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ABSTRACT To overcome the defect of whale optimization algorithm (WOA) being easily fallen into

local optimum caused by the ill-distribution of solutions, this paper explores an adaptive WOA variant

using Gaussian distribution strategies (GDSs), named GDS-WOA. In GDS-WOA, by means of one GDS,

named the Gaussian estimation of distribution method, the superior population information is used to evolve

the distribution scope and modify the evolution direction. Moreover, an adaptive framework is adopted to

integrate the Gaussian estimation of distribution method and WOA together, in which each individual can

update its position using Gaussian estimation of distribution method or WOA according to an adaptive

probability parameter. When the algorithm falls into stagnation, another GDS, named Gaussian random

walk, is activated to enrich the population diversity and help the algorithm get rid of the local optimum.

Additionally, the greedy strategy is carried out to select the offspring from the parents and the generated

candidates to fully retain the promising solutions. The GDS-WOA is benchmarked on CEC 2014 test suite,

and the performance of GDS-WOA is evaluated by comparing with WOA and its promising variant IWOA,

as well as other five state-of-the-art evolutionary algorithms, i.e., COA, VCS, CoBiDE, HFPSO and GWO.

The statistical results demonstrate that GDS-WOA outperforms other competitors in terms of convergence

efficiency and accuracy. Finally, GDS-WOA is applied to solve the optimal task allocation problem of

heterogeneous unmanned combat aerial vehicles (UCAVs). To address this constrained real-world optimizing

problem efficiently, the mathematical model of heterogeneous UCAVs task allocation is described with

the operational effectiveness value as the objective. The validity and practicauility of the model as well

as the performance of GDS-WOA for solving constrained optimization problem are demonstrated by the

experimental results.

INDEX TERMS Whale optimization algorithm, CEC 2014, numerical optimization, UCAV, task allocation.

I. INTRODUCTION

Optimization refers to the process of obtaining a global

optimal solution for a problem under the given condi-

tions. The real-world problems in the scientific fields, such

as engineering design and economic planning, mostly are

multimodal, high-dimensional, disconnected and oscillated

optimization problems. These complex problems cannot be

The associate editor coordinating the review of this article and approving
it for publication was Huiping Li.

solved well within reasonable time using traditional method

based on gradient. Therefore, inspired by natural phenom-

ena and animal group behavior characteristics, researchers

have proposed many efficient natural heuristic algo-

rithms for high-dimensional complex optimization problems

in real-world.

With the rapid developments of meta-heuristic opti-

mization algorithms, they have been applied in various

fields over the past years. The Whale Optimization Algo-

rithm (WOA) [1] is a novel population-based meta-heuristic
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algorithm proposed by Australian scholar Mirjalili and Lewis

in 2016, which is inspired by the hunting behavior of hump-

back whales. It has the advantages of simple structure and

few control parameters. The numerical experiment results

in [1] show that WOA has some advantages in terms of

convergence efficiency or accuracy compared with parti-

cle swarm optimization (PSO) [2], gravity search algorithm

(GSA) [3], differential algorithm (DE) [4], rapid evolu-

tion programming (FTP) [5], and the adaptive covariance

matrix evolution strategy (CMA-ES) [6]. Therefore, WOA

has been widely applied to solve real-world problems in a

wide range of disciplines [7]–[11]. However, we find that

it is easy to fall into local optimum when dealing with

high-dimensional complex optimization problems. And the

quality of solution obtained by WOA needs to be further

improved.

The scholars have found that the population diversity and

evolutionary direction play an important role in the opti-

mization performance of meta-heuristic algorithms. How-

ever, the population diversity shrinks rapidly in the later

stage of optimization process leadingWOA easily falling into

local optimum. To improve the optimization performance of

WOA, relevant theoretical researches have been carried out.

According to the literatures we have learned about WOA

research, there are two group variants of WOA.

The first group improves the performance of the algorithm

by introducing other optimization strategies into WOA. Kaur

and Arora [12] adjusted the control parameters by various

chaos strategies in WOA to balance exploration and exploita-

tion and improve the convergence accuracy; Hu et al. [13]

coordinated the impact of the current optimal solution on the

population iterative process by introducing inertia weight to

increase population diversity; Trivedi et al. [14] introduced

adaptive technology to improve the convergence efficiency

of WOA; Elaziz and Mirjalili [15] introduced differential

evolution algorithm and opposition-based learning strategy

into WOA to improve the diversity of the population in the

process of optimization. The improved algorithm in terms

of the local optimal avoidance ability and the local search

ability had been improved at the expense of a large amount of

computational cost; Khalil et al. [16] proposed a distributed

implementation ofWOA, calledMR-WOA, by using Hadoop

MapReduce to improve the scalability of WOA for solving

large-scale complex problems; For the defect of WOA pre-

mature convergence, Chen et al. [17] introduced Lévy flight

and chaotic local search into WOA to promote the balance

exploration and exploitation. These two strategies have been

widely used to improve the performance of intelligent opti-

mization algorithms.

Another group hybridizesWOAwith other intelligent opti-

mization algorithms. For example, Mafarja and Mirjalili [18]

combined WOA with simulated annealing algorithm (SA)

[19] to strengthen the exploitation performance of WOA

and applied the hybridized algorithm to feature selection

problems; Mostafa and Yazdani [20] hybridized WOA with

DE by combining great exploitation of WOA with excel-

lent exploration of DE, which had improved the quality of

solution and convergence rate; Trivedi et al. [21] proposed

the PSO-WOA in which PSO was used for local search

phase and WOA was used for global search phase; Singh

and Hachimi [22] proposed a novel hybrid algorithm by

combining WOA and GWO in which the spiral function in

WOA was used for exploration phase to cover a broader area

in search space. In addition, there are many hybrid varieties

of WOA [11], [23]–[26].

Although the previous research works have improved the

convergence efficiency or accuracy in certain extent, there

is not a variant of WOA that could effectively improve the

convergence efficiency and accuracy at the same time, which

could obtain great quality solutions when solving complex

optimization problems such as the CEC 2014 benchmarks.

