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Abstract

A high-throughput low-latency digitalfinite impulse re-
sponse(FIR) filter has been designed for use inpartial-
response maximum-likelihood(PRML) read channels of
modern disk drives. The filter is a hybrid synchronous-
asynchronous design. The speed critical portion of the filter
is designed as a high-performance asynchronous pipeline,
sandwiched between synchronous input and output por-
tions, making it possible for the entire filter to be dropped
into a clocked environment. A novel feature of the filter is
that the degree of pipelining is dynamically variable, de-
pending upon the input data rate. This feature is critical in
obtaining a very low filter latency throughout the range of
operating frequencies.

The filter was fabricated in a 0.18µ CMOS process. Re-
sulting chips were fully functional over a wide range of sup-
ply voltages, and exhibited throughputs of over 1.3 Giga
items/second, and latencies as low as four clock cycles. The
internal asynchronous pipeline was estimated to be capa-
ble of significantly higher throughputs, around 1.8 Giga
items/second. With these performance metrics, the filter has
better performance than that reported for existing digital
read channel filters.

1. Introduction
This paper presents the design of a high-speed pipelined
digital filter chip. The chip is partly asynchronous and
partly clocked. The speed-critical portion of the filter is im-
plemented as an asynchronous pipeline, and the remainder,
which is clocked, acts as the pipeline’s environment.

A novel feature of the filter is that the degree of pipelin-
ing is dynamically variable,depending upon the rate of ar-
rival of input data. In particular, from the viewpoint of
the synchronous input and output environments, the asyn-
chronous pipelined portion, which consists of nine pipeline
stages, can naturally provide varying depths of pipelining
by varying the number of data items present in the pipeline.
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At the lowest input rates, the asynchronous pipeline behaves
similar to a block of flow-through combinational logic, with
a latency of only a single clock cycle. As the input rate
is increased, the behavior progressively changes to that of
a pipeline that is one, two or more stages deep, with a
corresponding latency of one, two or more clock cycles.
This behavior is intrinsic to the asynchronous nature of the
pipeline; no architectural modifications are needed. The
advantage of this “adaptive pipelining” feature is that the
chip naturally handles slow synchronous environments with
a low latency penalty (in terms of number of clock cy-
cles), yet can still accommodate fast synchronous environ-
ments as a highly-pipelined design. This adaptive nature
was the main motivation for pursuing a mixed synchronous-
asynchronous approach for the design of the filter. In con-
trast, a comparable fully clocked pipeline would be limited
to a fixed pipelining depth, with a latency of nine clock cy-
cles, irrespective of the input rate.

The filter is a real-world design intended for use in disk
drive read channels [15]. The magnetic data that is picked
up by the read head suffers from intersymbol interference,
i.e., adjacent bits of data overlap each other due to disper-
sion of the read pulses. This interference can be partially re-
moved by passing the input stream through the filter, a pro-
cess known as equalization. The filter output is then passed
through a partial-response maximum-likelihood (PRML)
detector [5, 2], which looks at a finite history of inputs to
compute the likelihood of the current input being a “1” or a
“0.” The filter itself belongs to a larger category called finite
impulse response (FIR) filters [7].

The design of the filter chip is an interesting case study
for several reasons. First, the chip has two distinct timing
domains, one clocked and the other asynchronous. Second,
the filter pipeline uses a mix of static and dynamic logic
function blocks: the asynchronous domain uses dynamic
blocks, and the clocked one uses static logic. Also, as a real-
world case study, the design exhibits a highly-varied datap-
ath, ranging from 30 to 216 wires in width at varying points
in the pipeline. Finally, as mentioned above, the depth of
pipelining dynamically adapts to the input data rate.

The pipeline style used for the asynchronous portion of
the filter is the high-capacity pipeline (HC) style introduced



in [12]. This style is for dynamic logic implementations,
and provides the benefits of high throughput, low latency,
and a 100% storage capacity (i.e., each stage can hold a
distinct data item). Several other high-speed asynchronous
pipeline styles have been proposed recently [10, 14, 13],
but each of these has disadvantages compared toHC. The
pipelines of [10, 14] have the drawback of more complex
timing constraints, requiring aggressive circuit techniques
and much designer effort.HC pipelines, on the other hand,
have much simpler implementation and less stringent tim-
ing requirements. The pipelines of [13], although compara-
ble toHC in performance and ease of design, have only half
the storage capacity.

The filter was fabricated in IBM’s 0.18µ CMOS-7SF
process. Resulting chips were fully functional over a range
of supply voltages, and had throughputs of up to 1.32 Giga
items/second. Interestingly, the filter throughput was lim-
ited by the synchronous portion of the chip; the asyn-
chronous pipeline was actually capable of around 1.8 Giga
items/second throughput. The fastest existing digital read
channel filter, by Rylov et al. [9], has a peak throughput of
2.3 Giga items/second, in the same silicon process. How-
ever, the filter of [9] is a “half-rate” design,i.e., it consists
of two pipelines in parallel, each having a peak throughput
of 1.15 Giga items/second. Therefore, the filter chip of this
paper is effectively 15% faster than the fastest existing filter
reported. However, the main novelty of the new filter is the
dynamically variable pipeline depth, and, hence, a variable
latency (as measured in clock cycles), which can adapt to
varying input data rates.

