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ABSTRACT Extracting robust fault sensitive features of vibration signals remains a challenge for rotating

machinery fault diagnosis under variable operating conditions. Most existing fault diagnosis methods based

on the convolutional neural network (CNN) can only extract single-scale features, which not only loss

fault sensitive information on other scales, but also suffer from the domain shift problem. In this work, a

novel end-to-end deep learning network named adaptive weighted multiscale convolutional neural network

(AWMSCNN) is proposed to adaptively extract robust and discriminative multiscale fusion features from

raw vibration signals. The AWMSCNN consists of three main components: the denoising layer, the adaptive

weighted multiscale convolutional (AWMSC) block, and the multiscale feature fusion layer. The AWMSC

block can learn rich and complementary features on multiple scales in parallel. Then, an adaptive weight

vector is introduced to modulate multiscale features to emphasize fault sensitive features and suppress

features that are sensitive to operating conditions. The train wheelset bearing dataset and the bearing

dataset provided by Case Western Reserve University (CWRU) are used to verify the superiority of the

proposed model over the basic CNN and other multiscale CNNmodels. The experiment results show that the

proposed model has strong fault discriminative ability and domain adaptive ability against variable operating

conditions.

INDEX TERMS Adaptive weighted multiscale feature learning, convolutional neural network, deep learn-

ing, fault diagnosis, rotating machinery, variable operating conditions.

I. INTRODUCTION

Rotating machinery is widely used in transportation, elec-

tric equipment, and manufacturing equipment [1]. Rotating

machinery often operates under complex conditions such

as variable speed, variable load, and strong noise [2], [3].

Under the influence of alternating stress and various random

factors, faults will inevitably occur. Any small fault of the

rotating machinery may evolve into a major safety accident.

Therefore, effective fault diagnosis of rotating machinery

under variable operating conditions is crucial to guarantee

The associate editor coordinating the review of this article and approving
it for publication was Sungroh Yoon.

the system safety and reliability and to reduce maintenance

costs [4].

In traditional data-driven based fault diagnosis methods,

handcrafted feature extraction is a key step affecting the final

diagnosis accuracy. The purpose of feature extraction is to

extract fault sensitive information from sensor signals. Then,

the extracted features are sent into a shallow machine learn-

ing model, such as support vector machines (SVM), neural

networks, and decision trees, to implement fault detection.

However, it is difficult and time-consuming to determine

which features should be extracted [5]. What is worse, rotat-

ing machinery typically operates under variable operating

conditions in practice, especially under variable speed and
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variable load, which will directly lead to the failure of tra-

ditional feature extraction methods based on the assumption

of stationary rotating speed. Therefore, it is still a challenge to

extract robust fault sensitive features under variable operating

conditions.

To eliminate the influence of variable operating condi-

tions on feature extraction, several methods including order

tracking [6], [7], tacholess order tracking [8]–[10], high-order

synchrosqueezing transform [11], variational mode decom-

position [12], and Vold-Kalman filter with the multiscale

sample entropy [13] have been proposed for fault diagnosis

under variable operating conditions. These methods have

achieved good fault diagnosis performances under variable

operating conditions, but the feature extraction processes of

these methods are all depend on prior domain knowledge and

expert experience, so they have poor generalization ability.

Extracting these hand-crafted features is time-consuming and

labor-intensive with low efficiency, so it is difficult to meet

the online monitoring requirement. Moreover, the feature

extraction process and shallow machine learning models are

independent of each other and can’t be jointly optimized [14].

Deep learning provides a powerful solution to above weak-

nesses and has achieved breakthrough performance in the

machinery fault diagnosis field taking advantage of its excel-

lent automatic feature learning ability [15]. The convolutional

neural network (CNN) is a commonly known deep learning

model and has attracted more and more attention benefit-

ting from its local connection mechanism, weight sharing

strategy, and spatial pooling layers. In recent years, some

CNN-based deep learning models have been developed for

mechanical fault diagnosis. The excellent performance of

existing CNN-based fault diagnosis models is based on the

assumption that the training dataset and the testing dataset

are drawn from the same distribution [16]. This assumption

requires that the training dataset and the testing dataset are

collected from the same operating condition. However, in the

case of fault diagnosis under variable operating conditions,

signals under only one or a few operating conditions are

available for model training, and the testing signals are often

collected from other different working conditions, which

inevitably cause the domain shift problem [17]. Therefore,

fault diagnosis models based on CNN have poor fault diag-

nosis performance under variable operating conditions.