In addition, most of the hybrid varieties of WOA have low

computational efficiency, meaning that the computational

time required to obtain a better solution is long. Therefore,

it needs continuous improvement and novation. In order to

avoid the local optimum in solving complex optimization

problems and improve the convergence accuracy of WOA,

we propose an adaptive WOA based on Gaussian distribu-

tion strategies. First, the Gaussian estimation of distribution

method is adopted to evolve the distribution scope andmodify

the evolution direction. It is noted that the weighted covari-

ance matrix is the core component of Gaussian estimation

of distribution method. Moreover, WOA is coupled to the

Gaussian estimation of distribution method by an adaptive

framework, in which each individual can update its position

using Gaussian estimation of distribution method or WOA

according to an adaptive probability parameter. The proba-

bility parameter is adaptively updated according to the infor-

mation gathered from the offspring. In addition, the Gaussian

random walk is adopted to enrich the population diversity

and help the algorithm get rid of the local optimum when

the search falls into stagnation. Finally, the greedy strategy

is carried out to select the offspring from the parents and the

generated candidates to fully retain the domination individu-

als in order to improve the convergence speed. The simulation

results of the CEC2014 test suit and UCAVs task allocation

problem show that GDS-WOA has excellent performance in

dealing with complex problems.

The rest organization of this paper is as follows: The review

ofWOAand themathematical presentation of GDS-WOAare

described in Section 2. In Section 3, the statistical results of

numerical experiment based on the CEC 2014 test suite are

discussed. The heterogeneous UCAVs optimal task allocation

model is proposed in Section 4 and GDS-WOA is applied to

solve it in Section 5. Finally, we conclude this work and note

directions for future study in Section 6.

II. PROPOSED GDS-WOA

A. REVIEW OF THE BASIC WOA

WOA is a novel meta-heuristic algorithm inspired by the

predation mechanism of humpback whales. Since the ‘prey’

position is unknown in the search space, WOA assumes that
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the current best solution obtained so far is the ‘prey’ position

in the optimization process. And the other search individuals

update their position toward the current best solution through

the encircling prey mechanism and spiral bubble-net feeding

maneuver mechanism. The global search and local search

of the algorithm are balanced by the convergence factor a,

so that the population can search from disorder to order in

solution space. And finally the optimal solution of the prob-

lem is obtained. The mathematical model of the population

locations update is briefly shown as follows:

a = 2 − 2t/tmax (1)

A = 2 · a · r − a (2)

D = |C · X∗(t) − X(t)| (3)

C = 2 · r (4)

D
′ = |C · X rand (t) − X(t)| (5)

X(t + 1) =











X
∗(t) − A · D, p < 0.5 and |A| < 1 (6.1)

X rond (t) − A · D, p < 0.5 and |A| ≥ 1 (6.2)

D
′ · ebl · cos(2π l) + X

∗(t), p ≥ 0.5 (6.3)

(6)

where t is the current iteration number; tmax is the maximum

iteration number; a is the convergence factor; r, l and p

are random numbers between 0 and 1; X (t) is the current

individual position, and X∗(t) is the position of the current

best solution obtained so far; b is a constant that defines the

shape of the spiral path. More details about WOA can be

found in [1]. The pseudo code of the WOA is described as

algorithm 1.

Algorithm 1 The Procedure of WOA

Step 1: Initialize the population; Set t = 1;

Step 2: Calculate the fitness of each search agent;

Step 3: If t <= tmax
execute step 4;

Else

output X∗;

End the algorithm;

Step 4: Update the best solution X∗ and its fitness;

Step 5: For each solution

Update a, l, p, A, and C;

If p < 0.5

If |A| < 1

Xi is updated using (6.1);

Else if

Xi is updated using (6.2);

End if

Else

Xi is updated using (6.3);

End if

End for

Step 6: Boundary control; calculate fitness of each agent;

Step 7: t = t + 1; execute step 3.

B. MATHEMATICAL PRESENTATION OF GDS-WOA

1) GAUSSIAN ESTIMATION OF DISTRIBUTION METHOD

In 2001, Larrañaga and Lozano [27] proposed the estimation

of distribution algorithm (EDA). The EDA uses probabilistic

model learning and sampling to estimate the distribution of

dominant candidate solutions, which can identify the char-

acteristics of promising solutions and estimate the evolution

direction of population and it has promising performance

in dealing with some complex problems [28]–[32]. Due to

there are no selection, crossover and mutation operations that

are the main evolution operations in traditional evolutionary

algorithms, EDA and WOA belong to different types of evo-

lutionary algorithms. Thus, we try to introduce the Gaussian

estimation of distribution method into WOA for overcoming

the defect in WOA.

In the basic WOA, the update of the population during

the iterative process is mainly guided by the best solution

obtained so far, so that the population diversity shrinks

rapidly in the later stage of the optimization process. Thus,

WOA is easily fallen into the local optimum. Researches

on EDA show that the core component of the algorithm

is the weighted covariance matrix and it has strong local

optimum avoidance. Therefore, in this paper, we intro-

duce the Gaussian estimation of distribution method into

WOA in order to make full use of the promising popula-

tion information to estimate the better evolution direction.

The Gaussian estimation of distribution method based on

weighted covariance matrix is as follows:

X(t)mean =

m
∑

l=1

ωi · X i (7)

ωi = (ln(m+ 1) − ln(i))/

m
∑

i=1

(ln(m+ 1) − ln(i)) (8)

Cov(t) =
1

m− 1

m
∑

i=1

(X i(t)−X(t)mean)(X i(t)−X(t)mean)
T

(9)

X(t + 1) = Gaussian(X(t)mean,Cov(t))

+ rand · (X(t)mean − X(t)) (10)

The half of population with better fitness is selected as

the promising population. In (7), where m = SN/2, SN is

the number of individuals, and X1,X2,X3, . . . ,Xm is the m

promising solutions with fitness values ranked from high to

low. Equation (7) indicates that the m promising solutions

are selected to estimate the weighted mean value. From (8),

a higher rank means a greater weight. Cov(t) is the weighted

covariance matrix of the promising solutions. Population

update their location using (10).

2) ADAPTIVE STRATEGY

How to effectively integrate the Gaussian estimation of

distribution method based on weighted covariance matrix

and WOA together has a crucial impact of the improved

algorithm. Inspired by the adaptive framework to tune the

110140 VOLUME 7, 2019



Y. Li et al.: Adaptive WOA Using GDSs and Its Application in Heterogeneous UCAVs Task Allocation

coordinate systems in evolutionary algorithms in [33], this

paper proposes an adaptive strategy to efficiently embed

the Gaussian estimation of distribution method into WOA,

in which each individual can update its position using

Gaussian estimation of distribution method or WOA accord-

ing to an adaptive probability parameter. Pv = (pv1, pv2,

. . . , pvSN ) is the probability vector. Since there is no prior

information when the algorithm is initialized, this paper sets

the equal probability that each individual chooses two strate-

gies, i.e., Pv = (0.5, 0.5, . . . , 0.5). The probability vector Pv

is adaptively updated based on information gathered from the

offspring in the optimization process.

