sequence of nested subspaces of 	2(∇). In Part (a) of the following
lemma, which is [4, Lemma 4.1], it is shown how a given subspace can be enlarged
such that the error in the Galerkin solution is reduced by a constant factor. In Part (b),
from [16], and in the discussion following this lemma, it is shown that if one is not
too greedy, i.e., if one is content with a moderate error reduction, then besides having
convergence, one keeps quasi-optimal control over the dimensions of the subspaces.
Although w in this lemma can be any element of 	2(�0), one may think of it as being
(an approximation to) the Galerkin solution from 	2(�0). For convenience we recall
the short proof.

Lemma 4.1 Let μ ∈ (0,1], �0 ⊂ �1 ⊂ ∇, w ∈ 	2(�0) such that

∥∥P�1(f − Aw)
∥∥≥ μ‖f − Aw‖. (4.1)
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(a) Then, for u�1 ∈ 	2(�1) being the solution of A�1 u�1 = P�1f, we have

|||u − u�1 ||| ≤ ρ|||u − w|||,

where ρ = ρ(A,μ) := [1 − κ(A)−1μ2
] 1

2 < 1.

(b) If μ < κ(A)− 1
2 and �1 is the smallest set satisfying (4.1), then

#(�1\�0) ≤ min
{
N : |||u − uN ||| ≤ σ |||u − w|||}, (4.2)

where σ = σ(A,μ) := [1 −μ2κ(A)] 1
2 > 0.

Proof (a) We have

|||u�1 − w||| ≥ ‖A‖− 1
2
∥∥A(u�1 − w)

∥∥≥ ‖A‖− 1
2
∥∥P�1(f − Aw)

∥∥
≥ ‖A‖− 1

2 μ‖f − Aw‖ ≥ κ(A)−
1
2 μ|||u − w|||.

The proof of (a) is completed by using the Galerkin orthogonality

|||u − w|||2 = |||u − u�1 |||2 + |||u�1 − w|||2.

(b) For an N as in the right-hand side of (4.2), let �̆ := �0
⋃

supp uN . Then, for
the solution of A�̆u�̆ = P�̆f, we have |||u − u�̆||| ≤ |||u − uN |||, and so by Galerkin
orthogonality

|||u�̆ − w||| ≥ μκ(A)
1
2 |||u − w|||,

giving

∥∥P�̆(f − Aw)
∥∥= ∥∥A�̆(u�̆ − w)

∥∥≥ ∥∥A−1
∥∥− 1

2 |||u�̆ − w|||

≥ ∥∥A−1
∥∥− 1

2 μκ(A)
1
2 |||u − w||| ≥ μ‖f − Aw‖.

By our assumption on �1, we conclude that #(�1\�0) ≤ #(�̆\�0) ≤ N . �

Let us think of w in Lemma 4.1 as the exact Galerkin solution on �0. Then starting
with �0 = ∅, a repeated application of Part (a) gives a sequence �0 ⊂ �1 ⊂ · · · , and
corresponding Galerkin solutions u�0,u�1, . . . with |||u − u�k

||| ≤ ρ|||u − u�k−1 |||.
This is the idealized version of the adaptive wavelet method we are going to apply.
Note that generally the residuals f − Au�k

are infinitely supported vectors, so that
this algorithm cannot be performed in practice. For the moment ignoring this fact, let

us take μ < κ(A)− 1
2 . Then, assuming that u ∈ As∞ for some s > 0, Part (b) shows

that

#(�k\�k−1) ≤ min
{
N : |||u − uN ||| ≤ σ |||u − u�k−1 |||

}

≤ [‖A‖− 1
2 σ |||u − u�k−1 |||

]−1/s‖u‖1/s

As∞,
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by ||| · ||| ≤ ‖A‖ 1
2 ‖ · ‖ and the definition of ‖ · ‖As∞ . By combining both estimates, for

	 ∈ N we have

#�	 =
	∑

k=1

#(�k\�k−1) ≤ ‖A‖1/2sσ−1/s‖u‖1/s

As∞

	∑
k=1

|||u − u�k−1 |||−1/s

≤ ‖A‖1/2sσ−1/s‖u‖1/s

As∞|||u − u�	
|||−1/s

	∑
k=1

(
ρ	−k+1)1/s

≤ ‖A‖1/s (ρ/σ )1/s

1 − ρ1/s
‖f − Au�	

‖−1/s‖u‖1/s

As∞ . (4.3)

In view of u ∈ As∞, generally the support of any approximation to u with an ‖·‖-error

equal to that of u�	
cannot be expected to be smaller than ‖u − u�	

‖−1/s‖u‖1/s

As∞ ≥
‖A−1‖−1/s‖f − Au�	

‖−1/s‖u‖1/s

As∞ . Comparing this lower bound with the upper

bound from (4.3), we conclude that up to the factor (ρ/σ )1/s

1−ρ1/s κ(A)1/s , generally the
cardinality of the set �	 produced by the algorithm is the smallest that can be ex-
pected.

Remark 4.2 Thinking of μ = βκ(A)− 1
2 for some fixed β < 1, (ρ/σ )1/s

1−ρ1/s κ(A)1/s is a
bounded function of (s, κ(A)) on any compact subset of (0,∞) × [1,∞). For any

s, (ρ/σ )1/s

1−ρ1/s κ(A)1/s tends to infinity when κ(A) does, underlining the importance of
using L2(0,1)-orthonormal univariate wavelets in our application of solving elliptic
PDEs in high space dimensions.

4.2 Practical Scheme and Rates

As we said, the algorithm from the previous subsection is not feasible in practice
because it uses the generally infinitely supported residuals. Apart from stopping the
iteration, which we did not discuss so far, these residuals are only used to indicate
in which way the current subspace has to be enlarged. For a proper enlargement it
is, however, sufficient to know where the largest entries of the residual are located,
and for that goal it suffices to use an approximate residual with a sufficiently small
relative error.

We will assume the availability of the following routines. Realizations will be
discussed in the forthcoming subsections.

APPLY[�,w, ε] → z : For ε > 0, � ⊂ ∇, and a finitely supported w ∈ 	2(�), it
yields a finitely supported z ∈ 	2(�) with ‖A�w − z‖ ≤ ε.

RHS[�, ε] → g : For ε > 0, � ⊂ ∇, it yields a finitely supported g ∈ 	2(�) with
‖P�f − g‖ ≤ ε.

Furthermore, in view of minimizing the computational complexity, we will not
solve the Galerkin systems A�k

u�k
= P�k

f exactly. Instead, we solve them using
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an iterative method starting with the previous iterand, and with a tolerance being
a sufficiently small multiple of the error in that iterand. Moreover, we will allow
that instead of the exact right-hand side P�k

f, we only have a sufficiently accurate
approximation to it available. We assume the availability of the following routine,
whose realization will be discussed in the next subsection.