A fault occurring in rotating machinery will introduce

shock components in the vibration signal. The frequency of

these shock components varies with rotating speed and the

response on the temporal vibration signal is that the fault

sensitive features appear on different time scales. Since the

operating condition of rotating machinery often changes,

we cannot judge which time scale features are sensitive to

faults. Moreover, even under a constant rotating speed, the

features that sensitive to different faults also appear in dif-

ferent frequency bands in the frequency domain. In other

words, the features that sensitive to different faults appear on

different time scales in the time domain. To extract fault sen-

sitive features comprehensively, multiscale feature learning

is a promising solution. However, the classical CNN is not

designed specifically for vibration signals and lack of mul-

tiscale feature extraction ability [18]. Convolutional kernels

with different widths have different local reception fields to

learn features in different observation scales. All kernels in a

convolutional layer of traditional CNN model typically have

the same shape, so each convolutional layer can only extract

features on a single scale and will lose useful information on

other scales. The single scale features that extracted by CNN

model are not only sensitive to faults but also sensitive to

the change of operating condition. Therefore, the traditional

CNN-based fault diagnosis models cannot capture effective

features under variable operating conditions. This motivates

us to use different shapes of kernels to learn multiscale fea-

tures. Although several other works have achieved multiscale

feature learning, but it is unclear which scales features are

more sensitive to machinery faults. In general, different chan-

nels of a multiscale feature mapmay have different sensitivity

levels to different types of faults under different operating

conditions. So it motivates us to adaptively apply different

weights to each channel of a multiscale feature map.

To extract robust fault sensitive features to withstand the

change of operating condition, a new end-to-end deep learn-

ing model named adaptive weighted multiscale convolutional

neural network (AWMSCNN) is proposed in this paper. The

AWMSCNN integrates two innovations into the traditional

CNN, which are the multiscale feature learning and the adap-

tive multiscale feature weighting. The innovations enable the

AWMSCNN to have both fault discriminative ability and

domain adaptive ability to effectively detect faults under

variable operating conditions. The main contributions of this

work are summarized as follows:
1) To boost the feature learning ability of the fault

diagnosis model, several convolutional kernels with

different widths are adopted to learn rich and comple-

mentary fault sensitive features on multiple time scales

in parallel.

2) To extract robust fault sensitive features and improve

the domain adaptive ability of the fault diagnosis model

under variable operating conditions, an adaptive weight

vector is introduced into the adaptive weighted mul-

tiscale convolutional (AWMSC) block to emphasize

fault sensitive features and suppress features that are

sensitive to operating conditions.

3) The AWMSCNN is an end-to-end deep learning model

and directly takes raw vibration signals as input without

any time-consuming and domain-variant handcrafted

features. The AWMSCNNhas a high efficiency tomeet

the online monitoring requirement.

4) The AWMSCNN is evaluated through comprehensive

experiments on the wheelset bearing dataset and the

CWRU dataset. The experiment results show that the

AWMSCNN is a robust method for rotating machinery

fault diagnosis under variable operating conditions.

The remainder of the paper is organized as follows: In

section II, some related works are reviewed. In Section III,
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the proposed AWMSCNNmodel for rotating machinery fault

diagnosis under variable operating conditions is described in

detail. In Section IV, some experiments are implemented to

validate the strong fault discriminative ability and domain

adaptive ability of the proposed fault diagnosis model.

Finally, conclusions are drawn in Section V.