The remainder of this paper is organized as follows. Sec-
tion 2 gives background on read channel filters, and on high-
capacity pipelines. Section 3 gives an overview of the filter
architecture, and then Section 4 presents the detailed imple-
mentation. Section 5 discusses the operation of the filter,
focusing on the adaptive pipelining feature. Performance
analysis is provided in Section 6, and measurements of chip
performance are given in Section 7. Finally, Section 8 gives
conclusions.

2. Background
This section first provides background on read channel
FIR filters, and then reviews the high-capacity (HC) asyn-
chronous pipeline style.

2.1. Read Channel FIR Filters

Read channel filters are used in all magnetic and optical disk
drives. The function of a read channel filter is to take the
noisy data picked up by the read head, and turn it into a
clean stream of “0” and “1” symbols. With ever-increasing
data rates available from magnetic and optical media, high-
speed read channel filters have become key to the design
of modern disk drives. This subsection reviews the theory
and implementation of commonly-used digital read channel
filters.

2.1.1. Theory
A read channel filter belongs to the category of finite im-
pulse response (FIR) filters [7]. In a digital FIR filter, the
output at any given time,Y (k), is a weighted sum of thep
most recent inputs,X(k), X(k − 1), X(k − 2) . . . X(k −
p + 1):

Y (k) =
∑

0≤i<p−1

wi · X(k − i) (1)

where w0, w1, w2 . . . wp−1 are the constant weights by
which the inputs are weighted. Such a filter, withp weights,
is said to be a “p-tap” filter. Each of the terms,wi ·X(k−i),
is called a “partial sum.”

2.1.2. Implementation: Distributed Arithmetic Style
Several implementations of a read channel filter are possi-
ble. For example, one could use one or more multiplier units
to compute each of the product terms, and then use one or
more adders to produce the final result.

A particular approach that is very well-suited for a high
performance implementation is thedistributed arithmetic
architecture [8]. This approach does not use multiplier
units. Instead, partial sums are precomputed and stored in a
lookup table, indexed by the input data values. As a result,
each multiplication can be performed quite fast, frequently
in a single clock cycle.

Several techniques are used to keep the size of the lookup
table manageable. First, the entire multiplication operation
is bit-sliced. Second, within each bit slice, the input val-
ues are separated into two groups, one containing only the
even-indexed values and the other only odd-indexed values,
with each group having its own distinct lookup table. Fi-
nally, a particular data representation style is used which
introduces symmetry into the lookup table, further reducing
the amount of storage needed. Each of these techniques is
now discussed in detail.

Bit Slicing. Suppose each input value hasb bits. The ex-
pression of Equation 1 can be evaluated separately for each
bit position in the input stream, and then theb individual
results can be appropriately aligned and added together, to
produce the same result as would be obtained if the compu-
tation of Equation 1 were performed directly with theb-bit
inputs.

As a further optimization, the result of this entire expres-
sion can be precomputed and stored in a lookup table. The
p most recent input values for that particular bit position
form ap-bit word that is used as the address to access the
table. Each lookup table will therefore have2p entries. For
a 10-tap filter, this corresponds to a table with 1024 entries.

Partitioning. The size of the lookup table can be sig-
nificantly reduced by partitioning the inputs into even- and
odd-indexed groups. That is, starting with the current in-
put, every other input belongs to the “even group,” and the
remaining inputs belong to the “odd group.” The even and
odd groups have their own lookup tables. Therefore, for
a 10-tap filter, there are two lookup tables, each having a
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Figure 1. Block diagram of an HC pipeline

5-bit address word and only 32 entries. This represents a
dramatic reduction in the size of memory required, from
one 1024 entry table, to two 32 entry tables. However, there
is a slight tradeoff: twice the number of partial sums are
generated, requiring an additional adder stage to combine
them.

Exploiting Symmetry.To further reduce the table size in
half, a data representation scheme is used that makes the ta-
ble symmetric. In particular, thesigned-digit offset binary
notation[8] is used, in which the symbols “0” and “1” stand
for negative and positive exponents of 2. For example, in
this notation, the 4-bit number “1001” stands for the value
8 − 4 − 2 + 1 = 3. The advantage of this representation is
that arithmetic negation is simply achieved by complement-
ing each bit: “0110” stands for the value−3. An interesting
feature of the filter equation (Equation 1) is that, if all the
inputs are negated, the filter output is also negated. Con-
sequently, when this representation is used, if two address
words for the lookup table are bit-wise complements of each
other, then the corresponding table entries will also be bit-
wise complements of each other. Exploiting this symmetry,
half of the table can be discarded.

2.2. High-Capacity Asynchronous Pipelines
This subsection reviews the pipelining approach adapted
for the asynchronous portion of the filter chip. A class
of pipelines, calledhigh-capacity(HC), is used, which are
targeted to dynamic logic implementations [12]. They are
based on a novel protocol that maximizes the pipeline stor-
age capacity by allowing every dynamic stage to hold a
distinct data item. In contrast, in traditional latch-free
asynchronous dynamic pipelines (e.g., [18, 13]), alternat-
ing stages usually must contain “spacers,” or “reset tokens,”
limiting the pipeline capacity to 50%.

The key idea in theHC approach is one ofdecou-
pled control: the pull-up and pull-down of the dynamic
gates are made separately controllable. Therefore, the
precharge and evaluate controls can both be simultaneously
de-asserted, allowing the gate to enter a special “isolate
phase”—between “evaluation” and “precharge”—in which

its output is protected from further input changes. As a re-
sult, every pipeline stage can store a distinct data item, pro-
viding the capability of supporting 100% storage capacity.
In addition, the decoupled control leads to increased over-
all pipeline concurrency which in turn directly results in a
significantly increased throughput.