In the paper, the information gathered from the offspring

includes two parts. One part is which strategy is used to

generate the offspring and another part is whether the fitness

value of the generated offspring is superior to the parent

individual. The collected information is used to guide Pv to

update in the following four cases:

1)WOA is better:WOA is adopted to generate the offspring

and it has better fitness. pvi is updated as follows

pvi(t + 1) = pvi(t) + 0.1 · (1 − pvi(t)) · (t/tmax) (11)

2)WOA is worse:WOA is adopted to generate the offspring

and it has worse fitness. pvi is updated as follows

pvi(t + 1) = pvi(t) − 0.1 · pvi(t) · (1 − t/tmax) (12)

3) Gaussian estimation of distribution method is better:

Gaussian estimation of distribution method is adopted to

generate the offspring and it has better fitness. pvi is updated

as follows

pvi(t + 1) = pvi(t) − 0.1 · pvi(t) · (1 − t/tmax) (13)

4) Gaussian estimation of distribution method is worse:

Gaussian estimation of distribution method is adopted to

generate the offspring and it has worse fitness. pvi is updated

as follows

pvi(t + 1) = pvi(t) + 0.1 · (1 − pvi(t)) · (t/tmax) (14)

3) GAUSSIAN RANDOM WALK STRATEGY

During the iterations, the average fitness of the promising

solutions is used to judge whether the search is stagnant. If the

average fitness does not change in two consecutive iterations,

the algorithm is regarded as stagnating. For getting rid of the

local optimum and overcoming the premature convergence of

the algorithm, the Gaussian random walk strategy is used to

generate the new candidates. The model is as follows:

X(t + 1) = Gaussian(X(t), σ1) (15)

σ1 = cos(π · t/(2 · tmax)) · (X(t) − X
∗
r (t)) (16)

where X∗
r is a promising solution randomly selected from the

promising population, In (16), the step size of the Gaussian

random walk is coordinated by the cosine function cos(π · t/

(2 · tmax)), which gradually decreased as the number of

iterations increased. There is a larger disturbance in the early

iteration, and the disturbance is smaller in the later iteration,

so as to balance the exploration and exploitation of the

algorithm.

In addition, the current best individual X∗(t) updates its

location relying on the population information which has

poor exploration ability. Therefore, the position update of

X
∗(t) is performed using Gaussian walk in each generation

in order to improve the global search ability of the algorithm.

The model is as follows:

X
∗(t + 1) = Gaussian(X∗(t), σ2) (17)

σ2 = cos(π · t/(2 · tM )) · (X∗(t) − X
∗
r (t)) (18)

Finally, the greedy strategy is used to guarantee the global

convergence efficiency in our proposed GDS-WOA. The

greedy strategy is carried out to select the offspring from the

parents and the generated candidates according to the fitness.

This mechanism can fully retain the domination individuals

which can improve the convergence speed of the algorithm.

The pseudo code of the proposed GDS-WOA is described as

algorithm 2 and the flowchart for GDS-WOA is as Fig. 1.

III. NUMERICAL EXPERIMENT BASED

ON CEC2014 TEST SUITE

With the rapid development of intelligent optimization algo-

rithms, it is easy for the competitive algorithm to obtain

the global optimum of the classic benchmarks. CEC 2014

test suite is more challenging than classic benchmarks and

is widely used to evaluate novel algorithms. Therefore,

CEC 2014 test suite is employed to evaluate the performance

of GDS-WOA to verify its performance. The CEC 2014 test

suite consists of 30 benchmarks that can be classified into

four categories: F1 to F3 are unimodal functions which are

usually used to estimate the convergence speed of algorithms;

F4 to F16 are multimodal functions which are usually used

to evaluate the local optimum evasive ability of algorithms;

F17 to F22 are hybrid functions and F23 to F30 are com-

plex composition functions, it’s very difficult for most algo-

rithms to reach the global optimum. More details about these

30 benchmarks can be found in [34].

According to the using principle of CEC2014 test suite

in [34], the max evaluation number (FEmax) of each bench-

mark is set to D× 10000. D is the dimensionality of the test

problem. In this work, D is equal to 30, and the search range

of each dimension for all functions is [−100, 100]. Each

test function is independently solved 51 times to reduce the

randomness. Due to the global optimal solution of different

functions are different, the results obtained by the algorithm

are recorded using f (XBest ) − f (X∗) for convenience. It is

noted that XBest is the best solution obtained by the algorithm

in an experiment and X∗ is the global optimal solution of the

test function.

Additionally, we have compared GDS-WOAwith different

competitive algorithms consisting of two groups to demon-

strate its efficiency. In one group, WOA and its variant

IWOA [13] are selected to make comparisons.

In the other group, five state-of-the-art evolutionary algo-

rithms are utilized as competitor, i.e., COA [35], VCS [36],
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CoBiDE [37], HFPSO [38] and GWO [39]. To make a

fair comparison, the eight algorithms are performed in the

experiment under the condition of same number of search

individuals (SN ) and FEmax , set to 500 and 300000 respec-

tively. The other input parameters of compared algorithms

are set as the original researches, as shown in Table 1. All

the algorithms are implemented in MATLAB R2013a and

the test environment is set up on a computer with Intel(R)

Core(TM)i7-4770K CPU@3.50GHz 8GB RAM, running on

Windows 7.

Algorithm 2 The Procedure of GDS-WOA

Step 1: Initialize initial whales population Xi; Set t = 1;

Pv = (0.5, 0.5, . . . , 0.5);

Step 2: Calculate the fitness of each search agent;

Step 3: If t <= tmax
execute step 4;

Else

output X∗;

End the algorithm;

Step 4: Update the best solution X∗ and its fitness obtained

so far;

Step 5: Calculate X(t)mean and the covariance matrix

Cov(t) by (7) and (9);

Step 6: If the search stagnates

Population is updated using Gaussian random

walk by (15);

Else

X
∗ is updated using Gaussian walk by (17);

For each solution X i except X
∗;

If rand >= pvi
X i is updated using (10);

Else

Update a, l, p, Aand C ;

If p < 0.5

If |A| < 1

X i is updated using (6.1);

Else

X i is updated using (6.2);

End if

Else

X i is updated using (6.3);

End if

End if

End for

End if

Step 7: Boundary control; calculate fitness of each agent;

update Pv;

Step 8: Greedy strategy is adopted to select the offspring;

Step 9: t = t + 1; execute step 3.