II. RELATED WORKS

A. DFAULT DIAGNOSIS MODELS BASED ON CNN

CNNhasmany successful applications in the field ofmechan-

ical fault diagnosis. In some works, the raw sensor time

series data has been preprocessed by some methods such as

frequency transformation and time-frequency transformation

before being input to the 2DCNN.Ding andHe [19] proposed

a deep CNN where wavelet packet energy images were used

as input for spindle bearing fault diagnosis. A method of

planetary gear fault diagnosis via feature image extraction

based on multi central frequencies and vibration signal fre-

quency spectrum is proposed in [20]. CNN can also directly

address raw temporal signals without any time-consuming

preliminary transformation. For instance, Jing et al. [21]

proposed an adaptive multi-sensor data fusion method based

on deep CNN for fault diagnosis with multivariate time-series

data as the input. Qian et al. [22] construct a fault diagnosis

framework called adaptive overlapping CNN to deal with one

dimension (1D) raw vibration signals directly. Peng et al. [23]

proposed a novel deeper 1D convolutional neural network

(Der-1DCNN) with residual learning for fault diagnosis of

wheelset bearings in high-speed trains. But, above general

CNN based fault diagnosis methods only consider the single

scale feature, which is not enough to capture effective features

under variable operation conditions.

B. MULTISCALE FEATURE LEARNING MODELS BASED ON

CNN

To capture complementary fault information from vibra-

tion signals at different time-scales, some multiscale feature

extraction methods are proposed. Jiang et al. [18] proposed

the MSCNN architecture, in which, a multiscale coarse-

grained layer is introduced to represent the raw vibration

signal over a range of scales, and results in multiple coarse-

grained signals. Then, a traditional CNN is used to learn

more useful and robust feature representations from each

coarse-grained signal in parallel. In [24], the outputs of differ-

ent feed-forward convolutional layers in CNN are integrated

to further explore multi-scale feature information. Different

from the traditional CNN structure that only utilizes features

in the last convolutional layer, another MSCNN structure

is proposed in [25], which integrates the last convolutional

layer with the pooling layer before to form a multiscale layer.

By the multiscale layer, the global and local features are

maintained to enhance the network capacity. Though above

works can extract multiscale features to some extent and can

improve the model performance, but they do not take into

account the different sensitivities of each scale feature to

faults.

III. PROPOSED METHOD

The proposed AWMSCNN is implemented under the

assumption that labeled training datasets under at least two

operating conditions are available for model training. Then,

the well trained model can be used for fault diagnosis under

some unknown operating conditions. The key to the effective-

ness of the model is that it can extract multiscale features and

can adaptivelymodulate multiscale features using an adaptive

weight vector. The extracted rich features are only sensitive

to faults and insensitive to operating conditions.

The framework of the proposed AWMSCNN is shown in

Fig. 1. The input of AWMSCNN is a segment of raw temporal

vibration signal without any transformation, and the output is

the predicted label indicating the health condition. The input

sample X ∈ Rl is denoted as X = {x1, x2, . . . , xl}, where

lis the length of the input sample. The output Y is a one-

hot vector. The fault diagnosis task is defined to obtain the

label Y based on raw temporal vibration signal X using the

AWMSCNN model. The AWMSCNN model has four parts:

the denoising layer, the AWMSCblock, themultiscale feature

fusion layer, and the classification layers. The details of each

part are elaborated in the following subsections.

A. DENOISING LAYER

In real industries, raw vibration signals measured from rotat-

ing machinery often contain various noise that produced by

the complex working environment. Therefore, a denoising

layer is applied to suppress background noise before extract-

ing multiscale features. The denoising layer is actually a 1D

convolutional (Conv1D) layer.

A Conv1D layer usually contains multiple channels of 1D

convolution kernel, each channel is used to extract one type

of feature. Assuming that the number of channels is c, the

convolutional operation can be expressed by

Fdi = f
(

Ki ∗ X
d−1 + bi

)

. (1)

where Fdi , (i = 1, 2, . . . c) is the ith channel feature in the

featuremap of the d th layer,Ki is the convolution kernel of the

ith channel, Xd−1 is the feature map of the (d − 1)th layer, bi
is the bias, f is the ReLU [26] activation function. c channels

can output a feature map F , which be expressed as

F = [Fd
1
;Fd

2
; . . . ;Fdc ] . (2)

In the AWMSCNN, the parameter of the denoising layer is

c1@k1. The width k1 of the 1D kernel is wider than kernels

in other layers. In addition, we choose a larger convolution

stride s1 than 1 used in the image recognition field to reduce

the length of the extracted features. Amax-pooling layer with

a pooling length of 2 is adopted to capture more concise and

local invariant features. Finally, the denoising layer returns

a feature Fd with shape of (c1 × l1), where l1 = (l − k1) /

2s1 + 1.
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FIGURE 1. Framework of the proposed AWMSCNN model. The expression c@k denotes the parameters in Conv1D layer. The channel is c and the kernel

width is k . In the expression t(c@k), t denotes the time steps of the TDConv1D layer. c
′

×l denotes the shape of a feature map, c
′

is the channel and l is
the length of 1D feature in each channel. ‘·’ denote the multiplication.

