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ABSTRACT

A novel multi-dimensional multi-resolution adaptive wavelet stochastic collocation method

(AWSCM) for solving partial differential equations with random input data is proposed. The un-

certainty in the input data is assumed to depend on a finite number of random variables. In case

the dimension of this stochastic domain becomes moderately large, we show that utilizing a hi-

erarchical sparse-grid AWSCM (sg-AWSCM) not only combats the curse of dimensionality but,

in contrast to the standard sg-SCMs built from global Lagrange-type interpolating polynomials,

maintains fast convergence without requiring sufficiently regular stochastic solutions. Instead, our

non-intrusive approach extends the sparse-grid adaptive linear stochastic collocation method (sg-

ALSCM) by employing a compactly supported wavelet approximation, with the desirable multi-

scale stability of the hierarchical coefficients guaranteed as a result of the wavelet basis having the

Riesz property. This property provides an additional lower bound estimate for the wavelet coef-

ficients that are used to guide the adaptive grid refinement, resulting in the sg-AWSCM requiring

an optimal (up to a constant) number of deterministic simulations for both smooth and irregular

stochastic solutions. Second-generation wavelets constructed from a lifting scheme allow us to

preserve the framework of the multi-resolution analysis, compact support, as well as the necessary

interpolatory and Riesz property of the hierarchical basis. Several numerical examples are given to

demonstrate the optimal convergence of our numerical scheme and to show the increased efficiency

when compared to the sg-ALSCM method.
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1 INTRODUCTION

Many applications in engineering and science are affected by uncertainty in input data, including

model coefficients, forcing terms, boundary condition data, media properties, source and interac-

tion terms, as well as geometry. For example, highly heterogeneous materials may have properties

that vary over small length scales so that these properties have to be often determined, e.g., by

interpolating or extrapolating measurements obtained at a few locations. These types of uncertain-

ties are known as epistemic because they are related to incomplete knowledge. In other situations,

referred to as aleatoric, uncertainty is due to intrinsic variability in the system, e.g., fluctuations in

turbulent flow fields. In practice, it is necessary to quantify both types of uncertainties, a process

which is naturally referred to as uncertainty quantification (UQ).

The presence of random input uncertainties can be incorporated into a system of partial dif-

ferential equations (PDEs) by formulating the governing equations as PDEs with random inputs.

In practice, such PDEs may depend on a set of distinct random parameters with the uncertainties

represented by a given joint probability distribution. In other situations, the input data varies ran-

domly from one point of the physical domain to another and/or from one time instant to another; in

these cases, uncertainties in the inputs are instead described in terms of random fields that can be

expressed as an expansion containing an infinite number of random variables. For example, for cor-

related random fields, one has Karhunen-Loève (KL) expansions [30,31], Fourier-Karhunen-Loève

expansions [29], or expansions in terms of global orthogonal polynomials [21, 50, 52]. However,

in a large number of applications, it is reasonable to limit the analysis to just a finite number of

random variables, either because the problem input itself can be described in that way (e.g., the

random parameter case) or because the input random field can be approximated by truncating an

infinite expansion [19] (e.g., the correlated random field case).

Currently, there are several numerical methods available for solving PDEs with random in-

put data. Monte Carlo methods (MCMs) (see, e.g., [17]) are the classical and most popular ap-

proaches for approximating expected values and other statistical moments of quantities of interest

that depend on the solution of PDEs with random inputs. MCMs are very flexible and trivial to

implement and parallelize using existing deterministic PDE solvers, but they feature very slow

convergence because they do not exploit any regularity the solution may possess with respect to

the input stochastic parameters. On the other hand, the convergence rates of MCMs have mild

dependence on the number of random variables so that for problems involving a large number of

random parameters, MCMs remain the method of choice.

Several numerical approaches have been proposed that often feature much faster convergence

rates. These include stochastic Galerkin methods (SGMs) [1, 3, 21, 35] and stochastic colloca-

tion methods (SCMs) [2, 34, 38, 39, 51]. The two approaches transform the original stochastic

problem into a deterministic one with a large number of parameters and differ in the choice of

the polynomial bases used and the resulting approximating spaces. To achieve increased rates of

convergence relative to MCMs, both approaches are typically based on global polynomial approxi-

mations that take advantage of smooth behavior of the solution in the multi-dimensional parameter

space. SGMs are based on orthogonal polynomials which leads to a coupling of the probabilistic

and space/time degrees of freedom; for this reason, SGMs are referred to as being intrusive. On the
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other hand, SCMs are based on interpolatory polynomials so that, when implemented, they result

in ensemble-based non-intrusive approaches for which the probabilistic and space/time degrees of

freedom are uncoupled.

We emphasize that the better convergence behavior of SGMs and SCMs relative to MCMs

requires high regularity with respect to the random variables. However, often in scientific and

engineering problems there are are irregular dependences, e.g., steep gradients, sharp transitions,

bifurcations, or finite jump discontinuities, of a quantity of interest (QoI) with respect to the ran-

dom variables. In such cases, global polynomial-based approximations such as SGMs and SCMs

seriously deteriorate to the point that they converge very slowly or may even fail to converge. In-

deed, for such applications, the use SGMs and SCMs often result in no improvements over MCMs.

As a result, one turns to local approximation methods. To be effective, such approximations have

to be implemented using refinement strategies that focus on regions of irregular behavior; other-

wise, there would be an explosion in the required computational effort as the number of random

variables increases, a phenomenon commonly referred to as the curse of dimensionality.

Not surprisingly, there have been many proposed methods that attempt to control the curse, i.e.,

to put off its inevitable fatal effect to higher dimensions. Several techniques involve domain de-

composition approaches using h-type finite elements basis functions, similar to those constructed

in the physical spatial domain. A multi-element approach utilized in [18] decomposes each param-

eter dimension into sub-domains and then uses tensor products to reconstruct the entire parameter

space. This method has successfully been applied to moderate dimension problems, but the tensor-

product decomposition inevitably re-introduces the curse of dimensionality. Similarly, [26, 27]

presents a tensor product-based multi-resolution approximation based on a Galerkin projection

onto a Wiener-Haar basis. This approach provides significant improvements over global orthogo-

nal approximation approaches. However, in terms of robustness, dimension scaling is not possible

due to the resulting dense coupled system and the lack of any rigorous criteria for triggering re-

finement.

It is recognized that any refinement strategy employed must be guided by an accurate estimation

of both local and global errors. In [32, 33], an adaptive sparse-grid stochastic collocation strategy

is applied that uses piecewise multi-linear hierarchical basis functions developed in [20, 22, 25].

This approach utilizes the hierarchical surplus as an error indicator to automatically detect the

regions of importance (e.g., discontinuities) in stochastic parameter space and to adaptively refine

the collocation points in this region. The adaptation process is continued until a prescribed global

error tolerance is achieved. This goal, however, might be reached by using more points than

necessary due to the instability of the multi-scale basis used; see §3.3 for a complete description of

the properties of such multi-scale sparse grid approximations using hierarchical subspace splitting

and see §4 for the additional properties required to construct an optimal multi-dimensional multi-

resolution approximation.

In §4, we propose an adaptive wavelet stochastic collocation method that possesses the ad-

ditional properties. The intent of our approach is to combat the curse of dimensionality while

maintaining the increased convergence rates of standard SCM approaches by utilizing optimal

compactly supported wavelet basis functions. The construction principles of such functions are

highly developed; see, e.g., [6, 9, 12, 13, 23] and the references therein. Such bases are in ubiq-
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uitous use in signal processing and other applications. They have also been rigorously shown

to result in optimal approximations of PDEs (see, e.g., [7, 8, 10, 14, 15, 36, 42, 43]) and of PDE

constrained optimal control problems (see, e.g., [11, 23]), when compared with traditional finite

element approximations. In this paper, due to their general applicability to arbitrary domains, we

consider second-generation wavelets constructed from a lifting scheme [46–48]. Moreover, in ad-

dition to maintaining compact support and the interpolatory properties of nodal bases, the beauty

of the second-generation wavelets is that they also form a Riesz basis, a property that guaran-

tees the stability of the hierarchical basis and allows one to construct an optimal multi-resolution

approximation.