A. RESULTS AND DISCUSSION

The simulation results obtained by GDS-WOA and other

compared algorithms containing the mean and standard

TABLE 1. Parameters of eight algorithms.

deviation (SD) are provided in Table 3. The best solutions

among the eight algorithms are showed at bold.

According to Table 3, GDS-WOA can obtain the best solu-

tions of unimodal functions F1 to F3 compared to the seven

comparison algorithms. In addition, GDS-WOA converges

to the global optimal solutions of F1 to F3, which veri-

fies the efficiency of GDS-WOA in solving ill-conditioned

functions; For multimodal functions F4 to F16, GDS-WOA

has a greater convergence accuracy than the other seven

algorithms with the best scores on F4,F6,F7,F8, F9, and

F13, and it can converge to the global optimal solution

on F7; HFPSO outperforms among the eight algorithms on

F5,F10,F11,F12, and F15; COAperforms slightly surpasses

the proposed GDS-WOA on F14; And GWO is the best only

in F16 in CEC 2014 benchmarks. In addition, our proposed

GDS-WOA ranks top on all hybrid functions F17 to F22.

Finally, according to the results of composition functions

F23 to F30, IWOA and VCS are the two best outperforming

algorithms on F23 and F24; IWOA, COA and VCS obtain

the same better solutions for F25; IWOA ranks to top on F27

and F28; our proposed GDS-WOA outperforms among all

algorithms on F26,F29, and F30. What is more, WOA has

poor convergence accuracy on all benchmarks of CEC 2014.

We concluded that our proposed GDS-WOA achieved best

convergence accuracy on 18 out of 30 benchmarks in the

CEC 2014 test suit, which demonstrates the accuracy and

efficiency of our proposed GDS-WOA in solving different

types of problems.

In order to analyze the overall difference of the algorithms,

the nonparametric Friedman test is used based on the mean

values derived from the algorithms on the CEC2014 test func-

tions. The results of mean ranks obtained by the Friedman test

are shown in Table 2. A smaller mean rank value represents

greater performance of the algorithm. From Table 2, we con-

clude that our proposed GDS-WOA ranks top, and the other

algorithms are in the following order: COA, HFPSO, VCS,

CoBiDE, GWO, IWOA, and WOA. Moreover, the p-value

is 1.3287E-06 that is less than the significance level α =

0.05 and the chi-square with 5 degrees of freedom (DOFs)

is 96.93, which mean that there are significant differences

among eight algorithms. To further analyze the magni-

tude of significant differences, the Iman-Davenport test [40]

with a post hoc test is adopted. Iman-Davenport test is a
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FIGURE 1. The flowchart of GDS-WOA.

TABLE 2. Mean ranks derived from the Friedman test with α = 0.05.

statistics distributed based on the F-distributionwith (k-1) and

(k − 1)(N − 1) DOFs.

F2
F =

(N − 1) · χ2
F

N · (K − 1) − χ2
F

(19)

In(19),K is the algorithm number andN equals to 30 being

the CEC2014 benchmarks number. Therefore, the DOFs of

the F-distribution in Iman-Davenport test are 7 and 203. In the

paper, the Nemenyi test [41] is used as the post hoc test.

The critical difference value (CDV) is used to assess the

difference among eight algorithms based on the mean ranks

obtained by the Friedman test. The CDV is calculated as the

following:

CDV = qa ·

√

K (K + 1)

6N
(20)

In the paper, the critical value qa is 2.3463 obtained from

the statistical table of the F-distribution. Thus, the CDV
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TABLE 3. Statistical results obtained by eight algorithms for CEC 2014 test set in 30D.

FIGURE 2. Comparison of multiple algorithms.

is 1.4839 with a significance level α = 0.05. The dif-

ferences among eight algorithms are shown in Fig.2. The

algorithms with similar performance can be connected using

the CDV. From Fig.2, GDS-WOA and COA have similar

performance, and outperform the other six algorithms. The

proposed GDS-WOA in this paper exhibits a superior perfor-

mance on the CEC 2014 test suite compared to various types

of state-of-the-art algorithms.

For much further comprehensive comparisons in a statis-

tical manner, the Wilcoxon signed rank test, a method for

testing pair data, is adopted to analyze the results obtained

by the eight algorithms solving the CEC2014 test set in 30D

with 51 independent runs. It can be used to test whether the

performance of algorithms has obvious differences. Under

the condition of significance level α = 0.05, the results of

Wilcoxon signed rank test are listed in Table 4. The meaning

of symbols in Table 4 is as follows: p-value is the probability

of observing the given results, the hypothesis is rejected at

the 5% when p-value is no more than α, meaning that there is

obvious difference between the two algorithms; ‘w+’ is the

sum of the rank that is greater than 0 and ‘w−’ represents the

sum of the rank that is less than 0;R indicates the results of

Wilcoxon signed rank test, in which ‘+’ represents the perfor-

mance of the competitor is better than GDS-WOA, whereas

‘−’ indicates the competitor is inferior to GDS-WOA; And

the symbol ‘=’ indicates that the competitor is similar to

GDS-WOA, there is no significant difference. As we can see

from the last row in Table 4, the performance of GDS-WOA

is superior to the other 7 comparison algorithms in at

least 22 functions. Therefore, the performance of our pro-

posed GDS-WOA is significantly better than the other seven

comparison algorithms.

To further illustrate the performance of GDS-WOA, the

convergence curves of eight algorithms are shown as Fig.3.

The convergence speed is compared according to the slope

of convergence curve. In order to save the article layout, this

paper only lists the convergence curves of eight algorithms

on twelve representative functions, i.e., F1, F2,F4,F6,F7,

F17,F18,F19,F20,F21,F29,F30, in which GDS-WOA has

obtained the better results. These 12 representative functions
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TABLE 4. Results of the Wilcoxon signed ranks test based on the solutions with 51 independent runs.
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FIGURE 3. Convergence graphs of 8 algorithms on 12 representative functions.

consist of two unimodal functions, three multimodal func-

tions, five hybrid functions, and two composition functions.