Awide kernel has a larger reception field than a narrow ker-

nel and can capture lower frequency features. Thewide kernel

acts as a low-pass filter, so the convolutional layer with wide

kernels can better suppress high frequency noise, which has

been verified in [27] and [28]. Moreover, the convolutional

layer with wide kernels and the pooling layer can turn the

raw input vibration signal into features with shorter length,

which can speed up the calculation of subsequent layers.

B. AWMSC BLOCK

The AWMSC block contains two processes: the multiscale

feature learning process and the multiscale feature weighting

process, which is shown in Fig. 1.

In the AWMSC block, the feature Fd extracted by the

denoising layer is fed into n parallel Conv1D layers. The

kernels of the n Conv1D layers have different widths and

denoted as k2i, (i = 1, 2, . . . n). The kernels with different

widths act as filters with different scales of frequency domain

resolution to simultaneously extract features of different fre-

quency bands of the input signal. It is worth noting that

there are c′2 channels in each of the n Conv1D layers. All

Conv1D layers have the same convolution stride, which is set

to 1. Each Conv1D layer in the AWMSC block can extract

a feature map on one scale and the extracted feature map is

denoted as FSi. In order to make the features of each scale

have the same length, padding strategy is adopted here. The

shape of FSi is (c
′
2×l2), where l2 = l1.

Furthermore, considering that features of different chan-

nels on different scales have different fault sensitivity levels

and the fault sensitivity level of each channel may also change

FIGURE 2. The process of adaptive calculation of the weight vector W.

under different operating conditions and different health con-

ditions, an adaptive weight vector W is introduced to the

AWMSC block to dynamically modulate multiscale features.

As shown in Fig. 1, a concatenation layer is used to com-

bine features of multiple scales along the channel dimension

to form a multiscale feature map Fm, which is expressed as

Fm = [FS1;FS2; · · · ;FSn] . (3)

The shape of Fm is (c2×l2), where c2 = nc′2. The concatena-

tion layer act a collector, which can aggregate features of all

scales to form a multiscale feature set, so the concatenation

layer can retain all the sensitive features coming from the

convolutonal layer of different scales of kernel. Whereafter, a

time-distributed Conv1D layer (TDConv1D) is applied to the

Fm and returns a feature V with shape of (c2×1). The struc-

ture of the TDConv1D is shown in Fig. 2. In the TDConv1D,
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a Conv1D layer is applied to each feature channel of the Fm
simultaneously to learn the global information of each chan-

nel. The channel and the kernel width of the TDConv1D layer

are set to 1 and l2 respectively. Ultimately, thecth channel

in the Fm is compressed into the cth element in the feature

V . Then, the weight vectorW is calculated by the following

equation referring to the excitation process in the SENet [29]:

W = σ (W2f (W1V + b1) + b2) . (4)

where σ refers to the sigmoid activation, which can imple-

ment the gating mechanism. The weight vector W is a 1D

vector with shape of (c2×1) and the cth element inW repre-

sents the fault sensitivity level of the cth channel feature of

the Fm.

The weight vector W is determined by model parame-

ters and Fm. After the proposed AWMSCNN model is well

trained, model parameters have been fixed, so the weight

vector W only changes with Fm, i.e., the weight vector W

changes with the model input X . Therefore, the weight vec-

tor W has better adaptivity than a fixed vector. Finally, we

modulate the multiscale feature Fm by

F′
m = Fm ·W . (5)

where ‘· ’ denotes channel-wise multiplication operation.

SinceW can be dynamically adjusted by the model accord-

ing the input signal, the multiscale feature Fm can be adap-

tively modulated to get optimized multiscale feature F′
m.