GALSOLVE[�,g�,w(0)
� , δ, ε] → w� : For δ ≥ ε > 0, � ⊂ ∇, g�,w(0)

� ∈ 	2(�)

with ‖g� − A�w(0)
� ‖ ≤ δ, it yields a w� ∈ 	2(�) with ‖g� − A�w�‖ ≤ ε.

Now suppose that we have available an approximation w to u, with support
contained in some finite �0 ⊂ ∇, as well as an approximation r to f − Aw with
‖(f − Aw) − r‖ ≤ ω‖r‖ for some constant ω > 0. Then our task will be to enlarge
�0 to some �1 ⊂ ∇ such that for some constant α > ω,

‖P�1r‖ ≥ α‖r‖. (4.4)

Indeed, then ‖P�1(f − Aw)‖ ≥ ‖P�1r‖ − ω‖r‖ ≥ (α − ω)‖r‖ ≥ α−ω
1+ω

‖f − Aw‖, and
so an application of Lemma 4.1(a) shows that the error in the Galerkin solution from
	2(�1) is strictly less than that in w.

Moreover, with μ := α+ω
1−ω

, and ∇ ⊃ �̂ ⊃ �0 being any set with ‖P
�̂
(f − Aw)‖ ≥

μ‖f − Aw‖, we have μ‖r‖ ≤ μ‖f − Aw‖ + μω‖r‖ ≤ ‖P
�̂
(f − Aw)‖ + μω‖r‖ ≤

‖P
�̂

r‖ + (1 + μ)ω‖r‖, or ‖P
�̂

r‖ ≥ α‖r‖. So if we would select �1 ⊃ �0 satisfying

(4.4) with minimal cardinality, then #(�1\�0) ≤ #(�̂\�0), and if additionally μ <

κ(A)− 1
2 then using Lemma 4.1(b) we would have quasi optimal control over the

cardinality of this set.

Remark 4.3 The cost of our adaptive wavelet algorithm will be dominated by that of
the computation of the approximate residuals. Assuming u ∈ As∞, (the upper bound
for) the latter will scale as the prescribed tolerance to the power −1/s. So in particular
for relatively small values of s, it will be beneficial if we could reduce the prescribed
tolerances by some factor. Above, we estimated ‖P

�̂
(f − Aw)‖ ≤ ‖P

�̂
r‖ + ω‖r‖ for

�̂ ⊃ �0 being the smallest set with ‖P
�̂
(f − Aw)‖ ≥ μ‖f − Aw‖, and we applied

similar steps with interchanged roles of r and f − Aw. The first estimate can only
be sharp when the error (f − Aw) − r is fully supported in �̂, which is unlikely.
Making the assumption that the error is more equally distributed in the sense that
‖P

�̂
(f − Aw)‖ ≤ ‖P

�̂
r‖ + ωμ‖r‖, (and similarly ‖P�1r‖ ≤ ‖r‖ + αω‖r‖), instead

of ω < α and μ := α+ω
1−ω

< κ(A)− 1
2 , we end up with the relaxed conditions ω < 1

2 ,

and μ := α
1−2ω

< κ(A)− 1
2 .

Also the upper bound κ(A)− 1
2 for μ derived in Lemma 4.1(b) is the result of a

succession of two worst case analyses that unlikely or even impossibly could occur at
the same time. So although we have no rigorous proof for this, we expect that in prac-
tice the conditions on the parameters α,ω,μ can be violated to some unfortunately
unknown extent, by that improving the quantitative behavior of the algorithm. The
same comment applies to the forthcoming parameter γ for the calls of GALSOLVE.
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Finding the smallest �1 ⊃ �0 for which (4.4), or equivalently,

∥∥r|∇\�0 − r|�1\�0

∥∥≤
√

1 − α2 ‖r‖
is valid requires the sorting of all coefficients of r∇\�0 by their modulus, which, with
L := # supp r|∇\�0 , already takes the order of L logL operations. In order to avoid
the log-factor, we realize that it is not essential that #(�1\�0) be truly minimal. It
is sufficient that it is minimal up to some constant factor that for convenience will
be fixed to 2. It requires an approximate sorting of the coefficients of r∇\�0 by their
modulus, which will be performed by a call of the following routine. This routine
will also be used for the implementation of the APPLY routine, in which setting the
idea of performing an approximate ordering was introduced in [1, 24].

BUCKETSORT[v, ε] → [(v[p])1≤p≤P ,�]: The input v ∈ 	2(�) should be finitely
supported, and ε > 0. Let P be the smallest integer with 2−P/2‖v‖∞√

# supp v ≤ ε.
Store the indices of v in P buckets, depending on the modulus of the corresponding
coefficient to be in one of the P intervals ( 1√

2
‖v‖∞,‖v‖∞], ( 1

2‖v‖∞, 1√
2
‖v‖∞], . . . ,

or (2−P/2‖v‖∞,2−(P−1)/2‖v‖∞], and discard them otherwise. For 1 ≤ p ≤ P , de-
fine v[p] as the restriction of v to the indices from the pth bucket. Define � : N → ∇
by numbering the indices in the buckets from the first to the last, and within each
bucket in arbitrary order. The definition of � beyond the last numbered index is irrel-
evant.

Note that the number of buckets P is max(0,  2 log2(‖v‖∞√
# supp v/ε)!). This

P is taken such that the squared sum of the coefficients corresponding to the indices
not stored in any bucket is not larger than ε2. This means that for the task of finding
a (quasi) minimal Λ such that ‖v − v|Λ‖ ≤ ε these coefficients can be discarded
anyway. By furthermore using that the squared coefficients corresponding to indices
within one bucket differ at most by a factor 2, one arrives at the following result (cf.
[16, Remark 2.3]):

Proposition 4.4 The number of operations required by a call of the routine
[·,�] := BUCKETSORT[v, ε] is bounded by some absolute multiple of # supp v +
max(1,  log(‖v‖∞√

# supp v/ε)!). For any δ ≥ ε, the smallest K ∈ N0 with ‖v −
v|�({1,...,K})‖ ≤ δ satisfies K ≤ 2 min{N ∈ N0 : ‖v − vN‖ ≤ δ}.

The above considerations lead to the following practical variant of the scheme
from the previous subsection:

SOLVE[ν−1, ε]→ wk :
% Let α,ω,γ, θ be constants with ω ∈ (0, α), α+ω

1−ω
< κ(A)− 1

2 , θ > 0 and

% γ ∈ (0, 1
6κ(A)− 1

2 α−ω
1+ω

). The parameter ν−1 is an estimate for the norm of the
% initial residual f.
k := 0, wk := 0, �k := ∅
do ζ := θνk−1

do ζ := ζ/2, rk := RHS[∇, ζ/2] − APPLY[∇,wk, ζ/2]
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if νk := ‖rk‖ + ζ ≤ ε then stop endif
until ζ ≤ ω‖rk‖
[·,�] := BUCKETSORT[rk|∇\�k

,
√

1 − α2 ‖rk‖]
determine the smallest K ∈ N0 with ‖rk|∇\�k

− rk|�({1,...,K})‖ ≤√
1 − α2 ‖rk‖

�k+1 := �k ∪�({1, . . . ,K})
gk+1 := RHS[�k+1, γ νk]
wk+1 := GALSOLVE[�k+1,gk+1,wk, (1 + γ )νk, γ νk]
k := k + 1

enddo

In the inner loop of this adaptive wavelet algorithm SOLVE, an approximate
residual rk of the current iterand wk is determined with ‖r∗k − rk‖ ≤ ω‖rk‖, with
r∗k denoting the exact residual. This is done by computing approximate residuals
with geometrically decreasing tolerances ζ until either this condition is met, or
‖r∗k‖ ≤ ‖rk‖ + ‖r∗k − rk‖ ≤ ‖rk‖ + ζ =: νk ≤ ε, in which case the algorithm stops.