The outline of the paper is as follows. In §2, we introduce the mathematical description of a

general stochastic initial-boundary problem and the main notation used throughout the paper. In

§3, we briefly recall the stochastic collocation method and adaptive strategies using both global

as well linear hierarchical polynomials. In §4, we propose our novel adaptive wavelet stochastic

collocation method and the properties of the second-generation wavelets we employ. In §5, sev-

eral numerical examples are given to demonstrate the effectiveness and efficiency of our method

compared with classic approaches.
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2 PROBLEM SETTING

We follow the notation in [2, 38, 39] and begin by letting D denote a bounded domain in R
d, d =

1, 2, 3, and (Ω,F , P ) denote a complete probability space. Here, Ω denotes the set of outcomes,

F ⊂ 2Ω the σ-algebra of events, and P : F → [0, 1] a probability measure. We are interested

the following stochastic initial-boundary value problem: find u : Ω ×D × [0, T ] → R
m such that

P -almost everywhere in Ω
L(a)(u) = f in D × [0, T ] (2.1)

subject to the boundary and initial conditions

B(b)(u) = g on ∂D × [0, T ]

u = u0 on D × {t = 0}. (2.2)

Here, L denotes a differential operator (linear or non-linear) depending on the coefficient(s) a(ω, x, t)
with (ω, x, t) ∈ Ω × D × [0, T ]; B denotes a boundary operator depending on the coefficient(s)

b(ω, x, t) with (ω, x, t) ∈ Ω × ∂D × [0, T ]. Similarly, the right-hand sides f(ω, x, t), g(ω, x, t),
and u0(ω, x) can be assumed to be random fields as well. Note that, in general, a, b, f , g, and u0
belong to different probability spaces, but for economy of notation, we simply denote the stochas-

tic dependences of these random data as if all belong to the same probability space. We denote

by W (D) a Banach space and assume the underlying stochastic input data are chosen so that

the corresponding stochastic system (2.1)–(2.2) is well-posed so that it has an unique solution

u(ω, x, t) ∈ L2
P (Ω)⊗ L2(W (D); 0, T ), where the space

L2
P (Ω)⊗ L2(W (D); 0, T )

:=

{
u : Ω×D × [0, T ] → R

m

∣∣∣∣
∫ T

0

∫

Ω

‖u‖2W (D) dP (ω)dt < +∞
}

(2.3)

consists of Banach-space valued functions that have finite second moments. Finally, we note that in

this setting the solution u can either be a scalar or vector-valued function depending on the system

of interest.

An example problem posed in this setting is given as follows.

Example 2.1 [Linear parabolic PDE with random inputs] Consider the initial-boundary value

problem [53]: find a random field u : Ω×D × [0, T ] → R such that P -almost surely

∂tu(ω, x, t)−∇ · [a(ω, x)∇u(ω, x, t)] = f(ω, x, t) in Ω×D × [0, T ]

u(ω, x, t) = 0 on Ω× ∂D × [0, T ]

u(ω, x, 0) = u0(ω, x) on Ω×D,

(2.4)

where ∇ denotes the gradient operator with respect to the spatial variable x ∈ D. To guarantee

the well-posedness of the solution of (2.4) in L2
P (Ω)⊗ L2(H1(D); 0, T ), one assumes that almost

surely the coefficient a(x, ω) is positive and uniformly bounded, i.e.,

P
(
ω ∈ Ω : amin ≤ a(ω, x) ≤ amax ∀ x ∈ D

)
= 1 with amin, amax ∈ (0,∞) (2.5)
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and that the right-hand side satisfies

∫ T

0

∫

D

E[f 2]dxdt :=

∫ T

0

∫

D

∫

Ω

f 2(ω, x, t) dP (ω)dxdt < +∞ P -a.e. in Ω.

2.1 FINITE DIMENSIONAL NOISE

In many applications, the source of randomness can be approximated using just a finite number of

uncorrelated, or even independent, random variables. As such, similar to [2, 38, 39], we make the

following assumptions regarding the stochastic input data, i.e., the random coefficients a and b in

L and B and the right-hand sides f , g, and u0 in (2.1)–(2.2).

A1) The stochastic input coefficient a satisfies (2.5) and the other stochastic input data are

bounded from above and below with probability 1, e.g., for the right-hand side f(ω, x, t), there

exists fmin > −∞ and fmax <∞ such that

P
(
ω ∈ Ω : fmin ≤ f(ω, x, t) ≤ fmax ∀x ∈ D, ∀t ∈ [0, T ]

)
= 1 (2.6)

and similarly for all remaining inputs.

A2) The stochastic input data have the form

d0(ω, x, t) +
N∑

n=1

yn(ω)dn(x, t), (2.7)

where N ∈ N+ and y = [y1(ω), . . . , yN(ω)] : Ω → R
N is a real-valued vector of independent

random variables.

In many applications, the stochastic input data may have a simple piecewise random represen-

tation whereas, in other applications, the coefficients a and b in (2.1) and the right-hand sides f , g,

and u0 in (2.2) may have spatial variation that can be modeled as a correlated random field, making

them amenable to description by a Karhunen-Loève (KL) expansion [30, 31]. In practice, one has

to truncate such expansions so that they are of the form (2.7), with the number N of terms kept

depending on the degree of correlation and the desired accuracy of the simulation. Examples of

both types of noise, each satisfying assumptions A1 and A2, are given next.

Example 2.2 [Piecewise constant random fields] We assume the spatial domain D is the union of

non-overlapping subdomains Dj , j = 1, . . . , J , and the time interval (0, T ) is the union of disjoint

subintervals (Tk−1, Tk), k = 1, . . . , K. Then, we consider stochastic input data that is piecewise

constant and random on each space-time subdomain Dj × (Tk−1, Tk), i.e.,

d0(x, t) = σ0 and dn(x, t) = σn1Dj×(Tk−1,Tk)(x, t), n = j + (k − 1)K,

where σn, n = 0, . . . , N , denote constants, 1Dj×(Tk−1,Tk) denotes the indicator function of the set

Dj × (Tk−1, Tk) ⊂ D × [0, T ], and the random variables yn(ω) are bounded and independent.
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Once the bounded sample space Ω is defined, the constants amin, amax, fmin, fmax, etc. in the

constraints (2.5)–(2.6) are easily deduced. Note that (2.5) requires restrictions on the constants

σn and the bounds on the random variables yn(ω) corresponding to the coefficient a; in practice,

such restrictions would be deduced from the physics of the problem.

Example 2.3 [Karhunen-Loève expansion] Any second-order correlated random field c(ω, x, t)
with continuous covariance function Cov[c](x̃1, x̃2), where x̃1 = (x1, t1) and x̃2 = (x2, t2) are

space-time coordinates, can be represented as an infinite sum of random variables by means of,

e.g., a KL expansion. For x̃ = (x, t), we define the operator F : L2(D) × L2(0, T ) → L2(D) ×
L2(0, T ) by

Fv(x̃) :=

∫ T

0

∫

D

Cov[c](x̃1, x̃)v(x̃1) dx̃1 ∀ v ∈ L2(D)× L2(0, T ). (2.8)

Because of the symmetry and positivity properties of covariance functions, the operator F has

real, non-negative eigenvalues {λn}∞n=1 that may be arranged in non-increasing order and corre-

sponding real orthonormal eigenfunctions {cn(x̃)}∞n=1. For simplicity of the exposition, we assume

that the eigenvalues are positive. Furthermore, if we define mutually uncorrelated real random

variables by

yn(ω) :=
1√
λn

∫ T

0

∫

D

(c(ω, x̃)− E[c](x̃)) cn(x̃) dx̃, n = 1, 2, . . .

with zero mean and variance V ar[yn] =
√
λn, then c(ω, x, t) can be represented by the truncated

N -term KL expansion satisfying assumption A2 with d0(x, t) = E[c](x, t) and dn(x, t) = cn(x, t)
for n = 1, . . . , N . Finally, note that if the process is Gaussian, then the random variables {yn}∞n=1

are standard identically independent distributed random variables.

In what follows, we denote by Γn ≡ yn(Ω) ⊂ R the image of the random variable yn, then set

Γ :=
∏N

n=1 Γn, where N ∈ N+, and assume that the components of the real-valued random vector

y = [y1(ω), . . . , yN(ω)] : Ω → R
N have a joint probability density function (PDF)

ρ(y) : Γ → R+ with ρ(y) ∈ L∞(Γ)

such that ρ(y) =
∏N

n=1 ρn(yn). We note that, given assumption A1, the image set Γ is a bounded

hypercube in R
N . Moreover, from assumption A2, we have that the solution u to (2.1)–(2.2)

depends on a realization ω ∈ Ω through an instantiation of the random vector y ∈ Γ. Therefore,

the probability space (Ω,F , P ) is equivalent to (Γ,B(Γ), ρ(y)dy), where B(Γ) is the Borel σ-

algebra on Γ and ρ(y)dy is the finite measure of the random vector y.