2.2.1. Structure
Figure 1 shows a simple block diagram of anHC pipeline.
Each stage consists of three components: afunction block,a
completion generatorand astage controller.In steady-state
operation, the function block alternately produces data to-
kens and reset spacers for the next stage, and its completion
generator indicates completion of the stage’s evaluation or
precharge. The third component, the stage controller, gen-
erates the decoupled control signals—pc andeval—which
control the function block and the completion generator.

HC pipelines use a single-rail bundled datapath [11, 1].
A control signal,Req, indicates arrival of new inputs to a
stage. A high value ofReqindicates the arrival of new data:
the previous stage has completed evaluation. A lowReqin-
dicates the arrival of a spacer: the previous stage has com-
pleted precharge. For correct operation, a simple timing
constraint must be satisfied:Reqmust arrive after the data
inputs to the stage are stable and valid. This requirement is
met by inserting a “matched delay” which is greater than or
equal to the worst-case delay through the function block.

Function Block. Figure 2 shows one gate of a dynamic
function block in a pipeline stage. In general, for a multiple
output function block, there will be one such dynamic gate
for each output.1 Thepc input controls the pull-up network
and theeval input controls the “foot” of the pull-down net-
work. Precharge occurs whenpc is asserted low andeval
is de-asserted low. Evaluation occurs wheneval is asserted
high andpc is de-asserted high. InHC pipelines, the two
control signals,pcandeval, are separately generated and are
decoupled. Therefore, when both signals are de-asserted,
the gate output is effectively isolated from the gate inputs;

1For complex logic, where a single dynamic gate would be too large
and slow, decomposition into a multi-level monotonic network is used.
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thus, it enters the “isolate phase.” To avoid a short circuit,
pcandevalare never simultaneously asserted.

Completion Generator. An asymmetric C-element,
aC [3], is used as a completion generator. TheaC’s out-
put,Done, is set when the stage hasbegun to evaluate, i.e.,
when two conditions occur: the stage has entered its evalu-
ate phase (evalis high), and the previous stage has supplied
valid data input (completion signalReqof previous stage is
high). Done is reset simply when the stage is enabled to
precharge (pcasserted low).

The aC element output is fed through the matched de-
lay, which (when combined with the completion genera-
tor) matches the worst-case path through the function block.
Note that, for extremely fine-grain or “gate-level” pipelines,
the matched delay is oftenunnecessary:theaC delay itself
often already matches the function block delay, so no addi-
tional matched delay is required.

Finally, the completion signal in turn is fed to three
components: (i) the previous stage’s controller, indicating
the current stage’s state, (ii) the current stage’s controller
(through the matched delay), and (iii) the next stage’s com-
pletion generator (also through the matched delay).

Stage Controller.The stage controller produces the con-
trol signals for the function block and the completion gen-
erator. It receives two inputs—the delayedDoneof the cur-
rent stage,S, and theDoneof the next stage,T—and pro-
duces the two decoupled control signals,pc andeval. De-
tails of the stage controller’s implementation will be dis-
cussed shortly, after presenting the desired protocol.

2.2.2. Protocol

An HC pipeline stage simply cycles through three phases, as
shown in Figure 3. After it completes its evaluate phase, it
then enters its isolate phase and subsequently its precharge
phase. As soon as precharge is complete, it re-enters the
evaluate phase again, completing the cycle.

The novelty of the approach is seen in the protocol which
governs the interaction between stages. Unlike nearly all
other pipeline approaches,HC has only one explicit syn-
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Figure 3. HC pipelines: Operation of, and syn-
chronization between, adjacent stages

chronization pointbetween stages. Once a stageN + 1 has
completed its evaluate phase, it enables the previous stage
N to perform itsentire next cycle:precharge, isolate, and
evaluate new data item. In contrast, the dynamic pipelines
of [18, 13] use two explicit synchronization points between
adjacent stages: one to enable the start of evaluation, and
another to enable the start of precharge. As usual, there
is also one implicit synchronization point: the dependence
of stage’sN + 1’s evaluation on its predecessorN ’s eval-
uation. That is, a stage cannot produce new data until it
has received valid inputs from its predecessor. Both of the
synchronization points are shown by the causality arcs in
Figure 3.

The introduction of the isolate phase is the key to the
new protocol. Once a stage finishes evaluation, it imme-
diately isolates itself from its inputs by a self-resetting op-
erationregardlessof whether this stage is allowed to enter
its precharge phase. As a result, the previous stage can not
only precharge, but even safely evaluate the next data token,
since the current stage will remain isolated.

There are two benefits of this protocol: (a) higher
throughput, since a stageN can evaluate the next data item
even before stageN + 1 has begun to precharge; and (b)
higher capacity for the same reason, since adjacent pipeline
stages are now capable of simultaneously holding distinct
data tokens, without requiring separation by spacers.

2.2.3. Stage Controller Implementation

Figure 4 shows a complete implementation of the stage con-
troller. The implementation is very simple, with the two
outputs—pcandeval—and an internal state variable,ok2pc,
each implemented using a single gate. Figure 5 shows one
complete pipeline stage along with its stage controller.