Because of the geometrical decrease of the tolerances, the cost of this inner loop is
always dominated by the cost of its last iteration. From a quantitative point of view,
however, it is useful to tune the constant θ to be as large as possible such that the inner
loop “usually” terminates in the first iteration. When the ‖rk‖ exhibit a linear decrease
as a function of k, which is generally the best that can be expected, a selection of θ to
be (slightly smaller than) 2ω

1+ω
times the rate seems to be a sensible choice. Indeed, if

νk−1 = (1 +ω)‖rk−1‖, then 1
2

2ω
1+ω

‖rk‖‖rk−1‖νk−1 = ω‖rk‖.
By adding perturbation arguments to the analysis from the previous subsection, we

end up with the following result. For details we refer to [16]. Inspection of the proof
shows that a constant that is unspecified there is actually of the form D4‖A‖1/s , with
D4 as given in the current theorem.

Theorem 4.5 For any ε, ν−1 > 0, w := SOLVE[ν−1, ε] terminates with

‖f − Aw‖ ≤ ε.

If, for some s > 0, u ∈ As∞, then

# supp w ≤ D4‖A‖1/sε−1/s‖u‖1/s

As∞

for some constant D4 > 0, only dependent on κ(A) when it tends to ∞, s when it
tends to 0 or ∞, and ω, α and γ when they approach the boundaries of their domains
of definition.

4.3 Cost of SOLVE

Using that maxλ∈∇\�k
|(rk)λ| ≤ ‖rk‖, Proposition 4.4 shows that the cost of a call

[·,�] := BUCKETSORT[rk|∇\�k
,
√

1 − α2 ‖rk‖] in SOLVE can be bounded by
some absolute multiple of # supp rk . The same holds for the cost of evaluating the
next line in the algorithm. Since the preceding computation of rk requires in any case
the order of # supp rk operations, the cost of the call of SOLVE will be determined
by that of the calls of RHS, APPLY and GALSOLVE.
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The realization and cost of the routines APPLY and GALSOLVE will be dis-
cussed in this subsection. A realization of a routine RHS will be specific for the
problem at hand, and will be discussed in Sect. 5.

The proof of Theorem 4.5 from [16] shows that whenever u ∈ As∞ for some s > 0,
then any wk computed inside SOLVE satisfies

# supp wk ≤ D5‖u − wk‖−1/s‖u‖1/s

As∞

for some constant D5 > 0, only dependent on κ(A), s, ω, α and γ in the way indi-
cated in Theorem 4.5. Putting d := D−1

5 + 1, and, for tolerances ε ≥ d‖u − wk‖, by
approximating wk by uN with ‖u−uN‖ ≤ (1−1/d)ε, so that indeed ‖wk −uN‖ ≤ ε,
or by wk itself otherwise, one easily verifies that

‖wk‖As∞ = sup
ε>0

ε min{N∈N0:‖wk−(wk)N‖≤ε}N
s ≤ (1 + D5)‖u‖As∞ . (4.5)

This uniform boundedness of the iterands in ‖·‖As∞ is the key to the design of suitable
routines APPLY and GALSOLVE.

The idea behind the approximate application of A introduced in [4] is as follows:
Chop the input vector w = wk into j :=  log2(# supp w + 1) − 1! pieces

w = w1 + [w3 − w1] + · · · + [w2j+1−1 − w2j−1],

where w2p+1−1 is the best 2p+1 − 1 approximation to w, and approximate the appli-
cation of A to each of the pieces separately. We have ‖w2p+1−1 − w2p−1‖ ≤ ‖w −
w2p−1‖ � 2−sp‖w‖As∞ (cf. footnote 1). So the larger is # supp[w2p+1−1 − w2p−1] =
2p , and so the more columns of the approximation of A are needed, the smaller is
‖w2p+1−1 − w2p−1‖ and so the less accurate this approximation can be. So this ap-
proximate matrix vector product uses both the near sparsity of the matrix and that of
the vector.

The following routine APPLY is based on a variation of the above principle. There
will be the following differences with the original routine from [4] aiming at increas-
ing the efficiency:

• In order to avoid suboptimal log-factors due to sorting needed to determine best
N -term approximations, the approximate sorting routine BUCKETSORT is ap-
plied.

• Since there is little to be gained by approximating columns of A corresponding
to indices inside one bucket with different accuracies, we will chop w in pieces
corresponding to the subdivision of the indices over the buckets. These pieces do
not have a prescribed cardinality, but instead have a prescribed range of values.
A similar idea was applied in [6], with ranges that depend on some upper bound
for the value of s for which u ∈ As can be expected. The APPLY routine below is
universal in the sense that nothing about the value of s is needed.

• Instead of using a priori fixed accuracies of the approximate matrix vector product
on each of the pieces, to minimize the cost for achieving a prescribed tolerance,
we use an optimization strategy based on a posteriori information.
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APPLY[�,w, ε]→ z:
% w ∈ 	2(�) is finitely supported, ε > 0.
% For j ∈ N0, let A(j) and ej be matrices and constants such that A(0) := 0,
% ‖A − A(j)‖ ≤ ej and limj→∞ ej = 0.
% For j ∈ N0, let cj be an upperbound for both the number of non-zero entries
% in each column of A(j), and for the number of arithmetic operations needed
% for their joint computation, where supj∈N

cj+1
cj

< ∞ and c0 := 0.

[(w[p])p, ·] := BUCKETSORT[w, ε/(2e0)]
Compute the smallest 	 ∈ N0 with

δ := e0

∥∥∥∥∥w −
	∑

p=1

w[p]

∥∥∥∥∥≤ ε/2.

Determine, in O(# supp w) operations, j ∈ N
	
0 such that

∑	
p=1 ejp‖w[p]‖ ≤ ε− δ and

cjp � cj̃p
(p = 1, . . . , 	), where j̃ ∈ N

	
0 is the solution of

	∑
p=1

cj̃p
# supp w[p] → min!,

	∑
p=1

ej̃p
‖w[p]‖ ≤ ε − δ. (4.6)

Compute

z := P�

	∑
p=1

A(jp)w[p].