Fm
′ and Fm have the same shape. Each element in W is a

value between 0 and 1. The weight vector W acts as a gate,

which can emphasize fault sensitive features and suppress

features that are sensitive to operating conditions. Therefore,

Fm
′is more sensitive to faults and insensitive to changes of

operating condition.

C. MULTISCALE FEATURE FUSION LAYER

After the AWMSC block, a multiscale feature fusion layer

is used to further extract multiscale fusion features from the

optimized multiscale feature Fm
′. The goal of this layer is

learn the dependency between features of different scales

and different channels. The multiscale feature fusion layer

is in fact a Conv1D layer with parameters of c3@k3, the

stride is s3. A max-pooling layer with pooling length of 2

is adopted to reduce the dimension of features. A feature

Ff with shape of (c3 × l3) is returned by this layer, where

l3 = (l2 − k3) /2s3 + 1.

D. CLASSIFICATION LAYERS

At last, the featureFf is flattened into a 1D feature vector and

fed into a FC layer and a softmax layer. The softmax layer is

defined as

P (y = j) = e
θTj v

/

∑M

m=1
e
θTj v. (6)

where m is the label and M is the total number of labels.

θdenotes parameters of the softmax layer.

FIGURE 3. Train wheelset bearing test rig.

IV. EXPERIMENTS AND DISCUSSION

A. COMPARED MODELS

To prove the advantages of the proposed AWMSCNNmodel,

the following deep models are implemented as comparisons

in this study:

1) CNN: In the CNN, there are three pairs of Conv1D

layers and pooling layers.

2) MSCNN: A multiscale coarse-grained layer is intro-

duced to represent the raw vibration signal over a range

of scales. Then two pairs of convolutional layers and

pooling layers are used to extract features of different

scales in parallel. More details of the MSCNN can be

found in [18].

3) AWMSCNN-II: We remove the multiscale feature

weighting process in the proposed AWMSCNN model

and reserve other layers to form a new model. The new

model is named as AWMSCNN-II.

All the experiments are carried out on a PC with an

NVIDIA GeForce 1060Ti GPU and 8GB of RAM. The fault

diagnosis accuracy is used for model performance evaluation

and comparison.

B. CASE 1: EXPERIMENT RESULTS ON THE TRAIN

WHEELSET BEARING DATASET AND PERFORMANCE

ANALYSIS

1) DATA DESCRIPTION

The train wheelset bearing dataset was collected from a

freight train wheelset rolling bearing fault diagnosis test rig.

The test rig is shown in Fig. 3. The type of bearing is 197726.

This study considers five bearing health conditions, including

cage fracture (CF), roller crack (RC), roller indentation (RI),

outer race peeling (OR), and normal (N). All the fault bear-

ings used in this test rig were from the actual operating freight

train. Bearings with each health condition were operated at

four bearing rotating speeds (175 rpm, 270 rpm, 365 rpm,

and 460 rpm). Vibration signals were collected using an

accelerometermounted vertically on the bearing housingwith

sampling frequency of 5.12 KHz. Every 10240 data points

in the vibration signal were cut out with overlap to form

a sample. There are 320 samples for each health condition

under each rotating speed. The detailed description of the

dataset is summarized in Table 1.
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TABLE 1. Description of the train wheelset bearing dataset.

TABLE 2. The information of each fault diagnosis task on the train
wheelset bearing dataset under variable rotating speed. Unit: rpm.

2) DOMAIN ADAPTIVE ABILITY AGAINST VARIABLE

ROTATING SPEED

The train wheelset bearing dataset is used to verify the per-

formance of the AWMSCNN model under variable rotating

speed. Four fault diagnosis tasks i.e. A1, A2, A3, and A4 are

organized in this experiment for comprehensive verification.

The task information is presented in Table 2. For instance, the

task A1 denotes the scenario that the samples under rotating

speeds of 270rpm, 365rpm, and 460 rpm are used for model

training, and the samples under another rotating speed of

175rpm are used for testing. The other tasks follow the similar

pattern. Different with the 10-fold cross-validation method

used in [18], the training samples and testing samples in this

work belong to different working conditions, and there exists

the domain shift problem. This experiment method is more

able to prove the generalization ability and the domain adap-

tive ability of the proposed model under variable operating

conditions.