Note that the generation of theok2pcsignal is designed
to be off of the critical path. While in Figure 4,ok2pcap-
pears to add an extra gate delay to the control path topc,
this is not the case: the protocol allowsok2pcto be set in
“background mode,” so thatok2pcis typically set beforeT
gets asserted. As a result, the critical path topc is only one
gate delay: from inputT through the 3-inputNAND gate,
NAND3, to the outputpc.



T

ok2pc

NAND3pc

INVeval
S

S
T

+

aC

Figure 4. Stage Controller Implementation

2.2.4. Analytical Cycle Time and Latency
A complete cycle of events for stageN can be traced in
Figure 1. From one evaluation byN to the next, the cycle
consists of three operations: (i) stageN evaluates, (ii) stage
N + 1 evaluates, which in turn enables stageN ’s controller
to assert the precharge input (pc=low) of N , (iii) stageN
precharges, the completion of which, passing through stage
N ’s controller, enablesN to evaluate once again (evalas-
serted high).

Let the evaluation and precharge times for a stage be de-
noted bytEval andtPrech, and the delay through the comple-
tion generator bytaC. Then, the delay of step (i) istEval, the
delay of step (ii) istaC + tNAND3, and the delay of step (iii)
is tPrech + tINV. Here, tNAND3 and tINV are the delays
through theNAND3 and the inverter, respectively, of Fig-
ure 4. Thus, the analytical pipeline cycle time is:

T = tEval + tPrech + taC + tNAND3 + tINV (2)

The forward latency through a stage,Lf , is simply the eval-
uation delay of the stage:

Lf = tEval (3)

2.2.5. Timing Constraints
HC pipelines require several one-sided timing constraints for
correct operation.

State Variable. The state variableok2pcgets set once
the current stage has evaluated, and the next stage has
precharged (ST=10). Subsequently,T goes high as a result
of evaluation by the next stage. For correct operation,ok2pc
must complete its rising transition beforeT goes high:

tok2pc↑ ≤ taC + tINV (4)

In practice, this constraint is easily satisfied.
Precharge Width. For correct operation, an adequate

precharge width must be enforced,i.e., once precharge is
asserted for a stage, it should not be de-asserted before that
stage’s precharge is complete. SupposeT just went high for
stage 1. At this point, stage 1’sNAND3 is triggered, thereby
starting the precharge of stage 1 (in Figure 1). Concurrently,
T will be reset after a path through stage 2’s matched de-
lay, stage 3’saC element, stage 2’sNAND3 andaC, thereby
de-asserting the output of stage 1’sNAND3. Therefore, for
correct precharge, the following must hold:

tNAND3+tPrech1 ≤ tdelay2
+taC3+tNAND3+taC2+tNAND3

(5)

evalpc

S T
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Figure 5. An HC pipeline stage: the function
block along with its stage controller

For a general stageN , the constraint can be written as:

tPrechN
≤ tPrechN+1 + taCN+2 + tNAND3 (6)

Note that this timing constraint also gets exported to the left
environment, requiring it to precharge reasonably fast. In
practice, this constraint is easily satisfied as well.

3. Overview of Filter Architecture
Figure 6 shows the top-level architecture of the digital fil-
ter. The filter is a 10-tap 6-bit FIR filter using the distributed
arithmetic architecture [8]. The figure gives a detailed view
of one bit slice; as indicated, there are actually six such bit
slices, stacked on top of each other. Data inputs enter from
the left, and are processed by the filter as they flow to the
right. The filter can be divided into three portions, from
left to right. The leftmost portion is clocked, from the in-
put side to the domino latches. The middle portion, from
the XOR gates to the end of the carry lookahead adder, is
asynchronous. Finally, the rightmost portion, consisting of
an output latch, is again clocked.

The architecture of the filter is best understood by fol-
lowing the flow of data from left to right. As the stream of
data enters the filter, it first passes through a shift register,
which stores the most recent input values that are needed
to compute the filter output. In particular, for ap-tap filter,
for each bit, there is ap-place shift register that stores the
most recent history for that bit. These stored input values
are then multiplied by their respective filter weights. The
multiplication is accomplished very efficiently by fetching
precomputed results from a lookup table. In the figure, the
lookup table is composed of two banks of registers contain-
ing the precomputed results—called even and odd partial
sums—and two output multiplexors. The entire multipli-
cation process is bit-sliced, with one slice for each bit of
the input data. The result of the multiplications is a set of
partial sums which are fed to the asynchronous portion of
the filter pipeline for addition. The asynchronous portion
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is a nine-stage pipeline that adds all of the partial sums to-
gether, and produces the result. Finally, this result is latched
by a clocked latch and output to the right environment.

4. Filter Implementation
The FIR filter implementation is now considered in more
detail. The synchronous and asynchronous portions of the
chip are discussed separately, followed by a discussion of
the interface between the two domains.

4.1. The Synchronous Portion
The synchronous portion of the filter consists of two parts,
one at the input side of the filter, and the other at the output
side.

4.1.1. The Synchronous Input Portion
This part receives the input to the filter. The input stream
consists of data values which are six bits wide. A 10-slot
shift register at the input side of the filter stores the 10 most
recent data values. These stored input values are needed to
compute the current filter output, which is a weighted sum
of these values.

The multiplication of inputs by their respective filter
weights is accomplished very efficiently by precomputing
all possible products and storing them into a lookup table.
The entire multiplication is bit-sliced, with one slice for
each of the six bits in the input data. Therefore, within each
bit slice, there are 10 input bits which together form a 10-bit
address for accessing the lookup table.