Theorem 4.6 For z := APPLY[�,w, ε], we have ‖PΛAw − z‖ ≤ ε. If for some
s∗ > 0, for any s̄ < s∗, supj∈N ej c

s̄
j < ∞, i.e., if A is s∗-computable, then for any

s ∈ (0, s∗),

# supp z � ε−1/s‖w‖1/s

As∞, (4.7)

and the number of operations required by the call can be bounded by some absolute
multiple of

1 + # supp w + ε−1/s‖w‖1/s

As∞, (4.8)

both estimates only dependent on s, when it tends to 0 or to s∗, and on e0, being an
upper bound for ‖A‖.

Before proving this theorem, we discuss how to determine valid values of j in the
APPLY routine in two common situations. If for some constants C and D, cj = Cj

and ej = Dj−s∗ , so that A is s∗-computable, then

j̃p =
( ‖w[p]‖

# supp w[p]

) 1
s∗+1

⎛
⎝
∑	

q=1 ‖w[q]‖
1

s∗+1 (# supp w[q])
s∗

1+s∗

(ε − δ)/D

⎞
⎠

1
s∗
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is the solution of (4.6) when minimization is performed over R
	. If for some constants

C, D and � > 0, cj = Cj and ej = D2−�j , so that A is even ∞-computable, then

j̃p = log2

(‖w[p]‖∑	
q=1 # supp w[q]

# supp w[p](ε − δ)/D

)/
�

is the solution of (4.6) when minimization is performed over R
	. Assuming these j̃p

are non-negative, by rounding them up to the nearest value in N0 one obtains a valid j.

Proof of Theorem 4.6 Let s ∈ (0, s∗) and s < s̄1 < s̄2 < s∗. The first statement fol-
lows from ‖A‖‖w −∑	

p=1 w[p]‖ ≤ δ and
∑	

p=1 ‖A − A(jp)‖‖w[p]‖ ≤ ε − δ.
By Proposition 4.4, the cost of a call [(w[p])p, ·] = BUCKETSORT[w, ε/(2e0)]

is bounded by some absolute multiple of

# supp w + max
(
1,
⌈

log(# supp w) + log
(‖w‖∞/(ε/2e0)

)⌉)

� # supp w + max
(
1, log

(
ε−1‖w‖))

� # supp w + 1 + ε−1/s‖w‖1/s

As∞ .

With τ := ( 1
2 + s)−1 > 2, it is known (see, e.g., [9]) that

#
{
λ ∈ ∇ : |wλ| > η

}
� η−τ‖w‖τ

As∞ (η > 0).

As a consequence, we have

# supp w[p] � 2pτ/2‖w‖−τ∞ ‖w‖τ
As∞

and

‖w[p]‖ � 2−p/2‖w‖∞
√

# supp w[p] � 2−psτ/2‖w‖1−τ/2∞ ‖w‖τ/2
As∞ .

The proof will be completed once we have shown that there exists a j ∈ N
	
0 with∑	

p=1 ejp‖w[p]‖ ≤ ε − δ and
∑	

p=1 cjp # supp w[p] � ε−1/s‖w‖1/s

As∞ . For 	 = 0 there
is nothing to prove, so we assume that 	 > 0.

By definition of 	, we have

ε/2 < e0

∥∥∥∥∥w −
	−1∑
p=1

w[p]

∥∥∥∥∥= e0

√√√√ ∞∑
p=	

‖w[p]‖2 � e02−	sτ/2‖w‖1−τ/2∞ ‖w‖τ/2
As∞,

or

2	τ/2‖w‖−τ∞ ‖w‖τ
As∞ � ε−1/s‖w‖1/s

As∞ . (4.9)

Note that here we used the notation w[p] also to denote the restriction of w to indices
from buckets that actually were not generated in BUCKETSORT.



444 Constr Approx (2009) 30: 423–455

Let J ≥ 	 be the smallest integer such that
∑	

p=1 2−(J−p)s̄1τ/2‖w[p]‖ ≤ ε − δ. So
when J > 	, from s̄1 > s we have

ε/2 ≤ ε − δ <

	∑
p=1

2−(J−1−p)s̄1τ/2‖w[p]‖

<

	∑
p=1

2−(J−1−p)s̄1τ/22−psτ/2‖w‖1−τ/2∞ ‖w‖τ/2
As∞

� 2−(J−1−	)s̄1τ/22−	sτ/2‖w‖1−τ/2∞ ‖w‖τ/2
As∞

≤ 2−(J−1)sτ/2‖w‖1−τ/2∞ ‖w‖τ/2
As∞

or

2Jτ/2‖w‖−τ∞ ‖w‖τ
As∞ � ε−1/s‖w‖1/s

As∞, (4.10)

which by (4.9) is also valid when J = 	.
Now select jp to be the smallest integer such that ejp ≤ 2−(J−p)s̄1τ/2. Then

indeed
∑	

p=1 ejp‖w[p]‖ ≤ ε − δ, and by ej−1c
s̄2
j−1 � 1 and cj � cj−1, we have

cjp � 2(J−p)(s̄1/s̄2)τ/2. From (4.10), we conclude that

	∑
p=1

cjp # supp w[p] �
	∑

p=1

2(J−p)(s̄1/s̄2)τ/22pτ/2‖w‖−τ∞ ‖w‖τ
As∞

� 2(J−	)(s̄1/s̄2)τ/22	τ/2‖w‖−τ∞ ‖w‖τ
As∞

� 2Jτ/2‖w‖−τ∞ ‖w‖τ
As∞ � ε−1/s‖w‖1/s

As∞,

which completes the proof. �

Next we present a realization of the routine GALSOLVE. Given � ⊂ ∇,
g�,w(0)

� ∈ 	2(�), and δ ≥ ε > 0 with ‖g� − A�w(0)
� ‖ ≤ δ, it should produce a

w� ∈ 	2(�) with ‖g� − A�w�‖ ≤ ε. GALSOLVE will only be called for w(0)
�

being the previous iterand produced inside SOLVE, and for δ/ε being uniformly
bounded, the latter meaning that only a fixed reduction of the initial error has to be
achieved.

An obvious approach is to apply a fixed number of iterations of some iterative
method. A problem, however, is that generally A� is not truly sparse, in the sense
that its number of non-zero entries is not of the order of #�. The approach we fol-
low is based on the observation that if for some constant μ < 1, a fixed, sufficiently
large j is chosen such that with A(j)

� := P�A(j)I�, ‖I − A�(A(j)

� )−1‖ ≤ με
δ

, then

‖g� − A�[w(0)
� + (A(j)

� )−1(g� − A�w(0)
� )]‖ ≤ με. Having chosen μ being strictly

less than one, room is left to approximate the application of (A(j)

� )−1 by an iterative
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method (A(j) is sparse), and to replace the initial residual g� − A�w(0)
� by an ap-

proximation. Concerning the latter, we approximate A�w(0)
� by a call of APPLY. Its

cost is controlled in terms of #� and ‖w(0)
� ‖As∞ , the latter known to be bounded (cf.