The task A2 is used for model parameter selection through

cross-validated experiments. In our proposed model, a 4@64

Conv1D layer with stride size 8 is used in the denoising

layer. The multiscale feature learning process in the AWMSC

block consists of 4@2, 4@4, 4@6, and 4@8 Conv1D layers

with stride size 1. The multiscale feature weighting process

consists of a 16(1@636) TDConv1D layer and two FC layer

with neuron number of 6 and 16. A 4@8 Conv1D layer

with stride size 4 is used in the multiscale feature fusion

layer. The dropout rate in the flatten layer is 0.2. To provide

a fair comparison, all the compared models have the same

model depth with the proposed AWMSCNN. In the CNN

model, the parameters of three Conv1D layer are 4@8 with

stride size 4, 4@4 with stride size 1 and 4@8 with stride

size 4, respectively. The pooling size of each pooling layer

is 2. In the MSCNN, four scales are used in the multiscale

coarse-grained layer. The parameters of the two convolutional

layers are 4@64 and 4@8, respectively. The parameters of

the shared layers in the AWMSCNN-II and the AWMSCNN

FIGURE 4. Performance of the proposed AWMSCNN in four tasks (A1-A4)
compared with other models.

are same. The last two layers in each model are a FC layer

with 50 neurons and a softmax layer with 5 neurons. Batch

Normalization (BN) [30] is applied after each layer to accel-

erate the training process. The same input size, batch size,

epoch number and gradient descent optimization algorithm

parameters are used in all models. The batch size is 50,

the epoch number is 50, and the optimization algorithm is

Adadelta [31].

The testing fault diagnosis accuracies of four tasks using

different models are shown in Fig. 4. The reported experiment

results are averaged by 10 replicate experiments to reduce the

effect of randomness. The error bar represents the standard

deviation of 10 replicate experiments and shows the stability

of the model.

It can be seen in Fig. 4 that the proposed AWMSCNN

achieves the best performance in each task and the results in

four tasks are all above 99%, which shows that the AWM-

SCNN has good fault discriminative ability and domain adap-

tive ability against variation of rotating speed. The standard

deviations of the AWMSCNN in all tasks are small, which

indicates that the AWMSCNN has good stability. So the

AWMSCNN can be used for fault diagnosis in the scenario

that the rotating speed of the testing data is not included in the

training dataset. In addition, AWMSCNNandAWMSCNN-II

both perform better than CNN in all four tasks. The MSCNN

performs better than CNN only in task A1, A2, and A3, but

performs worse than CNN in task A4. Based on the above

results, we can draw two conclusions. The first conclusion

is that multiscale feature learning models perform better that

CNN. The other one is that the proposed adaptive weighted

multiscale feature learning method using different shapes of

kernels can extract more robust and fault sensitive multi-

scale features than MSCNN using the coarse-grained layer.

Although AWMSCNN-II, MSCNN, and CNN can achieve

high diagnosis accuracy in task A2, they perform poorly

in other tasks indicating that these three models have poor

generalization ability and domain adaptive ability. Compar-

ing the results of AWMSCNN and AWMSCNN-II, it can

be concluded that the adaptive multiscale feature weighting

process plays an important role in improving fault diagnosis
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FIGURE 5. The convergence performances of 4 different models in task
A1.

FIGURE 6. Weight vector visualization for five health conditions under
the rotating speed of 460rpm.

accuracy and improving the domain adaptive ability of the

model against variation of rotating speed. The convergence

performances of 4 different models are shown in Fig. 5. From

Fig. 5, we can see that the proposed AWMSCNN converges

faster than other models.

3) VISUALIZATION OF THE WEIGHT VECTOR AND FEATURES

To further verify the adaptability of the weight vector in the

proposed model, the learned weight vectors are visualized.

The weight vector includes weight values of 16 channels.