The size of the lookup table is reduced by employing
two techniques, as discussed in Section 2.1. First, partition-
ing is used: the 10-bit address is divided into two 5-bit ad-
dresses, one composed of only the even-index bits, and the
other composed of the odd-index bits. Each of these two
addresses has a distinct lookup table associated with it, as
shown in Figure 6. To understand the filter operation with

a partitioned lookup table, consider a simulation of partial
sum lookup. The 10-bit pattern (after passing through the
decoder unit) is used to generate separate groups of even-
and odd-indexed bits. In particular, only the five even bits
are used; they are forked to the even multiplexor as its select
bits, and also to a clocked register where, after one clock
cycle delay, they become the odd-index select bits to the
bottom multiplexor, for the next clock cycle. Appropriate
entries in the even and odd lookup tables are then selected
and sent to the domino latches.

Finally, a second optimization is used: asigned-digit off-
set binary notation[8] is used to represent table entries and
addresses, which enables the separation of the sign-bit from
each address, further shortening the addresses to 4-bit words
(see Section 2.1). As a result, the table size is dramatically
reduced: two tables with only 16 (= 24) entries each are
needed, as opposed to one table with 1024 (= 210) entries.

The lookup tables are implemented using registers and
multiplexors, as shown in Figure 6. Each table has 16 reg-
isters, each of which can store an 8-bit entry, per bit slice.
Each of the tables has a 16:1 multiplexor at its output, con-
trolled by the 4-bit address word.2 The odd-index address
word is generated from the even-index address word by de-
laying it by one clock cycle.

The result of the multiplication is a set of products, called
partial sums, that is sent to the asynchronous pipeline for
addition, through the synchronous-asynchronous interface.

4.1.2. The Synchronous Output Portion

The right synchronous portion simply consists of a master-
slave latch that receives the final result from the asyn-
chronous pipeline and makes it available as the filter output.

2For faster decoding, the 4-bit address word was actually encoded using
9 wires: 8 wires represented the one-hot code [16] for three address bits,
and the ninth wire represented the remaining fourth address bit.
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4.2. The Asynchronous Portion
The asynchronous portion of the filter consists of a pipeline
that lies between the synchronous input and output portions,
as shown in detail in Figure 7. The function of this asyn-
chronous pipeline is to take the partial sums generated by
the synchronous input portion, add them up to produce the
final filter result, and send it to the synchronous output por-
tion. The pipeline was designed using the high-capacity
pipeline style [12].

The asynchronous datapath uses dynamic logic, and con-
sists of nine stages. The first stage is a layer of XOR
gates that restores the correct sign to the partial sums.
The next five stages correspond to five layers of carry-
save adders [4]. The last three stages implement a carry-
lookahead adder [4]. Since both true and complement val-
ues of the data bits are needed to compute the XOR and
addition functions, the entire datapath was implemented
in dual-rail. The datapath is quite wide at the input to
the first stage: 216 wires (= (8 data bits+ 1 sign bit) ·
2 (even and odd)·6 (bit slices)·2 (wires/bit)). The output of
the last stage is a 15-bit result represented using 30 wires.

Interestingly, since the filter has a very fine-grain datap-
ath, no explicit matched delays are required. The delay of
each function block is matched by the completion genera-
tor’s aC element itself, through appropriate device sizing.

The self-timed control of a high-capacity pipeline,
shown in Figure 5, needs a slight modification to handle
the wide datapath of the filter. In particular, buffers must
be inserted in order to amplify the control signals which are
broadcast to the entire width of the datapath.

Two different versions of the control were designed, one
more robust and the other faster, as shown in Figure 8.
The two versions differ in the placement of the amplifying
buffers. In the first version, Figure 8(a), the buffers amplify
the control signals—pc andeval—for both the datapath as
well as the completion generator. This version is very robust
to variations in buffer delays because the completion sig-
nals are delayed by the same amount as the datapath. How-
ever, the buffers are on the critical path, thus increasing the
pipeline cycle time. In the second version, Figure 8(b), the
completion generators use control signals that are tapped
off from before the buffers. As a result, the buffer delays
are taken off of the critical path, resulting in a shorter cy-
cle time. However, each stage’s function block now lags
behind its completion generator by an amount equal to the
buffer delay. Consequently, for the pipeline to function cor-
rectly,all the stages throughout the pipeline are required to
have comparable buffer delays.

4.3. The Synchronous-Asynchronous Interface

The interface between the asynchronous and the syn-
chronous portions of the chip must mediate certain differ-
ences in data representation and control sequencing. In
particular, the asynchronous datapath uses dual-rail dy-
namic logic, whereas the synchronous portions of the chip
use single-rail static logic. Moreover, the asynchronous
pipeline communicates by means of local handshakes (us-
ing req’s andack’s) at each end, whereas the synchronous
portion uses global clocking.

Figure 7 shows the interfaces at either end of the asyn-
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Figure 8. Pipeline stage controls: two versions

chronous pipeline. At each interface, special latches are
used to perform data conversion (from single-rail to dual-
rail, and vice versa), and pulse generators are used to mimic
the handshaking protocol use by the asynchronous pipeline.

At the input end of the pipeline, a special master-slave
latch, referred to here as astatic-dynamic latch,is used.
The master portion is a standard transparent D-latch with
single-rail inputs and complementary dual-rail outputs. The
D-latch is controlled by the clock,Clk. The slave portion
consists of a pair of dynamic buffers, one for each rail of
the data, controlled by a pulse generator. The pulse gen-
erator emits a high-going pulse every time the clock goes
low. As a result, on every downward clock transition, a new
data item is launched into the asynchronous pipeline, along
with the associated request,Req. The request is also forked
off to a programmable synchronous delay line, shown in
Figure 7, for use at the output end of the pipeline. The ac-
knowledgment from the first stage of the pipeline,Ack, is
simply ignored.