(4.5)).
The defect correction procedure outlined above is an alternative for the approxi-

mate application of Richardson’s iteration to A�w� = g� starting with w(0)
� as pro-

posed in [4], where in each iteration the application of A� is approximated by a call
of APPLY. Since, due to the built-in adaptivity, calls of APPLY are quantitatively
demanding, whereas furthermore within our defect correction method the iterative
method can be chosen to be of optimal Krylov type, we expect the latter method to
have better quantitative properties.

GALSOLVE[�,g�,w(0)
� , δ, ε]→ w�:

% The input satisfies δ ≥ ε > 0, � ⊂ ∇, g�,w(0)
� ∈ 	2(�) with ‖g� − A�w(0)

� ‖ ≤ δ.

% Let (ej )j , (cj )j be defined as in the APPLY routine, and let e−1
0 be an upper

% bound for ‖A−1‖.
Compute the smallest j ∈ N0 with ej (e0)

−1 ≤ ε
3ε+3δ

r(0)
� := g� − APPLY[�,w(0)

� , ε
3 ]

With A(j)

� := P�A(j)I�, approximate (A(j)

� )−1r(0)
� using the Conjugate Residuals

method starting with zero until the current iterand e� satisfies ‖r(0)
� − A(j)

� e�‖ ≤ ε
3

w� := w(0)
� + e�

Theorem 4.7 w� := GALSOLVE[�,g�,w(0)
� , δ, ε] satisfies ‖g� − A�w�‖ ≤ ε. If

for any s̄ < s∗, supj∈N ej c
s̄
j < ∞, i.e., if A is s∗-computable, then for any s < s∗,

for some increasing function η, the number of operations required by the call can be
bounded by some absolute multiple of

ε−1/s
∥∥w(0)

�

∥∥1/s

As∞ + η(δ/ε)#�+ 1, (4.11)

only dependent on s when it tends to 0 or to s∗, and on e0 and e0.

Proof The selection of j implies that ‖A� − A(j)

� ‖‖A−1‖ ≤ ε
3ε+3δ

. So writing

〈A(j)

� v�,v�〉 = 〈A�v�,v�〉 − 〈(A� − A(j)

� )v�,v�〉, we find

(
1 − ε

3ε + 3δ

)∥∥A−1
∥∥−1‖v�‖2 ≤ 〈

A(j)

� v�,v�

〉

≤ ‖A‖‖v�‖2 + ε

3ε + 3δ

∥∥A−1
∥∥−1‖v�‖2.

We infer that ‖A� − A(j)

� ‖‖(A(j)

� )−1‖ ≤
ε

3ε+3δ

1− ε
3ε+3δ

= ε
2ε+3δ

, and by ε
3ε+3δ

≤ 1
6 , that

κ(A(j)

� ) ≤ 1
5 + 6

5κ(A). Writing
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g� − A�w� =(g� − A�w(0)
� − r(0)

�

)+ (
r(0)
� − A(j)

� e�

)

+ (
I − A�

(
A(j)

�

)−1)(r(0)
� + A(j)

� e� − r(0)
�

)
,

and using ‖r(0)
� ‖ ≤ δ + ε

3 , we find ‖g� − A�w�‖ ≤ ε
3 + ε

3 + ε
2ε+3δ

(δ + ε
3 + ε

3 ) ≤ ε.

By Theorem 4.6, for any s ∈ (0, s∗) the number of operations needed for the
call APPLY[�,w(0)

� , ε
3 ] can be bounded by some absolute multiple of 1 + #� +

ε−1/s‖w(0)
� ‖1/s

As∞ , dependent on s when it tends to 0 or to s∗, and on e0. For each

s̄ < s∗, the number of non-zero entries in each column of A(j)

� as well as the
number of operations needed for their joint computation is bounded by a multi-
ple of ((3 + 3δ

ε
)/e0)

1/s̄ . Each iteration of Conjugate Residuals therefore requires
not more than a multiple of (1 + ((3 + 3δ

ε
)/e0)

1/s̄ )#� operations. The number

of iterations is bounded by the smallest 	 ∈ N for which 2c	

1+c2	 ≥ ε/3
δ+ε/3 where

c =
√

κ(A(j)

� )−1√
κ(A(j)

� )+1
(see, e.g., [22]). Since 2c	

1+c2	 ≤ 2c	, this number is not larger than

 log(2(3δ/ε + 1)/ log(1/c)!. Using that log(1/c)−1 �
√

κ(A) ≤√
e0/e0, the proof

is completed. �

Using that the tolerances for calls of APPLY and RHS inside SOLVE are geo-
metrically decreasing, that for u ∈ As∞ the iterands wk in SOLVE satisfy ‖wk‖As∞ �
‖u‖As∞ (cf. (4.5)), and finally that calls of GALSOLVE[·, ·, ·, δ, ε] are only made
for δ/ε � 1, using Theorems 4.6 and 4.7 we end up with the following result. De-
tails can be verified by substituting the bounds from Theorems 4.6 and 4.7 into the
corresponding proof from [16].

Theorem 4.8 If ν−1 � ‖f‖ � ε, and for some 0 < s < s∗, u ∈ As∞ and rhss < ∞ (cf.
(1.6)), then the number of operations required by the call SOLVE[ν−1, ε] is bounded
by a multiple of

ε−1/s
[‖u‖1/s

As∞ + rhs1/s
s

]
, (4.12)

only dependent on s when it tends to 0 or to s∗, on e0 and e0, and on the parameters
α, ω, γ , θ when they approach the boundaries of their domains of definition.

Remark 4.9 The expression (4.12) is also an upper bound for the sum of the lengths
of all vectors that were generated by the call SOLVE[ν−1, ε].

5 Application to High Dimensional Elliptic PDEs

We are going to apply SOLVE to systems Au = f that result from the boundary
value problems (1.1) written in the tensor product wavelet basis (1.3) with univariate
wavelet bases (z) as in Sect. 3. With e0, e0 being available upper or lower bounds

for maxz λ
(1,z)
max or minz λ

(1,z)
min from (2.1), respectively, we have that ‖A‖ ≤ e0 and

‖A−1‖ ≤ e−1
0 uniformly in n, c0 ≥ 0 and cm > 0 (1 ≤ m ≤ n). With Csp being some
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available upper bound for maxz supj 2j/2‖ �Az − �A(j)
z ‖ (cf. Proposition 3.3), we know

how to construct a matrix A(j) having a multiple of jn non-zeros in each row and
column with ‖A−A(j)‖ ≤ Csp2−j/2 uniformly in n, c0 ≥ 0 and cm > 0 (1 ≤ m ≤ n).
So on the one hand, for any fixed n, A is ∞-computable, but on the other hand, the
number of non-zeros in each row and column of A(j) grows linearly with n.

