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Abstract: Accurate statistical inference in logistic regression models remains a

critical challenge when the ratio between the number of parameters and sample

size is not negligible. This is because approximations based on either classical

asymptotic theory or bootstrap calculations are grossly off the mark. This paper

introduces a resized bootstrap method to infer model parameters in arbitrary

dimensions. As in the parametric bootstrap, we resample observations from

a distribution, which depends on an estimated regression coefficient sequence.

The novelty is that this estimate is actually far from the maximum likelihood

estimate (MLE). This estimate is informed by recent theory studying properties

of the MLE in high dimensions, and is obtained by appropriately shrinking the

MLE towards the origin. We demonstrate that the resized bootstrap method

yields valid confidence intervals in both simulated and real data examples. Our

methods extend to other high-dimensional generalized linear models.

Key words and phrases: High-dimensional statistics, generalized linear models,

bootstrap, confidence interval.
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1. Introduction

The bootstrap is a well-known resampling procedure introduced in Efron’s

seminal paper (Efron (1979)) for approximating the distribution of a statis-

tic of interest. Its popularity stems from a combination of several elements:

it is conceptually rather straightforward; it is flexible and can be deployed

in a whole suite of delicate inference problems (Efron (1981, 1985); Efron,

Halloran and Holmes (1996)); and finally, whenever theoretical calculations

are impossible, the bootstrap often provides an excellent approximation to

the distribution under study. As a result, researchers from a spectacular ar-

ray of disciplines have used the bootstrap for hypothesis testing (Politis and

Romano (1999, Chapter 1)), model selection (Shao (1996)), density esti-

mation (Franke and Härdle (1992)), and many other important statistical

inference problems.

The bootstrap can usually be understood via the plug-in principle

(Efron and Tibshirani (1994, Chapter 4)). Suppose we observe Xi ∈ Rp,

i = 1, . . . , n, sampled independently and identically from a distribution F .

We wish to infer the distribution of a statistic tF (X1, X2, . . . , Xn), which

can be a complicated functional of the data aimed at estimating the number

of modes F has. For instance, we may be interested in the 90% quantile of

tF (X1, . . . , Xn). Here, the subscript F indicates which distribution Xi are
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sampled from; here, the Xi’s are i. i. d. samples from F . The plug-in princi-

ple estimates the distribution of tF (X1, . . . , Xn) by that of tF̂ (X∗1 , . . . , X
∗
n),

wherein F̂ is an estimate of F , and (X∗1 , . . . , X
∗
n) is a draw from F̂ . In

other words, by resampling observations from F̂ , we obtain a distribution

we hope closely resembles that of tF (X1, . . . , Xp).

Naturally, statisticians have since the beginning studied the accuracy of

the bootstrap. Broadly speaking, the bootstrap is known to be consistent,

i.e., tF̂ (X∗1 , . . . , X
∗
n) −→ tF (X1, . . . , Xn) in distribution, under the condi-

tions that (1) the distribution of tF (X1, X2, . . . , Xn) varies smoothly near

F , and (2) F̂ converges to F (See Bickel and Freedman (1981); Diciccio and

Romano (1988); Politis and Romano (1999, Chapter 1)). The second con-

dition is typically satisfied for appropriately chosen estimates F̂ whenever

the data dimension p is fixed. In addition to general theory, statisticians

have carried out detailed studies for specific statistics including the sample

mean (Bickel and Freedman (1981); Hall (1992)), regression coefficients

(Shorack (1982); Bickel and Freedman (1982, 1981); Mammen (1993)),

and continuous functions of the empirical measure (Gine and Zinn (1990)),

and so forth.

Motivated by the abundance of high-dimensional data, researchers are

increasingly studying statistical methods in the high-dimensional setting in
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which the number of variables p grows with the number of observations n.