First, the weight vectors of five health conditions under the

rotating speed of 460rpm are presented in Fig. 6, where dif-

ferent colors represent different health conditions described

in Table 1. From Fig. 6, we can see that the weight vectors

calculated from samples of different health conditions at the

same rotating speed are different. Specifically, the weight val-

ues of most channels vary with health condition. So, we can

conclude that the weight vector can be adaptively adjusted by

the model when the health condition changes under the same

rotating speed. Then, the weight vectors of the CF condition

under four rotating speeds are presented in Fig. 7, where

different colors represent different rotating speeds described

in Table 1. It can be observed in Fig. 7 that the weight values

of most channels in the weight vector vary with rotating

FIGURE 7. Weight vector visualization for the CF condition under four
rotating speeds.

FIGURE 8. Feature visualization of the AWMSCNN for different health
conditions under different rotating speeds: (a) feature Fm, (b) feature
Fm

′, (c) feature Ff , (d) finally feature F . 25% data are randomly
selected to be presented. a rpm-b denotes the class label of the feature
is b and the rotating speed is a rpm.

speed. So, we can also conclude that the weight vector can

be adaptively adjusted by the model when the rotating speed

changes.

In order to further prove that the weight vector can improve

the domain adaptability and the robustness of themodel under

variable speed conditions, the t-SNE method [32] is used to

show the feature maps learned by the proposed model. The

two-dimensional feature maps are shown in Fig. 8, where,

features of different fault types are distinguished by different

colors and features of different rotating speeds are distin-

guished by different marks.

It can be seen in Fig. 8(a) that although after the multiscale

feature extraction process, Fm of the same fault type are still

not clustered together, and Fm of different fault types are

still mixed together. It is shown in Fig. 8(b) that features

Fm
′ of the same fault type under different rotating speeds

are clustered to some extent after the adaptive multiscale

feature weighting process. Specifically, except for fault types

2 and 4, other fault types are basically separated. It can be

explained that the weight vector can be adaptively adjusted to

emphasize fault-discriminative features and suppress features
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FIGURE 9. Performance comparisons of different models in noisy
environments with different SNRs.

that sensitive to operating conditions, so that the features

of the same fault type at different speeds can be modulated

by the weight vector to have the same distribution. Then,

the multiscale feature fusion layer can further extract more

abstract features Ff from Fm
′. We can see in Fig. 8(c) that

themultiscale feature fusion layer further clusters the features

Ff of the same fault type and further separates the features of

different fault types. At last, after the FC layer, the features of

different fault types are completely separated, which is shown

in Fig. 8(d). The proposed AWMSCNN model can finally

learn robust and fault discriminative features, and has good

domain adaptive ability and fault discriminative ability under

variable operating conditions.

4) ROBUSTNESS AGAINST NOISE

In order to simulate the noisy working environment in real

industries, we inject additive Gaussian white noise to the

raw vibration signals to construct noisy signals with different

signal-to-noise ratios (SNRs). The SNR is defined as

SNRdB = 10log10

(

Psignal

Pnoise

)

. (7)

where Psignal and Pnoise denote the power of the raw signal

and the injected noise, respectively.

The task A3 is implemented using noisy signals with dif-

ferent SNRs to evaluate the robustness of the AWMSCNN

against noise. The evaluation results for different models

are shown in Fig. 9. Obviously, the proposed AWMSCNN

outperforms other models and has more than 70% accuracy

with each SNR. When the SNR is over 0dB, the AWMSCNN

can achieve over 94% accuracy. Comparing the performance

of AWMSCNN and AWMSCNN-II, we can conclude that the

adaptive multiscale feature weighting process in the AWM-

SCNN can improve the anti-noise ability of the model. In

addition, all multiscale models are outperform the CNN,

which indicates that multiscale feature leaning can extract

more robust features form noisy input signal than single scale

CNN. The above results mean that the proposed AWMSCNN

TABLE 3. Description of the CWRU dataset.

TABLE 4. The information of each fault diagnosis task on the CWRU
dataset under variable load. Unit: hp.

can be used for fault diagnosis under variable rotating speed

in real noisy industrial environment.

C. CASE 2: EXPERIMENT RESULTS ON THE CWRU

DATASET AND PERFORMANCE ANALYSIS

1) DATA DESCRIPTION

The CWRUmotor bearing dataset is provided by the Bearing

Data Center of Case Western Reserve University [33]. There

are four different health conditions: normal condition (N),

outer race fault (OF), inner race fault (IF), and ball fault (BF).