Taking the latter into account within the preceding analysis, the expressions (4.7),
(4.8), and (4.11) read as

# supp z � nε−1/s‖w‖1/s

As∞,
(5.1)

1 + # supp w + nε−1/s‖w‖1/s

As∞,

and

nε−1/s
∥∥w(0)

�

∥∥1/s

As∞ + η(δ/ε)n#�+ 1,

respectively, only dependent on s when it tends to 0 or ∞. This leads to the following
version of Theorems 4.5 and 4.8 when specialized to these systems resulting from
high dimensional elliptic equations.

Theorem 5.1 w := SOLVE[ν−1, ε] terminates with ‖f − Aw‖ ≤ ε, so that |||u −∑
λ∈∇ wλψλ||| = |||u − w||| ≤ e

− 1
2

0 ε. If, for some s > 0, u ∈ As∞, then

supp w � ε−1/s‖u‖1/s

As∞ .

If ν−1 � ‖f‖ � ε, and rhss < ∞ (cf. (1.6)), then the number of operations required
by the call is bounded by a multiple of

ε−1/s
[
n‖u‖1/s

As∞ + rhs1/s
s

]
, (5.2)

everything uniformly in n, c0 ≥ 0, and cm > 0 (1 ≤ m ≤ n), and only dependent on s

when it tends to 0 or to ∞, and on the parameters α, ω, γ , θ when they approach the
boundaries of their domains of definition.

What is left is the discussion of a valid routine RHS. As a consequence of The-
orem 4.6, for any s > 0, A : As∞ → As∞ is bounded with ‖Av‖As∞ � n‖v‖As∞ .
Indeed, for v ∈ As∞ and ε > 0, let N ∈ N be such that ‖v − vN‖ ≤ ε/(2‖A‖).
Put z := APPLY[∇,vN, ε/2]. Then # supp z � n(ε/2)−1/s‖vN‖1/s

As∞ (here we ap-
plied (5.1) replacing (4.7)). Now the statement follows from ‖vN‖As∞ ≤ ‖v‖As∞ ,
‖Av − z‖ ≤ ‖A‖‖v − vN‖ + ‖AvN − z‖ ≤ ε and the definition of As∞.

As a consequence, if the right-hand side vector f is such that we can realize its
(quasi) best N -term approximations in O(N) operations, uniformly in n, then as-
suming u ∈ As∞, the resulting routine RHS satisfies rhss � n‖u‖As∞ . In this situa-
tion, the upper bound (5.2) for the cost of SOLVE is never dominated by the term
ε−1/srhs1/s

s . Unfortunately, even for a family over n of smooth right-hand sides f ,
it seems hard to guarantee these conditions uniformly in n. On the other hand, the
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estimate ‖f‖As∞ ≤ ‖A‖As∞→As∞‖u‖As∞ might be very crude, so that quasi-optimal
approximations, uniformly in n, are actually not needed to arrive at rhss � n‖u‖As∞ .

In the following, we will focus on the situation that for some s̄ > s, rhss̄ < ∞,
however generally dependent on n and on c0 ≥ 0 and cm > 0 (1 ≤ m ≤ n). In this
situation, the bound (5.2) may be read as ε−1/sn‖u‖1/s

As∞ + ε−1/s̄rhs1/s̄
s̄ , meaning that

in any case for any fixed n and cm (0 ≤ m ≤ n), the cost of approximating the right-
hand side is asymptotically negligible, i.e., when ε tends to zero.

Let us start by assuming that all univariate wavelets ψ
(z)
λ on positive levels have

d vanishing moments (cf. Remark 3.2), for the moment ignoring that this is not true
for wavelets whose supports have non-empty intersection with a Dirichlet boundary.

Then from | ∫ 1
0 vψ

(z)
λ | = infp∈Pd−1 |

∫ 1
0 (v − p)ψ

(z)
λ | � 2−(d+ 1

2 )|λ||v|Wd∞(0,1), a tensor
product argument, and taking into account the normalization of the product wavelets,
for smooth f we infer that

∣∣f (ψλ)
∣∣=

∣∣∣∣
∫

(0,1)n
f ψλ

∣∣∣∣� 2−( 1
2+d)‖|λ|‖1√

c0 +∑n
m=1 cm4|λm|

� 2−(( 1
2+d)||λ|‖1+‖|λ|‖∞). (5.3)

In view of this estimate, it is natural to consider approximations to f by, for some
parameter 	, dropping all entries f (ψλ) with indices λ outside

∇(optsp)

	 :=
{
λ ∈ ∇ :

(
1

2
+ d

)∥∥|λ|∥∥1 + ∥∥|λ|∥∥∞ ≤
(

1

2
+ d + 1

n

)
	

}
. (5.4)

Using that #{λ ∈ ∇z : |λ| ≤ k} � 2k (Remark 3.1), one may verify that #∇(optsp)

	 �

2	 with a constant factor that depends on n. The error in this approximation can

therefore be bounded by a multiple of
√∑

k>	 2k4−( 1
2+d+ 1

n
)k

� 2−(d+ 1
n
)	. So with

an approximation having support length N , the error is not larger than CN−(d+ 1
n
),

for some constant C that may depend on n (and on the coefficients cm and f ).

Remark 5.2 Following [20], we call span{ψλ : λ ∈ ∇(optsp)

	 } an optimized sparse grid
space. With the standard sparse grid space span{ψλ : λ ∈ ∇, ‖|λ|‖1 ≤ 	}, one would

need N(logN)n−1 unknowns to guarantee an error O(N−(d+ 1
n
)), or equivalently,

with N unknowns the error is O(N−(d+ 1
n
)(logN)(n−1)(d+ 1

n
)). See Fig. 3 for an illus-

tration.

Remark 5.3 Using ‖f − g‖ � ‖f −∑
λ∈∇ gλψλ‖H−1(0,1)n , one might have expected

that with a g of length N an error N−(d+1) should be realizable. The analysis above
shows, however, that generally the rate d+ 1

n
cannot be improved, and more generally,

that when errors are measured in negative norms a mild deterioration of the rate as n

increases cannot be avoided. Yet, in view of our aim to approximate the right-hand
side with a rate better than that for the solution, note that for any n, d + 1

n
is safely

larger than the generally best possible rate d − 1 for approximating u.

The fact that for z 	= ∅, on all levels there are univariate wavelets having no vanish-
ing moments is a price that has to be paid for the use of orthonormal wavelets. Indeed,
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Fig. 3 Standard and optimized
sparse grid space in two space
dimensions for the
approximation of the right-hand
side

considering biorthogonal wavelets, one could select dual spaces that do not incorpo-
rate Dirichlet boundary conditions, so that all primal wavelets on positive levels have
vanishing moments.

For λ ∈ ∇ , let d(λ) denote the number of vanishing moments of ψ
(z)
λ , now being

either d or 0. Then | ∫ 1
0 vψ

(z)
λ | � 2−(d(λ)+ 1

2 )|λ||v|
W

d(λ)∞ (0,1)
, and instead of (5.3), we

obtain
∣∣f (ψλ)

∣∣=
∣∣∣∣
∫

(0,1)n
f ψλ

∣∣∣∣� 2−(‖|λ|‖∞+∑n
m=1(

1
2+d(λm))|λm|).