Specifically, this article concerns the accuracy of bootstrap methods when

p and n are both very large and perhaps grow with a fixed ratio. In linear

regression for example, while the residual bootstrap is weakly consistent if

p is fixed and n→∞, it is inconsistent when n, p→∞ in such a way that

p/n → κ > 0; to be sure, Bickel and Freedman (1982) displays a data-

dependent contrast, i.e., a linear combination of coefficients, for which the

estimated contrast distribution is asymptotically incorrect. Motivated by

results from high-dimensional maximum likelihood theory (El Karoui et al.

(2013); El Karoui (2013, 2018)), El Karoui and Purdom (2018) proposed

to use corrected residuals to achieve correct inference. Another example is

this: although the nonparametric bootstrap can be used to construct a valid

confidence region for the spectrum of a covariance matrix when the problem

dimension is fixed (Beran and Srivastava (1985); Eaton and Tyler (1991)),

it yields incorrect estimates of the distribution of the largest eigenvalue if

p/n → κ > 0 (El Karouis and Purdom (2016)). With the exception of

these two studies, the accuracy of the bootstrap in other high-dimensional

problems has not been much researched.

In this paper, we study the bootstrap for inferring the distribution

of the maximum likelihood estimator (MLE) in high-dimensional logistic
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1.1 High-dimensional maximum likelihood theory

regression models. We find that the standard parametric bootstrap and the

pairs bootstrap are both incorrect (Section 1.2), a finding which echoes with

El Karoui and Purdom (2018). We also show that recent high-dimensional

maximum likelihood theory (HDT) developed for multivariate Gaussian

covariates does not correctly predict the distribution of the MLE when the

covariates are heavy tailed; this is analogous to findings in El Karoui (2018).

Both these failures call for solutions and in this paper, we design a novel

resized bootstrap by combining the bootstrap method with insights from

HDT. We demonstrate that the resized bootstrap yields confidence intervals

attaining nominal coverage regardless of the covariate distribution. Finally,

we extend our methods to other generalized linear models.

1.1 High-dimensional maximum likelihood theory

We begin by briefly reviewing recent theory about M-estimators in the

high-dimensional setting in which both the number of observations n and

the number of variables p go to ∞ while the ratio p/n approaches a con-

stant κ > 0. This high-dimensional theory (HDT) generalizes the classical

asymptotic setting, and offers a more accurate characterization of the dis-

tribution of M-estimators when both n and p are large. In particular, a

considerable amount of research has studied the behavior of M-estimators
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1.1 High-dimensional maximum likelihood theory

in high-dimensional regression and penalized regression (El Karoui et al.

(2013); El Karoui (2013); Zhang and Zhang (2014); Van de Geer et al.

(2014); Donoho and Montanari (2016); Celentano, Montanari and Wei

(2020); Bellec, Shen and Zhang (2022)).

Consider a logistic model in which the covariates X ∈ Rp are mutivari-

ate Gaussian and P(Y = 1|X) = σ(X>β), where σ(t) = 1/(1 + e−t) is the

usual sigmoid function. Zhao, Sur and Candès (2020) showed that if β̂

denotes the MLE, then

√
n(β̂j − α?βj)
σ?/τj

d−→ N (0, 1), (1.1)

where βj (resp. β̂j) is the jth (resp. estimated) model coefficient. In contrast

to classical asymptotic theory, which states that the MLE is unbiased, the

MLE is centered at α?βj, for some α? > 1 whenever κ is positive. The

standard deviation is σ?/τj; here, τj is the conditional standard deviation of

the jth variable given all the other variables whereas the parameters α? and

σ? are determined by κ and the signal strength γ defined as γ2 = Var(X>β).

The parameters α? and σ? both increase as either the dimensionality κ

increases or the signal-to-noise ratio γ increases (Sur and Candès , 2019,

Figure 7). To be complete, we stress that Eqn. (1.1) holds with the proviso

that the magnitude of βj is not extremely large. Zhao, Sur and Candès

(2020) hypothesized that HDT holds when τjβj = o(1). Empirically, they
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1.1 High-dimensional maximum likelihood theory

observed that the theoretical inflation and std. dev. are reasonably correct

when τjβj/γ ≤ 0.15; however, when τjβj/γ = 0.5, the empirical std.dev. is

36% larger than the theoretical std.dev.