At the output end of the pipeline, a master-slave pair
of synchronous D-latches is used to receive the computed
result. Only the true value of the dual-rail output data is
used; the complements are simply ignored. In addition, an-
other pulse generator is used to produce the acknowledg-
ment,Ack, for the last stage of the pipeline. The request
from the pipeline is ignored. Instead, arrival of new valid
data at the output of the pipeline is inferred from a delayed
version of theReqassociated with that data item. In partic-
ular, the inputReqto the first stage of the pipeline is simply
delayed by an integer number of clock cycles, and used in
place of the outputReqat the right end of the pipeline. It
must be ensured, however, that the latency through the de-

lay line is greater than the latency through the asynchronous
pipeline; this constraint is easily met by making the delay
line have programmable latency. An advantage of this ap-
proach is that the output of the asynchronous pipeline is re-
synchronized to the clock without any issues of metastabil-
ity.

5. Filter Operation
5.1. Performance Goals: Discussion
The filter is designed to work over a wide range of clock
frequencies, because the input data rate to a read channel
can vary greatly. In fact, as the disk read head moves from
the innermost track to the outermost track, the data rate can
vary by a factor of as much as 1:5. A separate analog circuit
(“clock recovery” unit) is used to generate the clock for the
digital filter, whose frequency and phase are synchronized
with the input data stream.

While high throughput is an important requirement, an
additional key design goal is also to have as low a latency
as possible. The filter, along with the clock recovery unit, is
part of a closed feedback loop that monitors the clock fre-
quency and phase, and corrects any misalignment of clock
with respect to input data. In order to ensure that the clock
closely tracks the input data stream, this feedback loop must
have a fast response time. Consequently, the filter, which is
a critical part of the loop, must have a very low latency.
This goal of low latency is achieved in the new FIR filter by
a novel feature: adaptive pipelining.

5.2. Adaptive Pipelining: Operation
Adaptive pipelining is a characteristic of certain mixed
synchronous-asynchronous systems, where the degree of
pipelining is dynamically varied, depending upon the rate



of arrival of input data. In particular, in the asynchronous
portion, at low input rates, the data items will be widely
separated, while at higher rates, they will be spaced closer
together. As a result, from the viewpoint of the composite
synchronous-asynchronous system, at slower clock rates,
the latency(measured in terms of clock cycles) from the
clocked input side to the clocked output side can be very
few clock cycles. In contrast, at higher clock rates, the
latency (again, measured in terms of clock cycles) can be
much higher. Thus, while the asynchronous pipeline has a
fixed number of stages (nine) and has roughly a fixed over-
all latencyin nanoseconds,theeffective latencyas seen by
the clocked output interface (now measured in clock cycles)
can be highly varied.

In particular, at the lowest input rates, the asynchronous
pipeline behaves similar to a block of flow-through combi-
national logic, with a latency of at most a single clock cycle.
On every clock cycle, one data item is introduced into the
asynchronous pipeline by the synchronous input portion of
the filter. In the next clock cycle, that data item is removed
from the output of the asynchronous pipeline by the syn-
chronous output portion.

As the input rate is increased, the behavior of the asyn-
chronous portion progressively changes to that of a pipeline
that is one, two or more stages deep. At these clock rates,
the latency through the asynchronous datapath is longer
than one clock period, and, therefore, multiple data items
will be present in the datapath at any given time. Accord-
ingly, the programmable delay line, which helps interface
the right end of the asynchronous pipeline with the syn-
chronous portion of the chip, is set to one, two or more clock
period delays.

In conclusion, from the viewpoint of the synchronous
portion of the filter, the latency of the asynchronous portion
(measured in terms of clock cycles) is dynamically vari-
able, and this feature is taken advantage of to reduce the
overall filter latency. This variable-latency behavior is in-
trinsic to the asynchronous nature of the pipeline, and can-
not be easily achieved in fully synchronous implementa-
tions. As an example, consider a fully synchronous version
of our nine-stage pipeline. This synchronous implementa-
tion will have a fixed latency of nine clock cycles (for a
single-phase clock), or 4.5 cycles (for a two-phase clock).
Unfortunately, the result can be a serious penalty: at low
clock rates, these latencies can be inordinately large, thus
degrading the performance of the clock recovery loop. In
contrast, our asynchronous implementation has roughly a
constant latency as measured in nanoseconds, thus enabling
a fast response time at all clock frequencies.

5.3. Adaptive Pipelining: Comparison to Syn-
chronous Approaches

There is one synchronous approach, however, that can pro-
vide an adaptively-pipelined operation similar to that of the
asynchronous implementation:wave pipelines[19, 6]. In
this approach, multiple waves of data are allowed at any

time between two latches, thus allowing a variable num-
ber of data items. However, this approach requires much
designer effort, from the architectural level down to the lay-
out level, for accurate balancing of path delays (including
data-dependent delays), and remains vulnerable to process,
temperature and voltage variations. In contrast, the asyn-
chronous implementation is significantly more robust, us-
ing instead a handshake protocol to maintain the integrity
of data.