In view of this estimate, we construct approximations to f by dropping all entries
f(ψλ) with ‖|λ|‖∞ +∑n

m=1(
1
2 + d(λm))|λm| > ( 1

2 + d + 1
n
)	 for some parameter 	.

Using that for any c > 0,

#{λ ∈ ∇ : |λ| ≤ k and d(λ) = d, or |λ| ≤ ck and d(λ) = 0} � 2k + c(k + 1) � 2k,

dependent on c but uniform in k, we obtain that

#

{
λ ∈ ∇ : ∥∥|λ|∥∥∞ +

n∑
m=1

(
1

2
+ d(λm)

)
|λm| ≤

(
1

2
+ d + 1

n

)
k

}
� 2k.

As above, we conclude that with an approximation having support length N , the error

is O(N−(d+ 1
n
)), for some constant C that may depend on n (and on the coefficients

cm and f ).
In general, entries f (ψλ) have to be approximated by the application of a suitable

quadrature rule. For simplicity, here we discuss this issue only in the situation that
z = ∅ so that (5.3) is valid for all wavelets. In [27], we studied quadrature rules for
approximating the entries of the stiffness matrix for high dimensional PDEs having
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non-constant but smooth coefficients. From the analysis there, we deduce that, for
sufficiently smooth f , the application of a product composite quadrature rule taking

N function evaluations yields an approximation f̃ (ψλ) with

∣∣f (ψλ) − f̃ (ψλ)
∣∣� N−α2−(( 1

2+d)||λ|‖1+‖|λ|‖∞),

where α is proportional to the order of the one-dimensional composite rule, and in-
versely proportional to n. This dependence of α on n can be (nearly) removed by
applying sparse product rules. This gives the advantage that the order of the rule
can be chosen to be (nearly) independent of n, and with that so are the smoothness
requirements on f .

Let us now select α > d + 1
n

and a parameter σ ∈ (d + 1
n
,α). Then given

∇(optsp)

	 , for approximating f (ψλ) we take the rule with N = Nλ � 2(	−k) σ
α when

λ ∈ ∇(optsp)

k \∇(optsp)

k−1 (∇(optsp)

−1 := ∅). Assuming that each evaluation of f takes O(1)

operations, the total work for approximating [f (ψλ)]λ∈∇(optsp)

	

is then bounded by

some multiple of
∑	

k=0 2k2(	−k) σ
α � 2	, whereas the 	2(∇)-norm of the quadrature

error can be bounded by some multiple of
√∑	

k=0 2k4(k−	)σ 4−( 1
2+d+ 1

n
)k

� 2−(d+ 1
n
)	.

We conclude that for sufficiently smooth f , rhs
d+ 1

n
< ∞ (generally depending on n,

the coefficients cm and on f ).

6 Implementation and Numerical Results

For some general, fixed symmetric positive definite bi-infinite matrix A, our con-
siderations in Sect. 4 concerning the operation count of SOLVE apply under the
assumption that any entry of any vector that is generated inside this routine can be
stored in or fetched from memory in O(1) operations. This assumption is valid in the
unrealistic situation that we have an unlimited amount of memory at our disposal,
where each location can be accessed in O(1) operations. Indeed, in that case, using
some ordering on the index set ∇ to store any vector from 	2(∇) as an infinite array,
we have direct access to each of its entries. If, instead of assuming an infinite memory,
we restrict ourselves to wavelet indices up to a certain high level, and allocate arrays
for corresponding vectors, then we see that adaptivity does not result in a reduction
of memory requirements compared to non-adaptive schemes.

Therefore, let us consider the storage of any finitely supported v ∈ 	2(∇) as a
linked list of its non-zero entries ordered by their indices, which requires an amount
of memory that is proportional to its support length. Here we make the assumption
that the amount of memory needed to store any index λ ∈ ∇ that is encountered is
fixed. Then in view of Remark 4.9, the total amount of memory needed for a call
SOLVE[·, ε] is bounded by an absolute multiple of

ε−1/s
[‖u‖1/s

As∞ + rhs1/s
s

]
.

With this datastructure, the addition of two vectors requires a number of operations
that is proportional to the sum of their lengths. This has an unfortunate consequence
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for the cost of a call APPLY[∇,w, ε]. In this routine the sum is computed of a num-
ber of vectors, each of them being an approximate column of A multiplied by the
corresponding coefficient from the input vector (from which very small coefficients
were removed beforehand). The number of vectors K and the sum of their lengths
L, and with that the maximal possible length of the output vector, are all bounded by
some absolute multiple of ε−1/s‖w‖1/s

As∞ . If one would add the second until the K th
vector to the first one, then one could end up with a complexity that is quadratic in
L. Instead, if one adds pairwise vectors 1 and 2, 3 and 4, etc., and proceeds simi-
larly with the set of  K/2! resulting vectors, until finally one vector is left being thus
the output vector, the total complexity is (logK)L. Indeed, the cost of each step of
summing all pairs of current vectors is proportional to the total sum of their lengths,
which is never larger than L, whereas the number of these steps is  log2 K!. Realiz-
ing that the indices in the output vector are ordered, one infers that such a log-factor
cannot be avoided. By substituting the bounds for K and L, we conclude that with
the storage of a vector as a linked list, the cost of this call of APPLY is bounded by
a multiple of 1 + # supp w + log(ε−1/s‖w‖1/s

As∞)ε−1/s‖w‖1/s

As∞ . With that we find that
the number of operations needed for a call SOLVE[·, ε] is bounded by a constant
multiple of

log
(
ε−1/s‖u‖1/s

As∞
)
ε−1/s‖u‖1/s

As∞ + ε−1/srhs1/s
s ,

so that we end up with suboptimal computational complexity. So far this phenomenon
seems to be ignored in the literature on adaptive wavelet methods.

Specializing the discussion to the solution of elliptic boundary value problems in
high space dimensions using tensor product wavelet bases, we have to take into ac-
count that an index is an n-tuple. In view of the bound (5.2), the storage requirements
are therefore of the order

nε−1/s
[
n‖u‖1/s

As∞ + rhs1/s
s

]
.

Since comparing two indices now requires O(n) operations, the cost of the addition
of two vectors stored as ordered linked lists is now proportional to n times the sum
of their lengths. We end up with a total computational complexity of the order

n
[
log
(
nε−1/s‖u‖1/s

As∞
)
nε−1/s‖u‖1/s

As∞ + ε−1/srhs1/s
s

]
.

In our actual implementation, we have not used linked lists but hash tables to store
the vectors. We chose this mainly because of the convenience of programming, but
also since we expect that usually it results in faster code. Clearly, given any hash
function ∇ → {1, . . . ,M}, with M being the size of the hash table, one can always
construct � ⊂ ∇ whose elements are all mapped onto a single entry in the hash table
(collision), in which case the hash-based implementation will be very slow. In our
tests, the cost of storing vectors was proportional to their length.