The convergence curves are drawn based on the mean values

of 51 independent runs. FromFig.3, our proposedGDS-WOA

has a faster convergence speed and better convergence accu-

racy than the other seven comparison algorithms on 11 out

of 12 functions except F29. For F29, the convergence rate

of GDS-WOA is only inferior to IWOA. In addition, it is

obvious that the search of IWOA and WOA is stagnant on

11 out of 12 functions except F29 and the local optimum

evasive ability of other comparison algorithms is also worse

than GDS-WOA. What is more, GDS-WOA has strong local

optimum avoidance ability and more high convergence accu-

racy than the seven comparison algorithms. Taking the results

in Table 3 into account, the convergence accuracy of GDS-

WOA on 18 functions among 30 functions is better than

the seven comparison algorithms. In summary, GDS-WOA

is superior to the other seven comparison algorithms in con-

vergence accuracy and efficiency.

Box diagrams of the results, obtained by eight algo-

rithms with 51 independent runs to solve twelve representa-

tive functions, are shown as Fig.4. The box graph includes

a central median value, outliers, the 1/4 and 3/4 values

in 51 results. According to Fig.4, when GDS-WOA solves

F1, F2,F4,F7,F17,F18,F19,F29 and F30, there are no

abnormal values in 51 results. Although there are some

abnormal values obtained by GDS-WOA when solving F6,

F20,F21, the whole distribution of GDS-WOA is still more

concentrated compared with the comparison algorithms.

In summary, our proposed GDS-WOA has greater robustness

and stability and generally has low standard deviation values.

B. ALGORITHM COMPUTATION COST ANALYSIS

Algorithm computational efficiency is an important issue

when evaluating the performance of a novel algorithm, and

it can be characterized by computational cost. The means of

computational time for eight algorithms in CEC 2014 test

suite with 30D are shown in Table 5. To make a more intuitive

expression of the computational efficiency of algorithms,

a radar graph based on the ranks of the average computational

time is presented in Fig.5. The smaller the circle is, the more

efficient the algorithm. Fig.5 shows that the computational

cost of GDS-WOA in this paper is less than COA, VCS, and

HFPSO, but more than IWOA, WOA, GWO, and CoBiDE.

However, the ranks based on convergence accuracy of IWOA,

WOA, GWO and CoBiDE are inferior to the other four

algorithms. In addition, GDS-WOA has a faster convergence

speed according to the convergence graphs, which means that

it can get a better solution in solving a problem with a lim-

itation of FEmax to meet real-time requirements. From what
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FIGURE 4. Box diagrams of solutions obtained by eight algorithms on 12 benchmark functions with 51 independent runs.

FIGURE 5. Ranks of mean computational time of algorithms.

has been analyzed above, we can conclude that GDS-WOA

is superior to the comparison algorithms in both convergence

accuracy and efficiency on the CEC 2014 test suite with 30D,

although the computational cost of GDS-WOA is high.

IV. UCAVs TASK ALLOCATION USING GDS-WOA

The ultimate purpose of the proposed GDS-WOA is to

solve optimization problems of engineering. In this section,

we employ GDS-WOA to solve the heterogeneous multi-

unmanned combat aircraft vehicles (UCAVs) task allocation

problem. UCAV is an airborne unmanned combat system

that has been developed by various military powers in the

world and which can carry out various combat tasks such as

air defense suppression, ground strike, air combat and intel-

ligence reconnaissance. The UCAVs formation cooperative

operation task allocation is the key technology of cooperative

operation.

Recently, scholars have proposed a variety of task alloca-

tion models which are widely used, including mixed integer

linear programming model (MILP) [42], multi-trip sales-

man problem model (MTSP) [43], vehicle routing prob-

lem model (VRP) [44] and Network Flow optimization

model [45]. Based on these general models, scholars have

established specific models for different operational back-

grounds. Grøtli and Johansen [46] used the mixed integer

linear programming model to deal with the task allocation

problem of UAV, which could guarantee the global optimal

allocation results, but it has poor real-time and weak appli-

cauility in large-scale task allocation problem. Wu et al. [47]

developed a distributed heterogeneous UAVs task allocation

model based on the constraints and uncertainties in com-

bat tasks, and proposed an algorithm based on the consis-

tency algorithm and online collaboration strategy to solve the

model. The method can obtain the feasible solution within
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TABLE 5. Running time (second) of eight algorithms in CEC 2014 test with 30D.

the acceptable time. Based on an analysis of key technical

and tactical indicators of task allocation problems, Zhong

et al. [48] established a task allocation model for UCAV

under the constraints of manned combat aerial vehicle con-

trol, and a multi-group ant colony algorithm is adopted to

solve the model. Kurdi et al. [49] proposed an automatic bio-

inspired method for multi-UAV dynamic task allocation. The

task allocation results are dynamically adjusted based on the

operational status of each UAV and task parameters without

direct communication between UAVs, which shows that the

method has certain scalability in task allocation of different

scales. In view of the low efficiency and unreasonable results

of traditional contract network, Li et al. [50] proposed a

multi-AUV (autonomous underwater vehicle) task allocation

strategy based on improved contract network by introducing

the token ring network and task load rate indicators. The

novel method had improved the overall task allocation effi-

ciency and obtained a reasonable allocation scheme. Huang

and Zhuo [51] firstly established a multi-UCAV cooperative

combat model with collaborative decision-making and con-

trol. Then, the task allocation model was established based

on the flight characteristics of UCAV and the constraints

of the battlefield environment. The model was solved by

different algorithm according to the battlefield environment,

which could satisfy the demand of the cooperative oper-

ation to a certain degree. Huang et al. [52] proposed a

multi-type UAVs cooperative task allocation model based on

cross-entropy, taking the types of UAVs and the resources

constraint into account, and the author revealed that the pro-

posed model has the advantage of solving large-scale task

allocation problems. In the context of multi-UAVs perform-

ing search and rescue tasks, Miao et al. [53] established a

dynamic task allocation model considering the conditions

of detecting new targets, UAV destroyed and sudden threat

source. And the model was solved by a distributed immune

multi-agent algorithm. In the context of performing col-

laborative attack tasks, Nie-Qiang et al. [54] proposed a

multi-UCAV cooperative task allocation algorithm based on

immune evolutionary computation. However, the task alloca-

tion model used was too simple to meet actual operational

needs. Xu et al. [55] established an extended mixed inte-

ger linear programming (MILP) task assignment model and

used an improved co-evolutionary genetic algorithm to solve

the model.