We are now in position to restate the random input data in terms of y as follows:

a(ω, x, t) = a(y, x, t), f(ω, x, t) = f(y, x, t) for (y, x, t) ∈ Γ×D × [0, T ]

b(ω, x, t) = b(y, x, t), g(ω, x, t) = g(y, x, t) for (y, x, t) ∈ Γ× ∂D × [0, T ]

u0(ω, x) = u0(y, x) for (y, x) ∈ Γ×D.

(2.9)
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As a result, the problem (2.1)–(2.2) can be restated as follows: find a random function u(y, x, t) :
Γ×D × [0, T ] → R

m such that ρ-almost everywhere y ∈ Γ, we have that

L(a(y, x, t))(u) = f(y, x, t) in D × [0, T ] (2.10)

subject to the boundary and initial conditions

B(b(y, x, t))(u) = g(y, x, t) on ∂D × [0, T ]

u = u0(y, x) on D × {t = 0}. (2.11)

Then, by the Doob-Dynkin lemma [40], the unique solution u of (2.1) and (2.2) can also be char-

acterized by the same random vector y, i.e.,

u(ω, x, t) = u(y1(ω), . . . , yN(ω), x, t) ∈ L2
ρ(Γ)⊗ L2(W (D); 0, T ), (2.12)

where L2
ρ(Γ) is the space of square integrable functions of Γ with respect to the measure ρ(y)dy.

As indicated in (2.12), the solution u(y, x, t) belongs to the function spaceL2
ρ(Γ)⊗L2(W (D); 0, T )

that is defined by

L2
ρ(Γ)⊗ L2(W (D); 0, T )

:=

{
u : Γ×D × [0, T ] → R

m

∣∣∣∣
∫

Γ

∫ T

0

‖u‖2W (D)ρ(y)dtdy <∞
}
.

(2.13)

We once again note that, in general, each appearance of y in (2.10)–(2.11) can be a different

vector of random variables each belonging to a different probability space and that in the end,

the solution u depends on all the different y’s which collectively belong to the product space of

the individual probability spaces. However, again to economize notation, we do not explicitly

differentiate between the different vectors of random variables.

Thus far we have turned the possibly infinite-dimensional stochastic initial-boundary value

problem given by (2.1)–(2.2) into a finite-dimensional parametric problem (2.10)–(2.11). With-

out loss of generality, we will assume the support of the random variables yn is Γn = [0, 1] for

n = 1, . . . , N and therefore the bounded stochastic (or parameter) space is the N -dimensional

unit hypercube Γ = [0, 1]N . At this point, we can apply any stochastic approximation technique,

e.g., spectral-Galerkin, locally adaptive, etc. However, the focus of our work involves non-intrusive

approximations (such as Monte Carlo sampling or stochastic collocation methods) in probability

space for which, for any realization y(ωk) of the random parameters, solutions can be constructed

using standard deterministic approximation techniques in space-time, e.g., finite difference meth-

ods, finite element methods, finite volume methods, etc. for spatial discretization and backward

Euler or Crank-Nicolson schemes for temporal discretization [37, 53].
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3 ADAPTIVE STOCHASTIC COLLOCATION METHODS

To provide context and background for the new method we present in §4, in this section we dis-

cuss, in general terms, adaptive stochastic collocation methods (SCMs). These approximations are

computed via Lagrange interpolation of the random parameter dependence of solutions of (2.10)-

(2.11), described in §3.1, constructed from either globally or locally supported basis functions,

described in §3.2 and §3.3 respectively. In §3.3, we discuss in somewhat more detail the special

case of hierarchical piecewise polynomial basis functions, leading to the hierarchical, locally adap-

tive, piecewise linear approximations. The latter is the closest precursor to our new method and,

naturally, we use it for comparison purposes.

We note that the use of polynomials having the property that the interpolation matrix is diago-

nal, i.e. the “delta property” (see Remark 3.1), leads to approximations that some authors refer to

as stochastic collocation methods (SCMs). Others use that terminology to refer to any method for

which the parameter and spatial/temporal degrees of freedom uncouple; with this view, which is

the one we adopt, all methods discussed below and in this section and in §4 would be referred to

as being SCMs.

3.1 LAGRANGE INTERPOLATION IN THE PROBABILISTIC DOMAIN

The goal is to construct a numerical approximation of the solution of (2.10)–(2.11) in a finite-

dimensional subspace P(Γ) ⊗ L2(Wh(D); 0, T ). Here, Wh(D) ⊂ W (D) is a standard finite el-

ement space of dimension dim(Wh) = Mh, used for spatial discretization and P(Γ) ⊂ L2
ρ(Γ) is

a finite-dimensional space of dimension dim(P(Γ)) = M , used for approximation in parameter

space. Of course, a temporal discretization, usually via a finite difference method, is implied as

well. Interpolatory approximations in parameter space start with the selection of a set of distinct

points {yk}Mk=1 ∈ Γ, in parameter space and a set of basis functions1 {ψk(y)}Mk=1 ∈ P(Γ). Then,

we seek an approximation uMh,M ∈ P(Γ) ⊗ L2(W (D); 0, T ) of the solution u of the problem

(2.10)-(2.11) of the form

uMh,M(y, x, t) =
M∑

k=1

ck(x, t)ψk(y). (3.1)

The Lagrange interpolant is defined by first obtaining M realizations uMh
(yk, x, t) of the finite

element approximation2 of the solution u(yk, x, t) of the problem (2.10)-(2.11), i.e., one solves for

the finite element approximation for each of the interpolation points in the set {yk}Mk=1. Then, the

coefficient functions {ck(x, t)}Mk=1 are determined by imposing the interpolation conditions

M∑

ℓ=1

cℓ(x, t)ψℓ(yk) = uMh
(yk, x, t) for k = 1, . . . ,M. (3.2)

1In general, the number of points and number of basis functions do not have to be the same, e.g., for Hermite

interpolation. However, because here we only consider Lagrange interpolation, we let M denote both the number of

points and the dimension of the basis.
2Extensions to other methods, e.g., finite difference, finite volume, spectral or h-p, etc. are straightforward.
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Thus, the coefficient functions {cℓ(x, t)}Mℓ=1 are each a linear combination of the data functions

{uMh
(yk, x, t)}Mk=1; the specific linear combinations are determined in the usual manner from the

entries of the inverse of the M ×M interpolation matrix K having entries Kkℓ = ψℓ(yk), k, ℓ =
1, . . . ,M . The sparsity of K heavily depends on the choice of basis; that choice could result in

matrices that range from fully dense to diagonal.

A main attraction of interpolatory approximations of parameter dependences is that it effects

a complete decoupling of the spatial/temporal and probabilistic degrees of freedom. Clearly, once

the interpolation points {yk}Mk=1 are chosen, one can solve M deterministic problems (i.e., the

spatial/temporal discretization of (2.10)-(2.11)), one for each parameter point yk, with total dis-

regard to what basis {ψk(y)}Mk=1 one choose to use. Then, the coefficients {ck(x, t)}Mk=1 defining

the approximation (3.1) of the solution of (2.10)-(2.11) are found from the interpolation matrix

K as discussed above; its only in this last step that the choice of basis enters into the picture.

Note that this decoupling property makes the implementation of Lagrange interpolatory approxi-

mations of parameter dependences as trivial as it is for Monte Carlo sampling. However, if that

dependence is smooth, because of the higher accuracy of, e.g., polynomial approximations in the

space P(Γ), interpolatory approximations require substantially fewer sampling points to achieve a

desired tolerance.

Remark 3.1 (The “delta property”) Given a set of interpolation points, to complete the setup

of a Lagrange interpolation problem, one has to then choose a basis. The simplest and most

popular choice are the Lagrange polynomials, i.e., polynomials that have the “delta property”

ψℓ(yk) = δkℓ, where δkℓ denotes the Kroeneker delta. In this case, the interpolating conditions

(3.2) reduce to ck(x, t) = uh(yk, x, t) for k = 1, . . . ,M , i.e., the interpolation matrix K is simply

the M ×M identity matrix. In this sense, the use of Lagrange polynomial bases can be viewed

as resulting in pure sampling methods, much the same as Monte Carlo methods, but instead of

randomly sampling in the parameter space Γ, the sample points are deterministically structured

as, e.g., tensor product or sparse grid points.