6. Performance Analysis
This subsection presents a theoretical analysis of the per-
formance of the filter. Equations relating the maximum fil-
ter operating frequency to the number of data items in the
pipeline are derived.

The filter performance is determined by two metrics: the
maximum allowable throughput of the synchronous portion
of the filter, and the maximum allowable throughput of the
asynchronous pipelined portion of the filter. The observed
performance will be limited by the lower of the two met-
rics. For a given voltage supply, the maximum throughput
of the synchronous portion is fairly fixed. Thus, to simplify
discussion, the synchronous portion and the synchronous-
asynchronous interfaces are initially ignored from the anal-
ysis; their impact on throughput is discussed at the end of
this section. The throughput of the asynchronous pipeline,
however, can vary greatly, as explained below.

The throughput of the asynchronous pipeline is a func-
tion of the number of data items present in the pipeline.
When the number of data items is small, the throughput
is low, and the pipeline is said to be “data limited.” On
the other hand, when nearly every stage of the pipeline is
filled with data items, the throughput is once again lim-
ited because empty stages, or “holes,” are needed to allow
data items to flow through the pipeline; in this scenario, the
pipeline is said to be congested, or “hole limited.”

Each of the two scenarios, data limited as well as hole
limited, is analyzed in detail to derive the expressions for
the throughput of the asynchronous pipeline.

Data Limited Operation.Suppose there is only one data
item in the asynchronous pipeline at any given time. On
every clock cycle, this data item is removed by the syn-
chronous portion on the right side, and, simultaneously, a
new data item is introduced into the pipeline by the syn-
chronous left side. Clearly, for correct operation, the clock
period,T , must be longer than or equal to the time it takes
one data item to flow through the pipeline from left to right:

T ≥ 9 · Lf (7)

whereLf is the forward latency through one stage of the
nine-stage pipeline.

Similarly, if there aren data items in the asynchronous
pipeline, then the latency ofn clock cycles must be at least
equal to the forward latency through the entire pipeline:

nT ≥ 9 · Lf (8)



Hole Limited Operation.Suppose all of the nine stages
of the asynchronous pipeline are holding distinct data items.
At the next rising clock edge, the synchronous portion on
the right side will consume the data item at the output of
the pipeline, effectively injecting a hole at that end. This
hole will percolate through the pipeline, from right to left,
and arrive at the first stage of the pipeline after nine “hole
latencies;” at this point, the pipeline is ready to accept a
new data item. A hole latency, also calledreverse latency,
is denoted byLr, and is equal to the time it takes for a
hole to move from one stage to its immediately preceding
stage. More formally, the reverse latency is defined as the
time from the completion of precharge in a stage (arrival of
a hole in that stage), to the completion of the subsequent
precharge in the previous stage (movement of hole into the
previous stage).3

For correct operation, the hole must arrive at the input
end of the pipeline before the synchronous portion on the
left side de-asserts the new data item (the domino latches
precharge). Clearly, the de-assertion of the new data item
occurs exactly a half clock cycle after the hole is injected at
the right side of the pipeline. Therefore,

1
2
· T ≥ 9 · Lr (9)

A similar equation can be derived for the case when there
are less than nine data items in the pipeline. Ifn is the
number of items in the pipeline, then the pipeline has9− n
holes in it. Each of these9− n holes can be filled with new
input data before a new hole injected into the right end of
the pipeline is required to reach the left end of the pipeline.
Therefore, Equation 9 can be generalized for the case ofn
data items:

(9 − n) · T +
1
2
· T ≥ 9 · Lr (10)

Overall Upper-Bound on Filter Throughput.Equations 8
and 10 provide upper-bounds on the operating frequency of
the filter,F , as a function of the number of data items in the
asynchronous pipeline,n:

F = 1/T ≤ Min

(
n

9 · Lf
,
9 1

2 − n

9 · Lr

)
(11)

Figure 9 shows a plot of the maximum filter frequency
versus the number of data items in the asynchronous
pipeline. The rising portion of the curve represents the
data limited region, where throughput rises linearly with the
number of data items. The falling portion, similarly, repre-
sents the hole limited region, where throughput drops lin-
early with a decrease in the number of holes. The figure also
shows a horizontal line, which corresponds to the longest
local cycle time within the entire system [18]. In gen-
eral, this horizontal line may either represent the maximum

3From the analysis of Section 2.2, the reverse latency is easily calcu-
lated asLr = tINV + taC + tNAND3 + tPrech.
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erating region

speed of the slowest stage in the asynchronous pipeline, or
the maximum operating rate of the filter’s synchronous por-
tion or the synchronous-asynchronous interfaces. The over-
all filter operation will always be constrained to lie under
the canopy formed by the three curves.

In our particular filter design, the latencies through all of
the asynchronous pipeline stages were fairly uniform. As a
result, the local cycle times of all of the asynchronous stages
were nearly the same. In this case, the maximum throughput
potential of the asynchronous pipeline is given by the inter-
section of the rising and falling curves in Figure 9 [18]. The
horizontal line, however, represents the maximum operating
rate that can be sustained by the synchronous portion and
the synchronous-asynchronous interfaces. This rate limits
the overall filter throughput to a level lower than the maxi-
mum asynchronous throughput.

7. Experimental Results
Layout and Fabrication.The chip was laid out and fabri-
cated using the IBM 0.18µ CMOS-7SF process with copper
interconnect and 1.8V nominal voltage supply. Figure 11
shows the chip micrograph. The filter core occupies an area
of 1.3x0.35mm2.