The approximation (1.1) happens to be very accurate for moderately

large sample sizes, e.g., when n = 4000 and p = 400 (Zhao, Sur and Candès

(2020)), and is accurate for relatively small sample sizes, i.e., n = 200 and

p = 20 (Sur and Candès , 2019, Appendix G). Further, (1.1) is expected

to hold for sub-Gaussian covariates, see Zhao, Sur and Candès (2020) for

empirical studies supporting this claim.

Having said all of this, (1.1) does not hold when the covariates fol-

low a general distribution. For instance, El Karoui (2018) studied ridge

regression in linear models where the covariates follow a multivariate t-

distribution, and proved that the variance of the ridge estimate does de-

pend on the geometry of the covariates. Similarly, for a logistic regression

we expect that α? and σ? would also depend on the degrees of freedom of

the t-distribution. In Section 1 of the supplementary material (SM), we

give a conjecture about the distribution of the MLE, and compare it with

empirical observations. Aside from these two scenarios, we know very little

about the distribution of M-estimators, or the inflation and std.dev. of the

MLE when the covariates follow an arbitrary distribution.
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1.2 An example with non-Gaussian covariates

1.2 An example with non-Gaussian covariates

Having succinctly described the high-dimensional theory, we simulate a

high-dimensional logistic regression model with 4000 observations and 400

covariates (n = 4000 and p = 400). We sample covariates from a multi-

variate t-distribution and standardize each variable so that Var(Xj) = 1/p.

We pick 50 non-null variables and sample their coefficients from a mixture

of Gaussians N (5, 1) and N (−5, 1) with equal weights.

Figure 1 presents a histogram of a coordinate of the MLE from repeated

experiments. From the bell-shaped curve, we conclude that the MLE is ap-

proximately Gaussian. Although the value of the true coefficient under

study is 4.78, the average MLE is 5.56, which shows that the MLE is biased

upward and the inflation factor is roughly equal to αj = β̄j/βj = 1.16.

The empirical standard deviation (std.dev.) of the MLE is equal to 1.34;

however, the classical theory estimates that the std.dev. equals 1.15. We

thus see that because of both a poor centering and a poor assessment of

variability, the classical Wald confidence interval would significantly under-

cover βj. Now HDT from Section 1.1 estimates the bias to be α? = 1.14

and the standard deviation to be σ?/τj = 1.25. This implies that while

capturing the bias, HDT slightly underestimates the std.dev. of the MLE.

Next, we apply the parametric bootstrap and pairs bootstrap and dis-
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1.2 An example with non-Gaussian covariates

intro_ex.jpg

Figure 1: Histogram of the logistic MLE of a randomly chosen coefficient

in 10,000 repeated experiments. Here, the covariates are sampled from

a multivariate t-distribution with 8 degrees of freedom. The bootstrap

MLE densities are displayed for the parametric bootstrap (blue), the pairs

bootstrap (green) and the proposed resized bootstrap (red). The triangle

indicates the true coefficient and the dashed line indicates the average MLE.

play in Figure 1 the density curves of the bootstrap MLEs from one exper-

iment.

• For the parametric bootstrap, we generate samples by fixing the co-

variates at the observed values and sample responses from a logistic
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model whose coefficients equal the MLE; put another way, we choose

F̂ = Fβ̂. The parametric bootstrap (blue) does not begin to describe

the MLE distribution since the average value is 8.68, about twice that

of the true coefficient, and the std.dev. is 1.55.

• The pairs bootstrap generates bootstrap samples by sampling with

replacement from the observed data, i.e., we choose F̂ to be the em-

pirical distribution. The pairs bootstrap also fails to approximate the

MLE distribution since the green curve shifts to the right and is much

wider than the histogram (mean is 8.63 and std.dev. is 1.71).

Finally, the red curve in Figure 1 shows the accuracy of the proposed

resized bootstrap. We can see that this best describes the MLE distribution;

for instance, both the mean (5.54) and standard deviation (1.39) are close

to the true values.