3.2 ADAPTIVE GLOBAL SPARSE-GRID LAGRANGE INTERPOLATION

When the solution is analytic with respect to the noise parameterization [2,38,39], the most widely

used approach to for constructing approximations of the form (3.1) involves the construction of a

global Lagrange interpolant, by replacing the polynomial space P(Γ) by Pp(Γ), defined as the

span of product polynomials, i.e.,

Pp(Γ) = span

{ N∏

n=1

ypnn with p = (p1, . . . , pN) ∈ J (p)

}
,

where the index set J (p) determines the type of polynomial space used. Thus, the dimension M
of Pp(Γ) is the cardinalty of the index set J (p). Two obvious choices are tensor product spaces of

one-dimenional polynomials of degree p for which J (p) = {p ∈ N
N : max1≤n≤N pn ≤ p} and

total degree p spaces for which J (p) = {p ∈ N
N :

∑N
n=1 pn ≤ p}.
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Both these choices are problematical even for problems having moderately large parameter

dimension N . The first choice results in M = (p + 1)N interpolation points, a number which

grows explosively with increasing N ; this is perhaps the most egregious instance of the curse of

dimensionality. For the second, we have M = (N + p)!/(N !p!) interpolation points, i.e., much

slower growth than for the tensor product case, so that the inevitable fatal effects of the curse are

postponed to higher dimensions. However, this choice requires a judicious choice of the location of

the interpolation points because arbitrary choices can result in large Lebesgue constants which can

lead to serious deterioration in accuracy. Unfortunately, good choices of total degree interpolation

points in N -dimensional cubes are not known, even for moderate values of N .

A third choice for the interpolation abscissas are sparse-grid points, constructed from the roots

of either the nested Chebyschev (Clenshaw-Curtis) or the Guassian polynomials. [2, 38, 39]. Typi-

cally, in these approaches the index set is defined using the Smolyak method [5, 45] where

J (p) =

{
p ∈ N

N :
N∑

n=1

αnf(pn) ≤ f(p)

}
with f(p) =

{
0, p = 0

1, p = 1

⌈log
2
(p)⌉, p ≥ 2

.

Other polynomial spaces have been described and considered in, e.g., [4, 49].

For any choice of interpolation points, a reduction in the number of interpolation points can be

effected by using dimension-adaptive global polynomials. For example, for the tensor product and

total degree cases, one can use the index sets J (p) = {p ∈ N
N : max1≤n≤N αnpn ≤ αminp}

and J (p) = {p ∈ N
N :

∑N
n=1 αnpn ≤ αminp}, respectively, where the weights αn > 0,

n = 1, . . . , N , can be computed either a priori or a posteriori; see [38].

3.3 ADAPTIVE HIERARCHICAL SPARSE-GRID LAGRANGE INTER-

POLATION

None of the approaches discussed above are effective in approximating solutions u(y, x, t) of

(2.10)-(2.11) that have irregular dependence with respect to the random parameters. This is perhaps

even truer for those methods, commonly refereed to as polynomial chaos methods, that use global

orthogonal polynomials in the parameter space. What is required for the effective approximation of

solutions having irregular dependence with respect to the random parameters is an approximating

space that allows for, through a judicious choice of basis, a multi-level, multi-scale decomposition.

Such an approach can be constructed using piecewise polynomial approximations in the parameter

space with multi-level, multi-scale hierarchical bases. A step in this direction was the development

of an adaptive piecewise linear hierarchical sparse-grid approximation [5, 22] and their utiliza-

tion for solving problems with random inputs [32, 33]. In this section we discuss hierarchical

sparse-grid Lagrange interpolation approaches and also specialize to the approach [5, 22, 32, 33].

In §4, we extend this technique by developing a multi-dimensional multi-resolution interpolating

wavelet-based approximation.

Instead of using global polynomial interpolating spaces that attempt to achieve greater accuracy

by increasing the degree p of the polynomial space, piecewise polynomial interpolation spaces
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attempt to achieve greater accuracy with a fixed polynomial degree by refining the grid that is the

underpinning of the definition of the space. Problems having solutions with irregular behavior

cannot take advantage of increases in the degree of the polynomials used; however, through local

grid refinement in regions where the solution exhibits irregular behavior, piecewise polynomial

spaces have the potential to be effective for such problems. However, realizing that potential for

problems with even moderate parameter dimension N is not a straightforward matter.

Piecewise polynomial spaces for Lagrange interpolation are most often implemented in a stan-

dard “finite element” manner using locally supported nodal basis functions. One advantage of this

approach is that the basis functions have the “delta property” (see Remark 3.1). However, such

choices do not result in a multi-scale basis so that defining reliable error indicators for adaptive re-

finement is a difficult matter and, in fact, obtaining approximations that are optimal with respect to

the number of degrees of freedom used to achieve a desired accuracy is not possible. We also focus

the discussion on sparse-grid hierarchical polynomial interpolation because multi-dimensional ap-

proximations based on tensor product grids are not viable for high-dimensional parameter spaces,

even for polynomial degree p = 1, because of the large number of degrees of freedom involved.

That is, for each parameter dimension n = 1, . . . , N , we define Vn := L2
ρ(Γn). Then, the

desired approximation is based on a sequence of subspaces {Vin}∞in=0 of V of increasing dimension

Min which is dense in Vn, i.e., ∪∞
in=0Vin = Vn. The sequence of spaces is also required to be nested,

i.e.,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vin ⊂ Vin+1 ⊂ · · · ⊂ Vn. (3.3)

A set of subspaces satisfying these requirements are defined as the span of a nodal piecewise

polynomial basis of order p, i.e.,

Vin = span{φin
jn
(yn) | 0 ≤ jn ≤ 2in}, (3.4)

where in denotes the scaling level of all the basis functions φin
jn

with compact support, i.e., supp(φin
jn
) =

O(2−in), and φin
jn
(yn) is a polynomial of degree p. For example, suppose Min distinct points are

selected in the interval Γn such that the maximum distance between any two neighboring points

is of order O(2−in). Then, the simplest choice for the set {φin
jn
}Min

jn=1 are the linear “hat” functions

corresponding to the selected points in Γn; in this case, we indeed have that the support of each

φin
jn
(yn) is of order O(2−in).

Similarly, for an N -dimensional problem, we define VN := L2
ρ(Γ). Then, a sequence of sub-

spaces {VN
l }∞l=0 of VN can be constructed using a sparse-grid framework, i.e.,

VN
l =

⋃

|i|≤l

N⊗

n=1

Vin =
⋃

|i|≤l

span

{ N∏

n=1

φin
jn
(yn)

∣∣∣∣ 0 ≤ jn ≤ 2in
}
, (3.5)

where i = (i1, . . . , iN) ∈ N
N
+ is a multi-index and |i| ≡ i1 + · · ·+ iN ≤ l defines the resolution of

the sparse-grid approximation in VN
L . Note that full tensor-product resolution is defined by simply

replacing the index set by maxn=1...,N in ≤ l.

Instead of using locally supported nodal bases, we construct a hierarchical approximation at

level L using a truncation VN
L of the infinite expansion VN . We begin with a basis for VN

0 and
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then, due to the nested property of {VN
l }∞l=0, we express the finer subspaces of VN

l as a direct sum

VN
l = VN

l−1 ⊕WN
l , where WN

l = VN
l

/
⊕l−1

m=0VN
m . Therefore, we have that

VN
L = VN

0 ⊕WN
1 ⊕ · · · ⊕WN

L . (3.6)

Then, the hierarchical sparse-grid approximation of uMh,M(y, x, t) ∈ VN
L ⊗ L2(W (D); 0, T ) in

(3.1) is defined by

uMh,M(y, x, t) ≡ IN
L (u)(y, x, t) =

L∑

l=0

∑

|i|=l

∑

j∈Bi

cij(x, t)ψ
i
j(y), (3.7)

where IN
L : VN → VN

L denotes the approximation operator, ψi
j =

∏N
n=1 φ

in
jn

denotes a multi-

dimensional hierarchical polynomial, and Bi a multi-index set defined by

Bi ≡
{
j ∈ N

N
+

∣∣∣∣
0 ≤ jn ≤ 2in , jn odd , 1 ≤ n ≤ N, if in > 0

jn = 0, 1, 1 ≤ n ≤ N, if in = 0

}
. (3.8)

The approximation space Pp(Γ) = VN
L and the particular basis chosen are required to possess

the following properties.

P1) Nested hierarchical subspaces: VN
0 ⊂ VN

1 ⊂ · · · ⊂ V N
∞ .