The layout of the chip was part standard-cell and part
full-custom. The entire synchronous portion was design us-
ing standard cells from the IBM ASIC SA-27E cell library.
In the asynchronous portion, the datapath was implemented
with full-custom dynamic gates. The asynchronous control
used a mixture of standard cells (for basic gates) and full-
custom cells (for C- and asymmetric C-elements). The in-
terface between the synchronous and the asynchronous por-
tions was designed mostly using standard cells.

Placement and routing were automated using the Silicon
Ensemble tool. To simplify the task, the filter was divided
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Figure 11. Micrograph of the fabricated chip

into eight parts: the self-timed control block, the XOR
block, the carry-save adder, the carry-lookahead adder,
the synchronous input and output portions, and the two
synchronous-asynchronous interfaces. Next, each part was
placed and routed individually using the automated tool. Fi-
nally, the tool was used for top-level place and route, to as-
semble all of the parts together. No resizing of gates was
performed after place and route.

Two versions of the filter were designed, differing in the
pipeline control circuits used. One version used the control
circuit of Figure 8(a) which has fewer timing assumptions,
at the cost of some throughput. The second used the circuit
of Figure 8(b) which is faster, but has stronger timing as-
sumptions. Both versions were fabricated side-by-side on
the same chip. This section gives performance measure-
ments only for the latter version. The performance of the
conservative version was around 20% lower, as expected.

Testing. A level-sensitive scan design (LSSD) [17] ap-
proach was used to test the filter chip at low speed. A
scannable shift register was built onto the chip to provide
input data to the filter. An output multiplexor was placed on
the chip to select one of the high-speed outputs of the filter,
for observation on an oscilloscope. For testing the asyn-
chronous datapath, an additional input (labeled “burn-in” in
Figure 7) was used to convert the dynamic datapath into a

pseudo-NMOS combinational circuit: both precharge and
evaluate controls were de-asserted, and a weak pull-up was
asserted. The chip was initialized, loaded with test data, and
tested for correctness at a low clock speed. Subsequently,
the clock speed was gradually increased until a failure was
detected in the output data.

Measured Performance.Figure 10 shows plots of the
measured maximum throughput, and the corresponding
power dissipation. The graphs show the variation in
throughput and power as the number of data items in the
asynchronous portion of the filter pipeline is varied. The fig-
ure shows plots for a few representative voltages, although
the chips were fully functional from around 1V to over 2.1V.

The performance measurements demonstrate the bene-
fits of adaptive pipelining. At the lowest filter frequencies,
the asynchronous portion appears externally as a block of
flow-through combinational logic, with a single clock cycle
latency. As the frequency is increased, the latency of the
programmable delay line is increased to two, three or four
clock cycles, increasing the depth of pipelining provided by
the asynchronous portion.

In order to confirm the hypothesis of Section 6, the fil-
ter was also operated with more than four data items in
the asynchronous datapath. Under normal circumstances,
however, this mode of operation will not be used since
it provides poorer latency for the same throughput as for
four or fewer tokens. The observed performance exactly
matches the behavior predicted by our theoretical model.
As the number of tokens is increased from one, the pipeline
throughput increases. However, beyond four tokens, the
maximum throughput decreases because the pipeline be-
comes congested. Between two and four tokens, the per-
formance levels off: in this region, the filter throughput is
limited by the speed of the synchronous portions of the chip
which cannot operate as fast as the native throughput of the
asynchronous pipeline.

The best observed performance for the filter chip was
around 1.1 Giga items/second, with three or four tokens
and 2.1V power supply. The asynchronous pipeline, how-
ever, is capable of somewhat higher performance. The na-
tive throughput of the asynchronous portion is estimated by



Figure 12. Oscilloscope waveforms showing
filter operation at 1.32 Giga items/second

extrapolating the left and right ends of the curves of Fig-
ure 10(a), and noting their intersection (See Section 6). Us-
ing this technique, the maximum asynchronous throughput
is estimated to be 1.5 Giga items/second at 2.1V. Several
chip samples were thus tested. The fastest sample had an
overall filter throughput of 1.32 Giga items/second at 2.1V,
with the asynchronous portion estimated to be capable of
throughputs up to 1.8 Giga items/second. Figure 12 shows
the filter outputs as seen on an oscilloscope, along with a
“sync” signal at 1/16th of the clock frequency.

8. Conclusions
This paper presented the design of an experimental digi-
tal FIR filter for use in the read channels of modern high-
performance disk drives. The filter design was an interest-
ing case study in hybrid synchronous-asynchronous design.
The speed-critical portion of the filter was implemented as
an asynchronous pipeline, obtaining a high throughput, yet
very low latency. The synchronous portion formed a wrap-
per around the asynchronous pipeline, making it possible
for the filter to be used in a clocked environment.

The recent high-capacity pipeline style [12] was used
for the asynchronous pipeline portion of the filter chip.
This style uses easy-to-satisfy one-sided timing constraints
to achieve high throughput. Compared with other asyn-
chronous techniques [10, 14], this approach required sig-
nificantly less designer effort, as evidenced by the fact that
there was little need for any post-layout gate resizing, even
though placement and routing were totally automated. Fur-
ther, the design exhibits a highly-varied datapath, ranging
from 30 to 216 wires in width at varying points in the
pipeline, thus demonstrating the scalability of the approach.
Measured performance of fabricated chips easily met or ex-
ceeded design specifications.
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