2. Why does the bootstrap fail?

The pairs bootstrap fails in the high-dimensional setting because it effec-

tively inflates the dimensionality ratio κ = p/n. In particular, when n is

large, the number of unique pairs (X∗i , Y
∗
i ) in a bootstrap sample is approx-

imately (1 − 1/e)n on average (Mendelson et al. (2016)). Consequently,

the effective dimensionality ratio κe/(e − 1) in the bootstrap sample is
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larger than κ. Because the bias and variance of the MLE increase as κ

increases (Sur and Candès , 2019, Figure 7), the pairs bootstrap tends to

over-estimate both the bias and standard error.

While the pairs bootstrap over-estimates κ, the parametric bootstrap

fails because the signal strength γ is inflated in the bootstrap samples.

Suppose for simplicity that the covariates are independent N (0, 1). Then

(Sur and Candès , 2019, Theorem 2) shows that

lim
n,p→∞

Var(X>newβ̂)
a.s.
= α2

?γ
2 + κσ2

? > γ2, (2.2)

whereas Var(X>β) = γ2. Here, Xnew is a new random sample independent

from the training set. Because a higher γ leads to higher bias and variance

(Sur and Candès , 2019, Figure 7), the parametric bootstrap also tends to

over-estimate the bias and standard error of the MLE.

In addition to over-estimating the bias and standard error, another

problem of using the bootstrap is that when working with bootstrap sam-

ples, the MLE may cease to exist. We can explain this issue via the phase

transition: for every ratio κ and intercept β0, there exists an asymptotic

threshold γ(κ, β0) such that the MLE does not exist once the signal strength

γ > γ(κ, β0). Similarly, for every γ and β0, there exists a threshold κ(γ, β0)

such that the MLE does not exist once κ > κ(γ, β0). Because the pairs

bootstrap over-estimates κ while the parametric bootstrap over-estimates
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Figure 2: According to the high-dimensional theory (Section 1.1), the

asymptotic distribution of the MLE depends on the problem dimension

κ and the signal strength γ. The pairs bootstrap over-estimates κ whereas

the parametric bootstrap over-estimates γ. Therefore, both methods lead

to incorrect estimates of the MLE distribution. The blue region shows pairs

of values of (κ, γ) where the MLE exists when β0 = 0

.

γ, the bootstrap MLE may not exist if either κ or γ exceeds the phase

transition threshold. Figure 2 provides a visual illustration of these points.

3. A resized bootstrap method

We propose to construct parametric bootstrap samples from Fβ? , where β?

is obtained by shrinking the MLE towards zero. We would like β? to obey
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3.1 Estimating the signal strength

Var(X>newβ?) = γ2 = Var(X>β) as to preserve the signal-to-noise ratio. We

set out to estimate γ in Section 3.1 since γ is unobserved. Upon obtain-

ing β?, we follow the standard parametric bootstrap procedure to generate

bootstrap samples. That is to say, the bth bootstrap sample consists of

(xi, Y
b
i ), i = 1, . . . , n, where xi is the vector of features for the ith sample

and Y b
i is sampled from our GLM with features xi and coefficients β?. We

then compute the bootstrap MLE β̂b ∈ Rp by fitting the GLM using pairs

(xi, Y
b
i ). Repeating this process B times yields B bootstrap MLEs. We

then infer the inflation and std.dev. of the MLE from the bootstrap MLE.

We summarize the procedure in Algorithm 1 and discuss how to com-

pute confidence intervals using the bootstrap MLE in Section 3.2. We

evaluate our method through simulated examples in Section 4.

3.1 Estimating the signal strength

Since we would like to have Var(Xnew
>β?) = γ2, we discuss how to esti-

mate γ from observed data (see Algorithm 2 for a summary). We begin by

reviewing the existing ProbeFrontier method, which applies to Gaussian co-

variates, and then introduce a new approach applicable to general covariate

distributions.

The ProbeFrontier method (Sur and Candès (2019)) estimates γ by
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3.1 Estimating the signal strength

Algorithm 1: Resized bootstrap procedure
Input: Observed data (xi, yi), 1 ≤ i ≤ n, and a GLM formula.