For our numerical tests, we considered the Laplace operator, i.e., c0 = 0 and
c1 = · · · = cn = 1. We took ΓD = ∂Ω ∩ R

n
>0, i.e, homogeneous Dirichlet boundary

conditions at the right boundary point in each coordinate direction (zm ≡ z = {1}).
We used the collection of univariate L2(0,1)-orthonormal continuous piecewise lin-
ear (multi-) wavelets discussed in Sect. 2 as building block for the tensor product
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wavelet basis for H 1
0,ΓD

(0,1)n. Numerically, we estimated the extremal eigenvalues

λ
(1,z)
min ≈ 0.19 and λ

(1,z)
max ≈ 2.8 of the one-dimensional Laplace operator in wavelet co-

ordinates �Az, being also lower or upper bounds for the extremal eigenvalues of the
n-dimensional Laplace operator in tensor product wavelet coordinates A (see (2.2)).
These bounds are used in the routines APPLY and GALSOLVE.

Sparse approximations to A are constructed from sparse approximations to �A. In
Sect. 3, we considered �A(j)

z by dropping all entries ( �Az)λ,μ with ||λ| − |μ|| > j . It

turns out that this �A(j)
z contains entries that are much smaller in modulus than some of

those that were dropped. Therefore, in order to improve quantitative properties of the
algorithm, in our experiments we used approximations to �A by dropping all entries
with modulus below some given tolerance. For the resulting approximation with a
maximal number of j non-zero entries per row and column, which we again denote
as �A(j)

z , we found numerically that ‖ �Az− �A(j)
z ‖ � 1.45×2−0.05∗j . Using notations as

in the proof of Theorem 3.5, with �B(j)
z := �D

1
2
z

�A(j)
z

�D
1
2
z , the maximal number of non-

zeros per row and column of A(j) := D
1
2 ( �B(j)

z ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗
�B(j)
z )D

1
2 is nj (or actually n(j − 1)+ 1), where ‖A − A(j)‖ � 1.45 × 2−0.05∗j . This

estimate was used to perform the optimization in the APPLY routine as discussed
following Theorem 4.6. The use of these modified sparse approximations reduced
the cost of a call of SOLVE by approximately 30%.

Additionally, we applied an extra dropping in the spirit of Remark 3.6. When �A(j)
z

was constructed by dropping all elements in �Az with modulus less than ε, we dropped
all elements from the resulting A(j) with modulus less than ε. We observed that this
additional dropping hardly influences the accuracies of the approximate matrix vector
multiplications, whereas, for n > 1, the cost of calls of SOLVE were reduced by
approximately a factor 2.

For our convenience, we took as right-hand side f = 1. In this case, the solution
u is the restriction to (0,1)n of ũ solving −�ũ = 1 on Ω̃ = (0,2)n, ũ = 0 on ∂Ω̃ .
For any 	 ∈ N0, there exists one λ ∈ ∇z with |λ| = 	 and

∫ 1
0 ψ

(z)
λ 	= 0, and so for any

� ∈ N
n
0, there exists one λ ∈ ∇ with |λ| = � and fλ = ∫

(0,1)n
ψλ 	= 0. Based on the es-

timate |fλ| � 2−(‖|λ|‖∞+ 1
2 ‖|λ|‖1), we considered optimized sparse grid approximations

[fλ]λ∈∇(optsp)

	

with ∇(optsp)

	 from (5.4) with d = 0. We simply estimated the error in this

approximation by the 	2(∇)-norm of [fλ]λ∈∇(optsp)

	+1 \∇(optsp)

	

, and took the smallest 	 for

which this norm is less than the given tolerance. Using that f is exceptionally sparse,
one easily verifies that rhss < ∞ for any s (dependent on n).

Concerning the parameters in SOLVE, some testing indicated that the best results
are obtained with approximately α = 0.6, ω = 0.4, γ = 0.2, and θ = 2ω/(1 + ω).
Not very surprisingly (cf. Remark 4.3), these values are actually outside the ranges
for which the algorithm was proven to be optimal. For ‘admissible’ parameter values,
however, we obtained similar approximate solutions although at higher cost.

Numerical results obtained with SOLVE are given in Fig. 4. For any n, we know
that u ∈ A1∞ (see Sect. 1). As shown by Theorem 5.1, as a consequence, the approx-
imations ũN produced by SOLVE also convergence with asymptotic rate 1. With
f̃ − ÃũN denoting the approximate residual of ũN computed inside SOLVE with
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Fig. 4 ‖f̃−ÃũN ‖
‖f‖ for n ∈ {1,2, . . . ,10}, where f̃ − ÃũN denotes an approximate residual, with a small

relative error, of the approximate solution ũN produced by SOLVE with support length N

small relative error, moreover we have supN N‖f̃ − ÃũN‖ � supN N‖u − ũN‖ �

supN N‖u − uN‖ � supN N infv∈	2(∇) |||u − ∑
λ∈∇ vλψλ||| (� ‖u‖A1∞ ) with con-

stant(s) that are independent of n. In view of Fig. 4, we conclude that for this family
of solutions with right-hand sides f = 1, apparently ‖u‖A1∞/‖u‖ is increasing as a
function of n, so that, as a consequence, the larger n is, the later the asymptotic rate
shows up. Better results as a function of n will be obtained with coordinate direc-
tions with two Neumann boundaries, since for f = 1, the solution in those directions
will be constant. For one Dirichlet and one Neumann boundary condition in each co-
ordinate direction as we considered, for n ≥ 2 the rate with (optimized) sparse grid
approximation will be 1

2 + 1
n

(see Sect. 1).
Finally, in Fig. 5, for n ∈ {1,2, . . . ,10}, we show the support size of the approx-

imate residual computed inside SOLVE divided by n times the support size of the
corresponding approximate solution. As predicted by Theorem 4.8, this quotient is
bounded uniformly in n. The fact that it behaves like a constant shows that the cost
of a call of SOLVE that produces an approximate solution of length N , being up
to a constant multiple as good as a best N -term approximation, is proportional to n

times N .

Remark 6.1 Our solution method did not make use of the symmetry in the right-hand
function f = 1 and thus in the solution. It also did not use the fact that this f is a
separable function so that its representation is a rank 1 tensor. In this sense we expect
that the results we obtained are representative for general moderately smooth f that
do not vanish at the Dirichlet boundary. Methods that do exploit the property of the
right-hand side vector being a low rank tensor search for an approximate solution in
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Fig. 5 Support size of the approximate residual computed inside SOLVE divided by n times the support
size of the corresponding approximate solution for n ∈ {1,2, . . . ,10}. The line on top corresponds to n = 1

data sparse, low rank format, see [17, 18]. It would be interesting to see whether such
methods can be combined with adaptivity.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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