Each fault type contains three fault diameters: 0.007 inch,

0.014 inch, and 0.021 inch. Therefore, the CWRU dataset

contains 10 bearing health conditions. The vibration signals

of each health condition are collected from the drive end

of the motor under four loads (0 hp, 1 hp, 2 hp, and 3 hp)

with sampling frequency of 12 kHz, where the same health

condition under different loads is treated as one class. Every

1000 data points in the vibration signal are cut out with

overlap to form a sample. There are 600 samples for each

health condition under each load. The detailed description of

the CWRU dataset is summarized in Table 3.

2) DOMAIN ADAPYIVE ABILITY AGAINST VARIABLE LOAD

The CWRU dataset is used to verify the domain adaptive

ability of the AWMSCNN against variation of load. Four

fault diagnosis tasks i.e. B1, B2, B3, and B4 are organized

in this experiment for comprehensive verification. The task

information is presented in Table 4. For instance, the task

B1 denotes the scenario that the samples under loads of 1hp,

2hp, and 3hp are used for model training, and the samples

under another load of 0hp are used for testing. The other tasks

follow the similar pattern. Each task contains 18000 samples

for training and 6000 samples for testing.
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FIGURE 10. Performance of the proposed AWMSCNN in four tasks
(B1-B4) compared with other models.

TABLE 5. The cost time of 4 different models on two dataset.

As Fig. 10 shows, the proposed AWMSCNN achieves the

best performance compared with other models in each task.

Fault diagnosis accuracies of AWMSCNN in four tasks are

all above 97.97, which further validates its superior fault

discriminative ability and domain adaptive ability against

variation of load. CNN performs poorly than other multi-

scale models in each task, which indicates that extracting

multiscale features is essential for the model to extract more

robust features in variable load scenarios. Comparing results

of AWMSCNN and AWMSCNN-II, we can conclude that

the adaptive multiscale feature weighting process can further

improve the domain adaptive ability of the AWMSCNN. In

this experiment, the time required by the AWMSCNN to

calculate each test sample is just 2ms, which proves that

the AWMSCNN can be used for real-time bearing fault

diagnosis.

D. TIME CONSUMPTION

The training time of one epoch and the testing time of one

testing sample spent by different models on two dataset are

listed in Table 5. It should be declared again that to pro-

vide a fair comparison, all the compared models have the

same model depth with the proposed AWMSCNN. From

Table 5, we can find that the AWMSCNN, AWMSCNN-II,

and MSCNN are all need more training time and testing time

than CNN, which can be explained that multiscale feature

learning models will bring more parameters to be trained and

therefore require more computing time. Since the model is

trained offline, the training time is not a critical aspect of eval-

uatingmodel performance. But, the testing time is a key factor

affecting the performance of the well-trained model used for

online fault diagnosis. In term of the testing time, although the

AWMSCNN need more time than AWMSCNN-II and CNN,

the testing time spent by AWMSCNN is just 2.7551ms on

the train wheelset bearing dataset and just 1.7302ms on the

CWRU dataset, which proves that the AWMSCNN can be

used for online fault diagnosis.

V. CONCLUSION

This paper focus on intelligent fault diagnosis of rotating

machinery under variable operating conditions and pro-

poses a novel end-to-end AWMSCNN model. The pro-

posed AWMSCNN directly takes raw vibration signals as

input without any handcrafted features and can automatically

extract fault sensitive features. The main innovations of the

proposed model are multiscale feature learning and adap-

tive multiscale feature weighting, which can help the model

extract robust features and improve the domain adaptive abil-

ity of the model against noise, variable rotating speed and

variable load. In the experiments, the AWMSCNN outper-

forms the basic single-scale CNNmodel and other multiscale

models. In addition, the weight vector and features are visual-

ized.We found that when the rotating speed or the health con-

dition changes, the weight vector can be adaptively adjusted

by the model, so that the model can finally extract robust and

discriminative features. The experiment results show that the

proposed AWMSCNN can be used for fault diagnosis under

variable operating conditions in real industrial scenario.

Considering that it is often difficult to obtain labeled data

for model training in real industries, in our further work, we

will further combine the AWMSCNN with transfer learning

strategy to achieve good performance when labeled data is

rarely available for model training.
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