1 Compute resized coefficients β?;

2 for b = 1, . . . , B do

3 Simulate Y b
i given xi using β? as model coefficients;

4 Fit a GLM for (xi, Y
b
i ) to obtain the bootstrap MLE β̂b;

5 end

6 Estimate the standard deviation of the MLE σ̂j (See Eqn. (3.9));

7 Estimate a common factor α̂ by regressing β̄ onto β? with weights proportional

to 1/σ̂2
j ;

Output: α̂ and σ̂j

using the phase transition curve κ(β0, γ): if the intercept equals β0 and

the signal strength equals γ, then the MLE does not exist almost surely

(asymptotically) if κ > κ(β0, γ); that is, the cases and controls can be

perfectly separated by a hyperplane (see Section 2). The ProbeFrontier

method identifies the threshold κ̂s at which the MLE ceases to exist by

subsampling observations. It then estimates γ̂ in such a way that κ(β0, γ̂) =

κ̂s holds. While the ProbeFrontier method accurately estimates γ when the

covariates are Gaussian, it does not apply here because the phase transition

curve actually depends on the covariate distribution. For example, if the

covariates are from a multivariate t-distribution, then the phase transition
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3.1 Estimating the signal strength

curve depends on the degrees of freedom of the t-distribution (Tang and Ye

(2020)).

As an alternative, we estimate γ by using a one-to-one relation between

γ2 = Var(Xnew
>β) and η2 = Var(Xnew

>β̂). (3.3)

The orange curve in Figure 3 plots η as γ varies, and we observe that η(γ)

increases monotonically when γ increases. (Once again, this is because

both the bias and the variance of the MLE increase as γ increases (Sur and

Candès , 2019, Figure 7).) Since the MLE does not exist when γ exceeds

the phase transition threshold γs, which satisfies κ(β0, γs) = κ, we expect

that η would increase to infinity as γ approaches the threshold.

The one-to-one relation between γ and η(γ) suggests that, if Var(X>β?) ∼=

Var(X>β), then Var(X>β̂?) ∼= Var(X>β̂), where β̂? denotes the MLE when

the true coefficient is β?. Thus, we estimate γ2 by Var(X>β?), where β?

obeys

Var(Xnew
>β̂?) = η2. (3.4)

In this paper, we set β? to be a rescaled version of the MLE, i.e., β? = s× β̂.

Because the MLE is biased upwards in absolute magnitude, the rescaling

factor s is less than one and shrinks the MLE towards zero.

Although we cannot compute η directly because it is evaluated at a new

observation Xnew, we estimate η by using the SLOE estimator introduced in
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3.1 Estimating the signal strength

Figure 3: An illustration of using η = sd(Xnew
>β̂) to estimate the signal

strength γ = sd(Xnew
>β). The orange curve shows η versus γ. This is

obtained by generating 100 random samples for each γ, the orange curve

being the smoothed LOESS fit. The black curve shows an estimated curve

using one dataset only; it is a smoothed version of η̂(γ) (black points).

The dashed line shows η̃, and the estimated γ̂ = 1.92 approximates γ = 2

well. Here, we sample covariates from a multivariate t-distribution and

responses from a logistic model. The coefficients β are sampled once and

then re-scaled to achieve a value of γ shown on the x-axis.

Yadlowsky et al. (2021). We briefly describe SLOE here, and defer detailed

formulae to SM Section 2. The SLOE estimator proceeds in two steps.

First, it approximates Var(Xnew
>β̂) by the variance of x>i β̂(i) where β̂(i)

is the leave-ith-observation-out MLE. Second, instead of re-evaluating β̂(i)
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3.1 Estimating the signal strength

for each observation, SLOE uses the first-order approximation of the score

equation to approximate β̂(i) from the MLE. The theory is this: Yadlowsky

et al. (2021) proves that the SLOE estimator is consistent in logistic

regression models with Gaussian covariates. Furthermore, we expect that

SLOE yields reliable estimates for a broad class of covariates, for which

the Euclidean norm ‖X‖ is concentrated and the Hessian at the MLE is

positive definite.