However, most of the researches about task allocation of

UCAV discussed above do not take some factors into account,

such as the UCAV platform characteristics, task types and

other attribute differences. The UCAVs task allocation model

is usually assumed that UCAVs and tasks have the same

characteristics. Multi-UCAV collaboration operation based

on the models is just a linear addition of multiple UCAV,

and it is difficult to achieve the operational effectiveness

values of 1 + 1 > 2. In addition, the attributes of the

targets are different which have different requirements of the

UCAV. Thus, the formation of UCAV with different func-

tions and characteristics is often required to carry out the

110148 VOLUME 7, 2019



Y. Li et al.: Adaptive WOA Using GDSs and Its Application in Heterogeneous UCAVs Task Allocation

corresponding combat tasks more efficiently. Therefore, to

improve the operational effectiveness value of UCAV forma-

tion executing a variety of combat tasks, this paper proposes

the heterogeneous multi-UCAV task allocation model, and

the GDS-WOA is used to solve it.

A. PROPOSED UCAVs TASK ALLOCATION MODEL

To maximize the operational effectiveness value of UCAV

formation, the heterogeneous UCAV formation consists of

several UCAV with different kinds of task loads according

to platform differences. The UCAV with different task loads

focus on executing the different type combat tasks in the

operation process, which could realize the overall operational

effectiveness value of UCAV formation with 1+1 > 2 under

the constraints of limited loads in a single UCAV.

In this paper, we assume that the operational tasks need

to be performed by heterogeneous UCAV formation only

include three types: reconnaissance, attack, and evaluation.

The formation of heterogeneous UCAVs is U = {U1, U2,

U3, UNu}, where Nu is the UCAV number in the formation.

And the task set is T = {Tl,T2,T3, TNt }, where Nt is the

task number. The goal of task allocation is to maximize the

operational effectiveness value (OE) of the UCAV forma-

tion. Based on the task allocation model used in [48], [52],

[54], [56], this paper proposes the following heterogeneous

UCAV task allocation model considering the actual opera-

tional factors.

Definition 1: The operational effectiveness value of the

ith UCAV performing the jth task is equal to the reward of

performing the task divided by the cost of performing the

task.

OEi(Tj) = Rewardi(Tj)/Costi(Tj) (21)

where OEi(Tj), Rewardi(Tj), Costi(Tj) are the operational

effectiveness value, reward, and cost of the ith UCAV per-

forming the jth task respectively.

1) UCAVs PERFORM TASK REWARD

Factors associated with the value of Reward include the value

of the task, the complete capability of the UCAV performing

the task, and the defensive ability of the task. The value of a

task is usually determined by the chief operating officer based

on the pre-acquired intelligence, and it could be dynamically

adjusted in real-time according to the change of operational

intent and tactics in the operational process. The defensive

ability of a task is obtained by analyzing and quantifying

the task information obtained by the pre-reconnaissance. The

complete capability of the UCAV to perform a different type

of task is quantified by the platform performance of the

UCAV and the type of the task load carried, which is usually

described in the form of probability according to operational

statistics of related tasks in the past.

Definition 2: The Reward is proportional to the com-

plete capability of the UCAV and the value of the task, and

inversely proportional to the task defense capability.

Rewardi(Tj) = Value(Tj) · Pi(Tj)/Defense(Tj) (22)

where Value (Tj) andDefence (Tj) are the value and defensive

ability of the jth task; Pi(Tj) is the complete capability of the

ith UCAV performing the jth task.

The task reward of the entire UCAV formation is as

follows:

Reward =

Nu
∑

i=1

Nt
∑

j=1

xij · Rewardi(Tj) (23)

where xij ∈ {0, 1} is the decision variable, xij = 0 indicates

that the ith UCAV does not perform the jth task and xij = 1

represents that the ith UCAV performs the jth task.

2) UCAVs PERFORM TASK COST

UCAVs are at the risk of being attacked or destroyed by

enemy defense systems when performing tasks in the oper-

ational area. To reduce the probability of UCAVs being

destroyed, the time of UCAVs in the combat area should be

reduced, that is, the track length should be minimized. At the

same time, the attack ability of the task and the defensive

ability of UCAV should be considered in task allocation.

Therefore, the cost of UCAVs executing tasks in this model

includes the track length cost and the loss cost. Since the size

of track length cost and the loss cost are different, the value

needs to be normalized.

The Euclidean distance between the ith UCAV and the

jth task can be expressed as:

DisUTij=

√

(posx(Ui)−posx(Ti))2+(posy(Ui)−posy(Ti))2

(24)

The Euclidean distance between the ith task and the jth task

can be expressed as:

DisTTij=

√

(posx(Ti)−posx(Tj))2+(posy(Ti)−posy(Tj))2

(25)

where pos(Ui) = (posx(Ui)posy(Ui)) is the coordinate of the

ith UCAV; pos(Ti) = (posx(Ti)posy(Ti)) is the coordinate of

the ith task; pos(Tj) = (posx(Tj)posy(Tj)) is the coordinate

of the jth task. In order to avoid repeated calculation in the

optimization process, the distance matrix is constructed to

store the Euclidean distance between the UCAV and the

target, the task target and the task target.

Distance =





















DisUT1,1 · · · DisUT1,Nt
...

. . .
...

DisUTNu,1 · · · DisUTNu,Nt
DisTT1,1 · · · DisTT1,Nt

...
. . .

...

DisTTNt,1 · · · DisTTNt,Nt





















(26)

Normalizing the distance matrix is as follow:

Distance = Distance/Distancemax (27)
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where Distancemax represents the maximum element in

Distance.

In summary, the track length of the ith UCAV performing

all assigned tasks and safely returning to the starting point can

be expressed as:

Lengthi =

N
∑

n=0

Length(i)n,n+1 (28)

where N is the task number that the ith UCAV needs to

perform; Length(i)0,1 is the track length from the ith UCAV

position to the first executed task position; Length(i)N ,N+1 is

the track length of the ith UCAV returning to the base after

performing the last task and Length (i)n,n+1(n 6= 0,N) is the

distance between the nth task and the n+ 1th task.