P2) Small compact support: supp
(∏N

n=1 φ
in
jn

)
= O

(
2−

∑N
n=1 in

)
.

P3) Interpolatory basis: {φi
j} in (3.4) is an interpolating basis for Vi, e.g., the “hat” functions,

so that the approximation operator IN
L in (3.7) is a multi-dimensional interpolation operator.

P4) Decay of the coefficients for smooth functions in L2
ρ(Γ): there exits a constant C, inde-

pendent of the level L, such that for every u(y, ·, ·) ∈ L2
ρ(Γ) the following holds:

L∑

l=0

∑

|i|=l

∑

j∈Bi

∣∣cij
∣∣2 22l ≤ CL‖u‖2L2

ρ(Γ)
. (3.9)

Denote by Hi = {yi
j | j ∈ Bi} the set of points corresponding to the basis functions ψi

j(y) with

j ∈ Bi; then, the set of points corresponding to the subspace WN
l is given by ∪|i|=lHi and the set

of points used by IN
L (u) is defined by

HN
L =

⋃

|i|≤L

Hi (3.10)

which is the sparse grid corresponding to VN
L . Note that due to property P1, the sparse grid HN

L is

also nested, i.e., HN
L−1 ⊂ HN

L . In Figure 1, we plot the structure of a level L = 2 sparse grid in
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N = 2 dimensions, without considering boundary points. The left nine sub-grids Hi correspond

to the nine multi-index sets Bi, where

i ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

The level L = 2 sparse grid H2
2 shown on the right (top) includes only six of the nine sub-grids in

black according to the criterion |i| ≤ 2. Moreover, due to the nested property of the hierarchical

basis, H2
2 has only 17 points, as opposed to the 49 points of the full tensor-product grid.

H0,2

i 2
=

2

H0,1

i 2
=

1

H0,0

i1 = 0

i 2
=

0

H1,2

H1,1

H1,0

i1 = 1

H2,2

H2,1

H2,0

i1 = 2

Isotropic sparse grid H2

2

Adaptive sparse grid Ĥ2

2

Figure 1: Nine tensor-product sub-grids (left) for level L = 0, 1, 2 of which only the 6 sub-grids

with i1 + i2 ≤ 2 are chosen to appear in the level L = 2 isotropic sparse grid H2
2 (right-top)

containing 17 points. With adaptivity, each point that corresponds to a large surplus, e.g., the

points in red, blue, or green, lead to 2 children points added in each direction resulting in the

adaptive sparse grid Ĥ2
2 (right-bottom) containing 12 points.

Next, we explain how to compute the coefficients cij(x, t). In general, this requires the solution

of a linear system whose right-hand-side depends only on the value of the finite element approxi-

mation of the solution u at each collocation point. Moreover, the structure of the coefficient matrix

depends on the type of hierarchical polynomials used in (3.7). However, for some choices of the

basis, these coefficients can be computed explicitly.

Example 3.2 (Linear hierarchical piecewise polynomials) We can take the hierarchical one-dimensional

functions to be the standard piecewise linear finite element basis, i.e., the basis function φi
j in (3.4)

are obtained by the dilation and translation of the function

φ(y) =

{
1− |y| if y ∈ [−1, 1]
0 otherwise.

(3.11)
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This basis possesses properties P1 − P4. Examples of higher-degree bases are given in [5]. Then,

IN
L (u) in (3.7) can be rewritten as

IN
L (u)(y, x, t) = IN

L−1(u)(y, x, t) + ∆IN
L (u)(y, x, t), (3.12)

where IN
L−1(u) is the sparse-grid approximation in VN

L−1 and ∆IN
L (u) is the hierarchical difference

interpolant corresponding to WN
L . Due to property P1, the set of grid points used by ∆IN

L (u) can

be denoted by ∆HN
L = HN

L \HN
L−1. Then, due to the interpolatory property P3 and the choice of

the basis function (3.11), by substituting yi
j ∈ ∆HN

L in (3.12), we obtain that

cij(x, t) = IN
L (u)(yi

j, x, t)− IN
L−1(u)(y

i
j, x, t)

= u(yi
j, x, t)− IN

L−1(u)(y
i
j, x, t)

(3.13)

as the hierarchical surplus. This is simply the difference between the solution u at a point yi
j on

the current level of interpolation and the interpolated value of the previous level [25] at that point.

Therefore, using the recursive formula (3.12), we can compute all the coefficients cij in (3.7) by

calculating the coefficients of ∆IN
L (u) for l = 1, . . . , L.

According to the analysis in [25], for smooth functions described by property P4, the hierarchi-

cal surpluses tend to zero as the interpolation level goes to infinity. On the other hand, for irregular

functions having, e.g., steep slopes or jump discontinuities, the magnitude of the surplus is an in-

dicator of the interpolation error and, as such, can be used to control the error adaptively. That is,

for the sparse grid HN
L , abscissas involved in each direction can be considered as a tree-like data

structure as shown in Figure 1.

For example, on the left, we show that the red point in H0,0 has 2 children points at level

L = 1 in each of the horizontal and vertical directions; the 4 children are indicated by the arrows

emanating from the red point. Each of its 4 children also have 4 children of their own at level

L = 2, and so on for subsequent levels. Suppose the magnitude of the coefficients (the surplus)

associated with the blue and green children are larger than a prescribed tolerance, but those for

the two black children of the red point are smaller than the tolerance. In this case, refinement is

effected only from the blue and green children; no refinement is done of the black children. This

is indicated by having, at level L = 2, four arrows emanate from the blue and green points, but

none from the black points. We arrive at the adaptive space grid Ĥ2,2 that has 12 total collocation

points, shown on the right (bottom) of Figure 1. The analagous (non-adaptive) isotropic sparse

grid, which has 17 collocation points, is also shown on the right (top).

In general, a grid point in a N -dimensional space has 2N children which are also the neighbor

points of the parent node. However, note that the children of a parent point correspond to hierar-

chical basis functions on the next interpolation level, so that we can build the interpolant IN
L (u) in

(3.7) from level L − 1 to L by adding those points on level L whose parent has a surplus greater

than our prescribed tolerance. In this way, we can refine the sparse grid locally and end up with an

adaptive sparse grid which is a sub-grid of the corresponding isotropic sparse grid.

A sparse grid adaptive linear stochastic collocation method (sg-ALSCM) that utilizes a locally

supported linear hierarchical basis, given by (3.11), to approximate random functions in the multi-

dimensional hypercube Γ ⊂ R
N were considered in [16,24,32,33]. As mentioned in Example 3.2,
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the expansion coefficients cij(x, t) in (3.7) are simply the hierarchical surpluses and adaptive re-

finement is guided by the magnitude |cij| of those coefficients. However, this approach has a major

drawback: one cannot estimate the error from below with constants independent of the number of

hierarchical levels involved. Thus, the linear hierarchical basis does not form a stable multi-scale

splitting of the approximation space [41] and the absolute value of a hierarchical coefficient is just

a local error indicator and not a true error estimator. As a result, one obtains sufficiently refined

sparse approximations for which the error is behaving as predicted, but in doing so, one may have

used many more grid points than needed to achieve a prescribed error tolerance for the adaptive

procedure. This scheme has no guarantee of efficiency so that some previous claims of optimality

with respect to complexity for this approach are heuristic, not provable and, in general, not valid.

Our approach is generally similar, but uses multi-resolution wavelet approximations that pos-

sess all the properties (P1−P4) of the linear basis functions, but also possess an additional property

that guarantee optimality. We will introduce this essential criteria in Section 4 and more impor-

tantly, also explain the advantages of our novel adaptive wavelet stochastic collocation method

(AWSCM).
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4 ADAPTIVE WAVELET STOCHASTIC METHOD

As discussed several times in the paper, UQ for complex stochastic systems that require the approx-

imation and/or resolution of statistical QoIs involving, e.g., steep gradients, sharp transitions, bifur-

cations, or finite jump discontinuities, in possibly high-dimensional probabilistic domains, require

sophisticated multi-dimensional multi-resolution adaptive algorithms. To be effective, however,

refinement strategies must be guided by accurate estimates of errors (both local and global) while

not expending unnecessary computational effort approximating the QoI with respect to any random

dimension. In the sg-ALSCM described in §3.3, given the hierarchical sparse-grid approximation

(3.7) that satisfies properties P1 − P4, optimal approximations of such irregular problems cannot

be guaranteed. Here, by optimal we mean achieving a prescribed error tolerance with a minimal

number of grid points. This can result in an explosion in computational effort for high-dimensional

problems. Towards alleviating this effect, we require the following additional property of the basis

functions ψi
j (3.7), namely

P5) Riesz property: the basis {ψi
j} in (3.7)} is a Riesz basis so that there exists a constant

CR > 0, independent of the level L, such that for all IL(u) given by (3.7) the following

holds:

C−1
R

L∑

l=0

∑

|i|=l

∑

j∈Bi

∣∣cij
∣∣2 ≤

∥∥IL
N(u)

∥∥2
VN

≤ CR

L∑

l=0

∑

|i|=l

∑

j∈Bi

∣∣cij
∣∣2 , (4.1)

where the set of multi-indices Bi is defined as in (3.8) and IL
N(u) ≡ IL

N(u)(y, ·, ·).