Now that we are able to approximate η(γ) at a given γ, we estimate

η = Var(X>β̂)1/2 and denote it as η̃. Next, we estimate the curve η(t) at a

sequence of signal strengths t, from which we estimate γ by setting γ̂ such

that η̃ = η̂(γ̂). To implement this, we pick a sequence of scaling factors

{0 = s1, . . . , sL = 1}. At each sl, we set the coefficients to be βsl = sl × β̂

and the signal strength corresponding to si as γ(sl) = sd(Xβsl), where X

refers to the observed covariate matrix. We use βsl as the true coefficient

to generate new responses (as in a parametric bootstrap) and then use this

sample to obtain one estimate of η̂(γ(sl)). Repeating the process J times

yields J estimates η̂j(γ(sl)) for every sl. We next fit a smoothed curve

η̂(γ(sl)) through the points η̂j(γ(sl)), l = 1, . . . , L, j = 1, . . . , J . Finally,

we set γ̂ such that η̂(γ̂) = η̃.

We demonstrate our method in Figure 3, which shows η̂(t) estimated
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3.1 Estimating the signal strength

from a single dataset. The estimated curve offers an excellent fit across all

values of γ. In this example, the estimated η̃ = 3.48 (dashed horizontal

line), and this corresponds to γ̂ = 1.92 on the black curve. This estimate

is close to the actual signal strength set to γ = 2.

Algorithm 2: Estimating signal strength
Input: Observed data (xi, yi), 1 ≤ i ≤ n, and a GLM formula.

1 Estimate η̃ = Var(X>
newβ̂) via leave-one-out techniques;

2 Pick a sequence {0 = s1, . . . , sL = 1};

3 for l = 1, . . . L do

4 Set βsl = sl × β̂ and γl = sd(Xβsl);

5 for j = 1, . . . , J do

6 Simulate Y j
l,i given xi using βsl as model coefficients for each

observation i = 1, . . . , n;

7 Fit a GLM for (xi, Y
j
l,i) to estimate η̂j(γ(sl));

8 end

9 end

10 Fit a smooth curve η̂(γ);

11 Estimate γ̂ by solving η̂(γ̂) = η̃;

Output: Estimated γ̂.
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3.2 Constructing confidence intervals

3.2 Constructing confidence intervals

We consider two ways of computing confidence intervals (CI) from boot-

strapped MLEs: first, assuming that the MLE is approximately Gaussian,

i.e.,

β̂j − αjβj
σj

≈ N (0, 1), (3.5)

where αj and σj denote the bias and standard deviation, inverting Eqn. (3.5)

yields the following (1− q) CI for βj:[
1

α̂j

(
β̂j − z1−q/2 σ̂j

)
,

1

α̂j

(
β̂j − zq/2 σ̂j

)]
. (3.6)

Here, zq is the quantile of a standard Gaussian, while α̂j and σ̂j refer to

estimates of αj and σj.

When the normal approximation is inadequate, we use the approxima-

tion

β̂j − αjβj
σj

d
≈
β̂bj − α̂jβ?,j

σ̂j
, (3.7)

where the right-hand side refers to the distribution of β̂bj conditional on the

observed covariates. We obtain a (1− q) CI as[
1

α̂j

(
β̂j − tbj[1− q/2] σ̂j

)
,

1

α̂j

(
β̂j − tbj[q/2] σ̂j

)]
, (3.8)

where tbj[q] denotes the quantile of the right-hand side of (3.7). We refer

to the confidence interval in (3.8) as the “bootstrap-t” confidence interval,

and examine the approximation (3.7) in Section 4.2.
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3.3 When is the resized bootstrap adequate?