The loss cost refers to the risk that the UCAV is attacked or

destroyed by the enemy defense systems during the execution

of tasks. It is related to the value of the UCAV, the defense

ability of the UCAV, and the attack capability of the task.

Definition 3: The loss cost of the UCAV performing the

task is equal to the attack capability of the task divided by the

defense ability of the UCAV and multiplied by the value of

the UCAV.

LossCostij = Value(Ui) · Attack(Tj)/Defense(Ui) (29)

where LossCostij is the loss cost of the i
th UCAV performing

the jth task; Value (Ui) is the value of the i
th UCAV; Attack(Tj)

is the attack capability of the jth task and Defence (Ui) is the

defense ability of the ith UCAV.

Considering the terrain fluctuation, take-off climb, bat-

tlefield threat avoidance, and other factors, the actual flight

path cannot be a straight line. To simplify the task allocation

model, the track length redundancy factor λ is introduced,

and λ takes the value range of [1.3, 2] according to the battle-

field complexity. In summary, the UCAV formation executing

tasks cost can be expressed as follows:

Cost = ω1 ·

Nu
∑

i=1

λ · Lengthi+ω2 ·

Nu
∑

i=1

Nt
∑

j=1

xij ·
LossCostij

LossCostmax

(30)

where LostCostmax is the maximum loss value of a UCAV

performing a task; ω1 and ω2 are the weight factor of Discost

and LostCost respectively.

The task allocation problem of heterogeneous UCAVs is

an optimization problem under multiple constraints. In order

to simplify the problem and obtain higher solving efficiency,

the constraint condition is introduced to the objective function

in the form of punishment function Pu. Thus, the constrained

optimization problem is transformed into unconstrained opti-

mization problem for solving. In summary, the heterogeneous

UCAV task allocation model is as follows:

max OE = Reward/Cost − δ · Pu (31)

Pu =

{

0, results satisfy the constrains

1, results does not satisfy the constrains

(32)

s.t

Nu
∑

i=1

xij = 1, ∀j = 1, 2, . . . ,Nt (33)

Nu
∑

i=1

Nt
∑

j=1

xij = Nt (34)

Nt
∑

j=1

xij ≤ Loadi, ∀i = 1, 2, . . . ,Nu (35)

λ · Lengthi≤L(i)max , ∀i=1, 2, . . . ,Nu (36)

where δ is the penalty function scale factor, Loadi is the

maximum number of tasks performed by the ith UCAV and

L(i)max is the maximum flight distance of the ith UCAV.

(33) means that each task can only be executed by one UCAV;

(34) means that all tasks are executed by UCAV formation;

(35) means that the number of tasks assigned to UCAV cannot

exceed its maximum executable tasks number; (36) means

that the track length of all tasks performed by UCAV shall

not exceed the maximum flight distance.

B. TASK ALLOCATION CODING

The whale optimization algorithm can be directly applied

to continuous optimization problems, but the task alloca-

tion problem is a typical mixed integer linear programming

problem, and the decision variables are discrete. Therefore,

we must define the appropriate encoding to map the agent

position to the task allocation result. In this paper, the map-

ping relationship between the agent position and the task

allocation result is established based on the coding method of

real vector. The mapping relationship is defined as follows:

1). The dimension of the problem is the task number, and the

dimension subscript of the agent corresponds to the task sub-

script; 2). The search space of the solution is (0, Nu); 3). The

value, rounding the elements of the agent position to the

nearest integers greater than or equal to it, correspond to

the subscript of UCAV, and the first decimal part of the

agent position corresponds to the order in which the UCAV

performs tasks in ascending order.

For a clearer description of the mapping relationship,

we take three UCAVs performing eight tasks as an example.

In the example, the problem dimension is eight, the agent

search range is (0, 3), and the mapping relationship is as

shown in Table 6.

V. TASK ALLOCATION RESULTS AND ANALYSIS

A. SIMULATION CONDITION

In order to verify the rationality of the heterogeneous UCAV

task allocation model proposed in this paper, we program

based on MATLAB 2013a and perform simulation experi-

ments on a computer with the Intel(R)Core(TM) i7- 4770K

CPU@3.50GHz 8GB RAM. The model is solved using

IWOA, WOA, COA, VCS, CoBiDE, HFPSO, GWO and

GDS-WOA, respectively. The parameters of the model are

set as: the range of operational task space is 100km×100km,

λ = 1.3, ω1 = 0.5, ω2 = 0.5, δ = 5,L(i) = 600km
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TABLE 6. The mapping relationship of task allocation coding.

TABLE 7. Heterogeneous UCAVs information in case 1.

TABLE 8. Tasks information in case 1.

(i = 1, 2, 3, 4), Loadi = 3(i = 1, 2, 3, 4). To simplify the

task allocation model, the heterogeneity between UCAVs is

reflected in the complete ability to perform different types of

tasks. There are two cases with different number of UCAVs

and tasks as the operational background.

In case 1, there is a UCAV formation with three UCAVs

which needs to perform eight tasks. The information of

UCAVs and tasks are shown as Table 7 and Table 8. The

parameters of algorithms are set as follows: dim = 8,

the agent search space is (0, 3), SN = 10,FEmax = 1000.

In case 2, there is a UCAV formation with 10 UCAVs

which needs to perform 25 tasks. The information of UCAVs

and tasks added to case 2 based on case 1 are shown as

Table 9 and Table 10. The parameters of algorithms are set

as follows: dim = 25, the agent search space is (0, 8),

SN = 10,FEmax = 2000. The relative positions of UCAVs

and tasks in case 1 and case 2 are shown in Fig.6 and

Fig.7 respectively. Compared to case 1, case 2 has a higher

dimension and wider search range which can test the scalabil-

ity of the algorithm when dealing with different dimensional

problems.

TABLE 9. UCAVs information added to case 2 based on case 1.

FIGURE 6. Relative positions of UCAVs and tasks in case 1.

B. SIMULATION RESULTS AND ANALYSIS

To avoid the contingency of experimental results, eight algo-

rithms are executed 10 times independently in solving two

cases based on the UCAV task allocation model. The results
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TABLE 10. Tasks information added to case 2 based on case 1.

FIGURE 7. Relative positions of UCAVs and tasks in case 2.

of case 1 and case 2, consisting of operational effectiveness

values (OE), running time/s, the value of Pu and the prob-

ability of obtaining feasible solutions (P) of algorithms, are

shown in Table 11 and Table 13 respectively. It is noted that

the ‘‘MFS’’ in Table 11 and Table 13 means the mean value

of the solutions.