Unfortunately, finite element bases such as the linear hierarchical polynomials used in the sg-

ALSCM of [32, 33] are not Riesz bases, so norms of such approximations can only be bounded

from above (but not from below) by sequence norms of the corresponding coefficients. In other

words, they are not L2
ρ-stable, as implied by property P5. The same can be said for the high-order

hierarchical polynomial basis in [5], the Lagrangian interpolation polynomials used in [38, 39], as

well as the orthogonal polynomials of [26, 28, 52].

On the other hand, standard Riesz bases, e.g., Fourier and orthogonal polynomials, consist of

functions that are globally supported. In the numerical PDE setting, this has the disadvantage of

leading to dense stiffness matrices and, in the UQ setting, to intrusive methods. However, certain

classes of hierarchical wavelet and pre-wavelet bases are not only Riesz bases, but consist of

compactly supported basis functions. Thus, we have the best of both worlds: the compact support

property of standard finite element bases and the Riesz basis property of spectral bases. Moreover,

an interpolating wavelet basis can be utilized for the approximation given by (3.7), satisfies all

the properties P1 − P5, and forms a stable multi-resolution analysis of the stochastic space L2
ρ

as defined in [13]. Hence, for the interpolating wavelet basis, we obtain the two-sided estimates

given by P5. Therefore, the magnitude of the wavelet coefficients |cij| in (3.7) can serve as true

local error estimators and the the lower bounds provided by the Riesz basis property gives us a

rigorous indicator of the efficiency of adaptive schemes. This means a prescribed error tolerance

is reached at the cost of just the optimal number of points (up to a constant) in a sparse grid
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adaptation process. This results in a superior convergence rate when compared to methods using

other hierarchical multi-scale basis functions. We choose one particular class of second-generation

wavelets, namely lifted interpolating wavelets on the bounded interval, to achieve this goal. We

next provide details about such wavelets.

4.1 SECOND-GENERATION WAVELETS AND THE LIFTING SCHEME

Second-generation wavelets are a generalization of biorthogonal wavelets that are more easily

applied to functions defined on bounded domains. Second-generation wavelets form a Reisz basis

for some function space, with the wavelets being local in both “spatial” domain (in our context,

the parameter domain) and the frequency domain and often having many vanishing polynomial

moments, but they do not possess the translation and dilation invariance of their biorthogonal

cousins. The lifting scheme [46, 47] is a tool for constructing second-generation wavelets that

are no longer dilates and translates of one single scaling function. In contrast to first-generation

wavelets, which use the Fourier transform to build the wavelet basis, a construction using lifting is

performed exclusively in the “spatial” domain so that wavelets can be custom designed for complex

domains and irregularly sampled data.

The basic idea behind lifting is to start with simple multi-resolution analysis and gradually

build a multi-resolution analysis with specific, a priori defined properties. The lifting scheme can

be viewed as a process of taking an existing first-generation wavelet and modifying it by adding

linear combinations of the scaling function at the coarse level. To explain the procedure in detail,

we follow the notation in Section 3.3. The approximation space Vi = span{φi
j | 0 ≤ j ≤ 2i} in

(3.4) has a decomposition Vi = Vi−1 ⊕Wi, where Vi−1 and Wi are defined by

Vi−1 = span{φi−1
j |0 ≤ j ≤ 2i−1} and Wi = span{φi

j|0 ≤ j ≤ 2i, j odd }. (4.2)

Here, Wi is viewed as the hierarchical subspace on level i, and φi
j ∈ Wi are the first-generation

interpolating wavelets. Then, the corresponding second-generation wavelet φ̂i
j is constructed by

“lifting” φi
j as

φ̂i
j ≡ φi

j +
2i−1∑

ĵ=0

αi−1

ĵ,j
φi−1

ĵ
, (4.3)

where the weights αi−1

ĵ,i
in the linear combination are chosen in such a way that the new wavelet

φ̂i
j has more vanishing moments than φi

j and thus provides a stabilization effect. If we apply this

approach to the piecewise linear hierarchical basis, i.e., to the “hat” functions, in such a way that

the lifting wavelet basis has two vanishing moments, we end up with

φ̂i
j = φi

j −
1

4
φi−1

j−1
2

− 1

4
φi−1

j+1
2

for 1 < j < 2i − 1, j odd

φ̂i
j = φi

j −
3

4
φi−1

j−1
2

− 1

8
φi−1

j+1
2

for j = 1

φ̂i
j = φi

j −
1

8
φi−1

j−1
2

− 3

4
φi−1

j+1
2

for j = 2i − 1,

(4.4)
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where the three equations define the central “mother” wavelet, the left-boundary wavelet, and the

right-boundary wavelet, respectively. We illustrate the three lifting wavelets in Figure 2. For

additional details, see [48].
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Figure 2: Left-boundary wavelet (left), central wavelet (middle), right-boundary wavelet (right).

Due to the fact that our second-generation wavelets are lifted from the first-generation wavelets,

properties P1 − P4 are guaranteed. In addition, from the analysis provided in [46, 47], we know

that they also constitute a Riesz basis so that property P5 is satisfied. Therefore, introduction

of the lifted wavelet basis into the hierarchical sparse-grid approximation framework results in

a novel non-intrusive sparse grid adaptive wavelet stochastic collocation method (sg-AWSCM).

This method allow us to encapsulate the advantages of the increased convergence rates of stan-

dard SCM and polynomial chaos approaches resulting from higher-order polynomial expansion

(p-refinement) [38] with the robustness of optimal local decompositions (h-refinement) [12] for

the approximation of irregular solutions and QoIs coming from PDEs with random inputs in high-

dimensional stochastic domains.

Note that due to the interpolatory property of the wavelet basis, when computing the wavelet

coefficients in (3.1), we only face an interpolation problem. That is, from the construction pro-

cedure of the lifted wavelets described above, we observe that neighboring wavelet basis function

at the same level have overlapping support such that the resulting interpolation matrix for our

sg-AWSCM is has greater bandwidth compared to that for sg-ALSCM. For the one-dimensional

problem, the paper [48] proposed fast algorithms for computing wavelet coefficients. We are cur-

rently working on extending their algorithms to the multi-dimensional case, but in this paper, we

just use mature numerical libraries, e.g., LINPACK. to solve the linear system for the interpolation

coefficients.
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5 NUMERICAL EXAMPLES

This section illustrates the convergence properties of the sparse grid adaptive wavelet collocation

method for solving three problems. In all examples, we use the linear hierarchical second genera-

tion lifted wavelets described in Section 4.1. The first example is used to compare our sg-AWSCM

with the sg-ALSCM for approximating irregular (deterministic) functions in N = 2 parameter

dimensions. In the second example, we apply our new approach to solve: (a) the Burgers equa-

tion with random boundary condition data and (b) the time-dependent Riemann problem for the

Burgers equation with random initial conditions. Finally, in the third example, we investigate

the ability of the sg-AWSCM to detect the important random dimensions in a elliptic problem

having a moderately high number of random parameter inputs. As opposed to previous dimension-

adaptive approach of [39], our new sg-AWSCM does not require a priori nor a posterori estimates

to guide adaptation. Instead, as described in Section 4, our multi-dimension multi-resolution adap-

tive approach uses only the sparse grid wavelet coefficient to guide refinement while maintaining

near-optimal convergence. We will also use this problem to compare the convergence of our sg-

AWSCM with other ensemble-based methods such as the isotropic sparse grid method and the

sg-ALSCM and to compare all these approaches to the best N -term sparse grid approximation.
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Figure 3: Results for f1(y1, y2) in Example 1: (a) the target function; (b) the points used by the

sg-AWSCM for a tolerance ε = 10−3; (c) error decay vs. number of points; (d) error decay vs. the

tolerance ε.
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5.1 APPROXIMATION OF IRREGULAR DETERMINISTIC FUNCTIONS