Finally, we describe how to estimate the bias αj and the standard de-

viation σj. To estimate σj, we use the standard deviation of the bootstrap

MLE, i.e.,

σ̂2
j =

1

B − 1

B∑
b=1

(β̂bj − β̄j)2, where β̄j =
1

B

B∑
b=1

β̂bj . (3.9)

We estimate αj by weighted regression: that is, we regress β̄b onto β? by

assigning to each MLE coordinate a weight inversely proportional to its

estimated variance σ̂2
j . We assume a common bias factor because all the

αj’s are equal when the covariates are multivariate Gaussian. In practice,

we can plot β̄bj versus β?,j: if bias factors are all equal, then the points

should align on a line, which we observe in all our simulations (Figure 4).

3.3 When is the resized bootstrap adequate?

When the covariates are multivariate Gaussian, Zhao, Sur and Candès

(2020) observed that while Eqn. (1.1) is accurate when βj is moderately

large (assuming the covariates Xj are standardized to have zero mean and

unit variance), the std.dev. of β̂j increases as the absolute magnitude of

βj increases. This result implies that the resized coefficient β?,j should be

close to βj in order to correctly estimate the MLE distribution. However,

the resized coefficients only satisfy Var(X>β?) = γ2, and yet β?j 6= βj in

general. Therefore, we expect that the CIs to be approximately correct
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when βj is moderately large, but inaccurate when βj is large. We explore

the performance of our method when the model coefficients are large in

SM Section 5. While we expect that correct inference can be obtained by

shrinking the large and small coefficients separately, we leave this study for

future research.

4. Numerical studies

We now study the accuracy of the proposed resized bootstrap method by

simulating GLMs with non-Gaussian covariates. In this section, we consider

an example of logistic regressions. Results in other settings (with various

levels of signal strength, problem dimensions and class imbalance) and with

other types of GLM (including Probit and Poisson regressions) are reported

in Sections 3.2–3.4 of the supplementary material (SM). We also consider an

example where the sample size is small (n = 400) in SM Section 4. Lastly,

we study the situation when the M-estimator is obtained by minimizing

a general loss function that may not be the negative log-likelihood in SM

Section 6. R code used for these simulations is publicly available at https:

//github.com/zq00/glmboot. The R package glmhd (https://github.

com/zq00/glmhd) implements the resized bootstrap method and provides

tutorials.
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4.1 Simulation design

4.1 Simulation design

First, we set n = 4000 and p = 400 (κ = p/n = 0.1). Without specifying,

we sample covariates from a multivariate t-distribution (MVT) with ν = 8

degrees of freedom whose covariance matrix Σ is a circulant matrix equal

to Σij = 0.5min(|i−j|,p−|i−j|). This structure implies that the Σ−1ii ’s are all

equal. (If the covariates were Gaussian, then the variance of a predictor

conditional on the others is the same regardless of the predictor. In turn,

HDT then predicts that in this case all the MLE coefficients have equal

standard deviation.)

After sampling the covariates, we sample responses from a logistic

model. We sample model coefficients by first picking 50 non-null variables;

then, we sample the magnitude of the non-null coefficients from an equal

mixture of N (5, 1) and N (−5, 1). This signal strength ensures that the

MLE exists. At the same time, the magnitude of the coefficient is suffi-

ciently large so that we can tell a large proportion the the non-null variables

apart from the nulls. For instance, when βj = 4.78 as in the example in

Section 1.2 , over 90% of the 95% CI excludes 0, and approximately 90% of

the non-null coefficients from the mixture distribution satisfy this property.
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4.2 Results

4.2 Results

We report below the estimated inflation and standard deviation of the MLE

as well as the coverage proportions. We also examine the MLE distribution

and the assumption that the bias factors αj are all equal.

4.2.1 Estimated Inflation and Variance

From Section 1.1 we know that the MLE is just too sure in the sense that

the estimated magnitude is biased upwards. As an illustration, Figure 4

plots the average MLE versus the model coefficients when the covariates are

from (modified) ARCH model (see SM Section 3.2). Since the scatterplot

lies near a line, we can see that the αj’s do not seem to much depend on

the magnitude of the coefficients; additionally, the plot confirms the bias of

the MLE since the line has a slope greater than 1. For information, we get

a very similar plot for the multivariate t-covariates.