According to Table 11, all eight algorithms can obtain

feasible solutions 100% that satisfy the constraints in solv-

ing case 1, which proves the validity and rationality of the

heterogeneous UCAV task allocation model proposed in this

paper. The average operational effectiveness values obtained

by IWOA, WOA, COA, VCS, CoBiDE, HFPSO, GWO,

and GDS-WOA are 1.3855, 1.4629, 1.5122, 1.5144, 1.5187,

1.4806, 1.4979 and 1.5388 respectively. It is easy to see that

the performance of GDS-WOA is better than the other seven

TABLE 11. Task allocation results in case 1.

comparison algorithms when dealing with case 1 based on

our proposed task allocation model.

Fig.8 shows the convergence curves of mean OE val-

ues of 10 task allocation results. The results indicate that

GDS-WOA has a faster convergence speed. Fig.9 shows the

running time of eight algorithms for solving the task alloca-

tion model 10 times in case 1 and Fig.10 is a box diagram

of the operational effectiveness values obtained by the eight

algorithms in Table 11. We have found that the results of

GDS-WOA are more concentrated, so GDS-WOA is more

stable when solving the problem. Overall, the operational

effectiveness value of the task allocation results obtained by

GDS-WOA is better than the comparison algorithms, but
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FIGURE 8. Convergence curves of mean OE values in case 1.

FIGURE 9. Running time in case 1.

FIGURE 10. Box diagram of OE values in case 1.

the computational cost is worse than IWOA, WOA, HFPSO

and GWO.

In order to compress the length of the paper, this paper only

lists the detailed allocation results and task execution order

of 3 better results in 10 times in case 1, which are shown

FIGURE 11. Optimal results obtained by IWOA.

FIGURE 12. Optimal results obtained by WOA.

FIGURE 13. Optimal results obtained by COA.

in Table 12. For a more intuitive representation of task alloca-

tion results, Fig. 11 to Fig. 18 show the task execution track

maps with the highest operational effectiveness value corre-

sponding to IWOA, WOA, COA, VCS, CoBiDE, HFPSO,

GWO and GDS-WOA in Table 12 respectively. In summary,

the task allocation results obtained by GDS-WOA are better
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FIGURE 14. Optimal results obtained by VCS.

FIGURE 15. Optimal results obtained by CoBiDE.

FIGURE 16. Optimal results obtained by HFPSO.

than the other seven comparison algorithms, which is consis-

tent with the actual operational principles.

According to Table 13, when the algorithms solve the

case 2 with 10 independent runs, only the solutions obtained

by COA, CoBiDE and GDS-WOA are all feasible solutions.

The success rates of VCS and GWO for feasible solutions are

80% and 90% respectively. What is worse is that the success

FIGURE 17. Optimal results obtained by GWO.

FIGURE 18. Optimal results obtained by GDS-WOA.

TABLE 12. Detail results of task allocation in case 1.

rate of IWOA,WOA and HFPSO obtaining feasible solutions

are only 10%, 10%, and 30% respectively. These results

prove that GDS-WOA is also more robust when dealing
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TABLE 13. Results of task allocation in case 2.

with higher-dimensional task allocation problems. The aver-

age operational effectiveness value obtained by GDS-WOA

is better than the compared algorithms, which proves the

excellent optimization performance of GDS-WOA in solving

complex constrained optimization problems. The detailed

allocation results and task execution orders of 3 better results

in 10 times in case 2 are shown in Table 14.

Fig.19 and Fig.20 show the convergence curves of mean

OE values of 10 task allocation results and the running

time of the eight algorithms for solving the task allocation

model in case 2. The task allocation results obtained by

GDS-WOA has faster convergence speed and higher opera-

tional effectiveness value than the comparison algorithms, but

the computational cost is worse than IWOA,WOA, CoBiDE,

FIGURE 19. Convergence curves of mean OE values in case 2.

FIGURE 20. Computational costs in case 2.

FIGURE 21. Box diagrams of OE values in case 2.

HFPSO, and GWO. Fig.21 is a box diagram of the opera-

tional effectiveness values obtained by the eight algorithms

in Table 12. According to Fig.21, we have found that the
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TABLE 14. Detail results of task allocation in case 2.

results of GDS-WOA are more concentrated and no outlier,

so GDS-WOA is still more stable when solving case 2.

It is noted that although GDS-WOA is superior to the com-

parison algorithms in obtaining the operational effectiveness

values of the solution, the time cost is sacrificed. Nowadays,

the real-time task allocation usually adopts rolling time-

domain method, and the time window is set to one second

which could meet the actual demand. In contrast, the running

time of the algorithm is on the microsecond level. Therefore,

GDS-WOA sacrifices a certain computational cost to obtain

greater operational effectiveness value, which has practical

significance for improving the operational effectiveness value

of heterogeneous UCAV formation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an adaptive WOA variant based on

Gaussian distribution strategies. Our proposed GDS-WOA is

evaluated based on CEC 2014 test suite compared with its

variant and other five state-of-the-art competitive algorithms

from different communities. The results show the superior

performance of GDS-WOA in terms of the solution accuracy

and stability.

Taking the factors affecting task allocation in actual com-

bat into consideration, this paper constructs the heteroge-

neous UCAV collaborative operation task allocation model

based on previous research, and GDS-WOA is applied

to solve the problem. The simulation results demonstrate

GDS-WOA is better than the other compared algorithms in

terms of stability and operational effectiveness value. For the

small-scale task allocation problem, all eight algorithms can

obtain feasible solutions 100%, which verifies the validity

of the established model. However, for a large-scale task

allocation problem, only COA, CoBiDE, and GDS-WOA

can obtain feasible solutions 100%. Moreover, GDS-WOA

is able to obtain higher operational effectiveness values

than the comparison algorithms when solving both large-

scale and small-scale task allocation problems, showing that

GDS-WOA outperforms to the compared algorithms.

Our proposed GDS-WOA has shown the superior per-

formance when dealing with constrained and unconstrained

problems. However, while improving the performance of the

GDS-WOA, it sacrifices computational cost to some extent.

In the next study, we will work to reduce the computa-

tional cost by optimizing the algorithm architecture and apply

the improved strategies in this paper to other optimization

algorithms.
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