Consider the two bivariate functions f1(y1, y2) on [−1, 1]2 and f2(y1, y2) on [0, 1]2 defined by

f1(y1, y2) =





exp(−2(y21 + y22)) if y21 + y22 ≥ 0.5

2 exp(−1

2
)− exp(−2(y21 + y22)) if y21 + y22 < 0.5

(5.1)

f2(y1, y2) =
1

|0.15− y21 − y22|+ 0.1
on [0, 1]× [0, 1]. (5.2)

It is easy to see that f1(y1, y2) and f2(y1, y2) represent two types of irregular behavior. The function

f1(y1, y2) has a jump in its first-order derivatives ∂f1/∂y1 and ∂f1/∂2 across the circle y21+y
2
2 = 0.5

whereas f2(y1, y2) has a steep gradient across the curve y21 + y22 = 0.15. To construct interpolants

for both f1(y1, y2) and f2(y1, y2) using the sg-ALSCM and the sg-AWSCM, we first build a level

L = 3 isotropic sparse grid as the initial grid, then add nodes adaptively guided by linear hierar-

chical surpluses or wavelet coefficients, respectively. The interpolation results for f1(y1, y2) are

shown in Figure 3. Figure 3(a) displays the function f1; only the first quadrant is shown due to

the symmetries of the function. Figure 3(b) reveals the resulting adaptive sparse interpolation grid

constructed from the lifted wavelets for a tolerance ε = 10−3. In Figure 3(c), we show the opti-

mality of our approximation by plotting the convergence rates for the sg-ALSCM and sg-AWSCM

approximations as well as for the best N -term approximation that is obtained by extracting the N
terms with the N biggest coefficients from an approximation on a non-adaptive, isotropic sparse

grid. We observe that the convergence behavior of the sg-AWSCM more closely matches that of

the best N -term approximation, compared to the sg-ALSCM, which results in a reduction in the

number of function evaluations to achieve the desired accuracy ε = 10−3. In Figure 3(d), we also

plot the convergence behavior of both methods versus the tolerance ε. We see that for the same

prescribed tolerance for the hierarchical surpluses, the sg-AWSCM can achieve higher accuracy

than the sg-ALSCM. Similar conclusions can be made by examining Table 1, where we show the

number of sparse grid points required by the various interpolants to achieve a desired accuracy. In

all cases the sg-AWSCM outperforms the sg-ALSCM and more closely matches the best N -term

approximation.

error α sg-ALSCM sg-AWSCM best N-term

5.0E-03 366 330 265

1.0E-03 774 623 479

5.0E-04 920 737 640

1.0E-04 1927 1548 1261

Table 1: For N = 2 dimensions, we compare the number of function evaluations required by the

isotropic sparse grid (ISG), the sg-ALSCM, and sg-AWSCM and the best N -term approximation

to compute the interpolated approximation of f1(y1, y2) to an accuracy smaller than the prescribed

error tolerance α, i.e., so that ‖IN
L (f1)(y1, y2)− f1(y1, y2)‖ ≤ α.
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error α sg-ALSCM sg-AWSCM Best N-term

5.0E-02 243 238 237

1.0E-02 445 414 359

5.0E-03 638 491 431

1.0E-03 1392 1062 902

Table 2: For N = 2 dimensions, we compare the number of function evaluations required by the

isotropic sparse grid (ISG), the sg-ALSCM, and sg-AWSCM and the best N -term approximation

to compute the interpolated approximation of f2(y1, y2) to an accuracy smaller than the prescribed

error tolerance α, i.e., so that ‖IN
L (f1)(y1, y2)− f1(y1, y2)‖ ≤ α.

The same observations and conclusions can be reached for the function f2(y1, y2) by examining

Figure 4 and Table 2. Additionally, in Figure 5, we show the condition number of the linear system

used to construct the interpolation wavelet coefficients f1(y1, y2); we see that the interpolation

matrix is well-conditioned. Therefore, as expected, due to the additional property P5 and the

well-conditioning of the interpolation matrix for the wavelet coefficients, when approximating

functions with discontinuous derivatives, the sg-AWSCM substantially reduces the complexity of

determining an accurate interpolant compared to the sg-ALSCM.
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Figure 4: Results for f2(y1, y2) in Example 1: (a) the target function; (b) the points used by the

sg-AWSCM for a tolerance ε = 10−2; (c) error decay vs. number of points; (d) error decay vs. the

tolerance ε.
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1.

5.2 BURGERS EQUATION WITH RANDOM INPUTS

We next apply our novel sg-AWSCM to construct optimal approximations of solutions of two

Burgers equation problems. First, we consider the steady viscous Burgers equation with random

boundary condition data: 



1

2

∂u2

∂x
− ν

∂2u

∂x2
= 0 in [−1, 1]

u(−1) = y(ω), u(1) = 0,
(5.3)

where the left boundary condition data is a uniformly distributed random variable y(ω) ∼ U [0.95, 1.05],
i.e., the parameter space Γ = [0.95, 1.05] and the PDF ρ(y) = 10; the viscosity is set to ν = 0.1.

The deterministic solver used for this problem is as a finite difference discretization of the

conservative form of the equation followed by an application of Newton’s method to solve the

resulting nonlinear system. Figure 6 show the computed realizations of the solution u(y, ·) for

several values of the left boundary value y(ω). Observe that perturbing y(ω) from 1 to 1.005

effects a startlingly large perturbation to the solution u(y, ·). Thus, we conclude that the solution

u(y, ·) is very sensitive to y(ω) near y(ω) = 1. In particular, this holds for the point x0 at which

the solution u changes sign. Thus, if we choose the quantity of interest to be the point x0, we again

have an instance of irregular behavior. Therefore, we focus on quantifying the uncertainty of x0
propagated from y(ω) following the uniform distribution U [0.95, 1.05]. To build the multi-scale

interpolant using the AWSCM, we start with a 4-level uniform grid on [0.95, 1.05] and then add

points adaptively, guided by the size of the wavelet coefficients. The tolerance ε is set to 10−3.

The relation between x0 and y(ω) and the corresponding adaptive grid are shown in Figure 7. We

can see that x0(y) has a steep slope around y(ω) = 1 (which accounts for its high sensitivity

near that value) and that the corresponding adaptive grid is refined around the point y(ω) = 1.

The convergence rate of E[x0] is shown in Figure 8 and compared to that of the best N -term

approximation obtained by extracting N terms with N largest coefficients from an approximation

on an non-adaptive, uniform grid.

Next, we solve a time-dependent Riemann problem for a Burgers equation with random initial
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shock location [44]:





∂u

∂t
+

∂

∂x

(
1

2
u2
)

= 0, (x, t) ∈ [−1, 1]× (0,+∞)

u0(x, ω) =

{
1 if x < y(ω)

0 if x ≥ y(ω).

(5.4)
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The initial shock location depends on an uniform random variable y(ω) ∼ U [−0.1, 0.1], i.e., we

have the parameter space Γ = [−0.1, 0.1] and the PDF ρ(y) = 5. A formula for the expectation

E[u] and variance Var[u] of the exact solution u can be found in [44].

The deterministic solver used for this problem is a weighted essentially non-oscillatory (WENO)

scheme. Here we consider the solution at time t = 0.2. We compute the approximate determin-

istic solution on a uniform spatial grid with 1025 points in spatial domain [−1, 1]. In Figure 9,

we plot the expectation and variance of the approximate shock profile at t = 0.2, computed with

the AWSCM; also plotted are the corresponding exact statistics. To test the adaptive wavelet pro-

cedure, we choose our quantities of interest to be the expectations of u(y(ω), x) at 3 locations,

namely E[u](x = 0.036, t = 0.2), E[u](x = 0.127, t = 0.2), and E[u](x = 0.590, t = 0.2).
We then build the grids using AWSCM. At each location, we start with a 2-level uniform grid on

[−0.1, 0.1] in the parameter space and then add points guided by the magnitudes of the wavelet

coefficients. In Figure 9, we plot the adaptive grids for the three cases. We can see that the singular

point of u(y(ω), x, t = 0.2) with respect to y(ω) depends on the value of x. At the time instant

t = 0.2: if x ∈ [0, 0.2] such as x = 0.036 or x = 0.127, then u(y(ω), x, t = 0.2) has a singular

point but its location is determined by the value of x; on the other hand, there is no singular point

in u(y(ω), x, t = 0.2) for x ∈ [−1, 0)∪ (0.1, 1], including for x = 0.590, so that grid refinement in

parameter spaces is not needed; the AWSCM method recognizes this so that the 2-level initial grid

is not changed by the adaptation procedure.
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Figure 10: Adaptive grids for quantities of interest being E[u](x) at 3 spatial points: x = 0.036
(left), x = 0.127 (middle), x = 0.590 (right) in example (B2).
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5.3 ELLIPTIC PDE WITH RANDOM INPUTS

Similar to [38, 39], we consider an elliptic PDE in two spatial dimensions with random inputs.

As shown in the previous examples, the AWSCM and the sg-AWSCM can accurately capture the

irregular, even non-smooth regions in a low-dimensional stochastic parameter space. If the solution

depends on a moderately large number of random variables with sufficient regularity (analytic in

this case), the major challenge of the numerical approximation is anisotropic (dimension-adaptive)

refinement. Therefore, in this example we demonstrate the ability of the sg-AWSCM method to

detect important dimensions when the random variables do not “weigh equally” in the stochastic

solution.

The specific problem we solve is given by

{
−∇ ·

(
a(ω, x)∇u(ω, x)

)
= cos(x1) sin(x2) in Ω×D

u(ω, x) = 0 on Ω× ∂D,
(5.5)

where D = [0, 1]2, x1 and x2 denote the components of the spatial position vector x, and ∇
denotes the gradient operator with respect to x. The forcing term f(ω, x) is deterministic. The

random diffusion coefficient a(ω, x) has a one-dimensional spatial dependence and is given by

log(a(ω, x)− 0.5) = 1 + y1(ω)

(√
πC

2

)1/2

+
N∑

n=2

ζnϕn(x1)yn(ω), (5.6)

where, for n ≥ 2,

ζn := (
√
πC)1/2 exp

(
−
(
⌊n
2
⌋πC

)2

8

)
(5.7)

and

ϕn(x) :=





sin

((
⌊n
2
⌋πx1

)2

Cp

)
for n even

cos

((
⌊n
2
⌋πx1

)2

Cp

)
for n odd.

(5.8)

In this example, the random variables {yn(ω)}∞n=1 are independent, have zero mean and unit

variance, i.e., E[yn] = 0 and E[ynym] = δnm for n,m ∈ N+, and are uniformly distributed in

the interval [−
√
3,
√
3]. For x1 ∈ [0, 1], let CL be the physical correlation length of the stationary

covariance function

Cov[log(a− 0.5)](x1, x
′
1) = exp

(
−(x1 − x′1)

2

C2
L

)
. (5.9)

Then, the parameter Cp in (5.8) is Cp = max(1, 2CL) and the parameter C in (5.6) and (5.7) is

C = CL/Cp. Also, ζn and ϕn, for n = 1, . . . , N are the eigenvalues and eigenfunctions (given

by (5.7) and (5.8) respectively) of the covariance operator defined by substituting (5.9) into (2.8).

The eigenvalues ζn in (5.6) decay with increasing n with large values of the correlation length
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CL corresponding to fast decay. Thus, the parameter dimensions have decreasing influence on the

solution as their index increases and, for large CL, the influence decreases quickly. Therefore, an

approximation requires less accurate resolution of the dimensions having small influence, com-

pared with that for more influential dimensions so that, to achieve maximum efficiency (e.g., the

fewest sample points in parameter space) for a given overall accuracy, one should use anisotropic,

or dimension-adaptive set of sparse grid points.

For the numerical results, we set CL = 1
2

and retain 7 terms of the expansion (5.6) and treat

the truncated version as the exact diffusion field. In this case, the eigenvalues are ζ1 = 0.665,

ζ2 = ζ3 = 0.692, ζ4 = ζ5 = 0.274, ζ6 = ζ7 = 0.059. In order to investigate convergence rates,

we compare the expected value E[u] approximated by our sg-AWSCM method with a tolerance

ε = 10−5 to the “exact” solution determined from simulations based on 106 Monte Carlo (MC)

samples of the seven-dimensional parameter. Specifically, in Figure 11, for several values of the

level L, we plot ‖E[IN
L (u)] − EMC [u]‖, i.e., the L2(D) norm of the “error” between the expected

values obtained using the sg-AWSCM method and the densely sampled MC method. Also provided

in that figure are the corresponding errors for the isotropic sparse grid, for the sg-ALSCM, and for

the best N -term approximation defined by taking the N terms in the isotropic sparse grid solution

with the largest coefficients. The errors are plotted against the number of points in parameter space

each method requires to achieve the desired accuracy. As expected, due to the fast decay of the

eigenvalues, the convergence, with respect to the number of points used, of both the sg-AWSCM

and the sg-ALSCM is much faster than the approximation based on an isotropic sparse grid because

fewer points are placed along the non-important dimensions associated with small eigenvalues.

Furthermore, our new sg-AWSCM also reduces the overall complexity when compared to the sg-

ALSCM approximation, and nearly matches that for the bestN -term approximation. Further proof

of this can be seen in Table 3 that shows a reduction in the computational complexity for computing

the expected value using the sg-AWSCM, when compared to the isotropic sparse grid and sg-

ALSCM, by approximately a factor of 20 and 3 respectively, to achieve a desired accuracy of 10−7.

In fact, for this higher-dimensional problem, the savings incurred by the sg-AWSCM compared to

the sg-ALSCM as much more significant than for the previous low-dimensional examples. One

can expect the relative savings to increase as one further increases the parameter dimension. This

optimal performance is guaranteed by our sparse grid wavelet multi-resolution analysis.

error α isotropic SG sg-ALSCM sg-AWSCM best N-term

1.0E-05 73 34 30 25

5.0E-06 344 85 74 60

1.0E-06 2435 772 476 248

5.0E-07 7767 1271 1038 840

1.0E-07 85861 9604 3824 2812

Table 3: For N = 7 dimensions, we compare the number of function evaluations required by the

isotropic sparse grid (ISG), the sg-ALSCM, the sg-AWSCM, and the best N -term approximation

to compute the expected value of the solution to within a prescribed global error tolerance α, i.e.,

so that ‖E[IN
L (u)]− EMC [u]‖ ≤ α.
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Figure 11: The convergence rate of isotropic sparse grid, the sg-ALSCM, and the sg-AWSCM

approximations with tolerance ε = 10−5.
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6 CONCLUSIONS

This work proposed a novel sparse-grid adaptive wavelet stochastic collocation method for both

smooth and irregular solutions of partial differential equations with random input data. This

method can be viewed as a major improvement to previous works; isotropic and anisotropic global

Lagrange-type stochastic collocation based on tensor product approximations [2] or sparse grid

approaches [39, 39, 51], as well as the hierarchical sparse-grid locally adaptive linear stochastic

collocation method [32, 33].

The new technique consists of any standard deterministic approximation in the physical space

(e.g. Galerkin finite element) and an adaptive collocation in the probability domain at sparse-grid

points in the random parameter space, along with a hierarchical multi-dimensional multi-resolution

linear wavelet basis. This compactly supported Riesz basis guarantees the stability of the multi-

scale coefficients and leads to optimal hierarchical sparse grid approximations. That is, we are able

to guide adaptive refinement by the magnitude of the wavelet coefficient which results in a minimal

number of grid points to achieve a prescribed tolerance. This alleviates the curse of dimensionality

by reducing the computational complexity for problems having high stochastic dimension. More-

over, as a consequence of the interpolation property, guaranteed by the proposed lifting scheme,

our approach remains completely non-intrusive and naturally allow for the solution of uncoupled

deterministic problems that are trivially parallelizable, as for the Monte Carlo method.

The numerical examples included in this work provide computational verification of the op-

timality of our novel algorithm. The numerical results compare our new approach with several

classical and heavily utilized techniques for solving stochastic problems whose solutions are both

highly regular and even non-smooth with respect to the random variables. The results show that, in

particular, for moderately large-dimensional problems, the sparse grid adaptive wavelet stochastic

collocation approach seems to be very efficient and superior to all methods it is compared to.

Future directions of this research will include the a full convergence analysis of our new ap-

proach that will incorpoorate an examination of the complexity of our algorithm with respect to

the number of collocation points on the sparse grid, as the dimension of the problem increases.

However, as the computational results suggest, we also want to use the theoretical results to fully

explain the optimality of this techniques when compared to previous methods. Finally, we want to

avoid solving an interpolating matrix equation for the wavelet coefficients and intend to develop

fast algorithms for calculating the wavelet coefficients in sparse tensor product spaces.
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