We now examine the accuracy of the estimated inflation using existing

high-dimensional theory and the resized bootstrap (recall that both esti-

mate a common bias factor). Table 1 reports the estimated inflation and

variance of a single null and a single non-null variable. As observed in

Section 1.2, HDT captures the bias, and Table 1 shows that the resized

bootstrap estimate is also reasonably accurate. As to the standard devi-
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4.2 Results

Figure 4: Average MLE versus model coefficients for the non-null variables.

The x-axis shows the magnitude of each non-null coefficient and the y-axis

shows the average MLE over 832 repetitions. The red line has zero intercept

and slope equal to 2.08. In this example, the covariates are sampled from

the modified ARCH model described in SM Section 3.2.

ation, while both methods slightly underestimate the std.dev., the resized

bootstrap is more accurate and its relative error is less than 1%. In partic-

ular, the resized bootstrap captures the increased std.dev. of the MLE of

non-null variables in comparison to null variables. In contrast, classical cal-

culations based on the Fisher information significantly underestimate the

std.dev.. Since the resized bootstrap yields a more accurate std.dev., we

would expect enhanced CIs.
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4.2 Results

Table 1: Estimated inflation and std.dev. of the MLE. The correct values

(empirical bias and std.dev. ) have been obtained from 10,000 repetitions.

The std.dev. from classical theory is calculated by the glm function in R

and averaged over 10,000 repetitions. The resized bootstrap estimates are

computed by taking an average over 1000 repetitions and uses an estimated

signal strength γ. We highlight the number closest to the empirical obser-

vation in bold.

Inflation Standard Deviation

High-dim Resized Empirical Classical High-dim Resized Empirical

Theory Bootstrap Bias Theory Theory Bootstrap Std.dev.

β = 0 - - - 1.232 1.259 1.316 1.327

β = 5.519 1.151 1.159 1.160 1.244 1.259 1.327 1.337

4.2.2 Coverage Proportion

Section 3.2 introduced two types of CIs, based on the assumptions that

the MLE is approximately Gaussian (Eqn. (3.5)) or that the standardized

bootstrap MLE approximates the distribution of the standardized MLE

(Eqn. (3.7)). Before evaluating accuracy, we examine these assumptions by

showing a normal Q-Q plot of the MLE (Figure 5, Left) and a Q-Q plot of

the standardized bootstrap MLE versus the standardized MLE (Figure 5,

Right). Here, we standardize the bootstrap MLE by the estimated inflation
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4.2 Results

Figure 5: (Left) Normal Q-Q plot of the MLE. (Right) Q-Q plot of the stan-

dardized bootstrap MLE (in one simulated example) versus the standard-

ized MLE. In this example, the covariates are sampled from a multivariate

t-distribution.

and estimated std.dev. and the MLE by the correct bias and std.dev.. Along

the points align on the 45 degree line in both plots, we conclude that both

assumptions are reasonable and, therefore, expect that both CIs would

perform well.

Denote the confidence interval for βj in the ith simulation as CIi,j, and

define the proportion of times a single variable βj is covered as

qj :=
1

N

N∑
i=1

I{βj ∈ CIi,j}. (4.10)

Define the coverage proportion of all of the variables in the ith experiment

only as

q̄i =
1

p

p∑
j=1

I{βj ∈ CIi,j} (4.11)
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4.2 Results

We report both coverage of a single non-null coefficient qj and the propor-

tion of variables covered in a single-shot experiment q̄ = 1
N

∑N
i=1 q̄i in Tables

2 and 3 respectively (we report the coverage proportion qj for a single null

variable in SM Section 3.1). Both the Gaussian approximation (Boot-g)

and bootstrap MLE distribution (Boot-t) are used to compute the CIs.

The two CIs not only differ in their formulae, but also in the number of

bootstrap samples: we use B = 10, 000 bootstrap samples to compute the

boot-t CI, but only B = 100 bootstrap samples to compute the boot-g CI.

This is because boot-g CI requires only estimates of the bias and variance,

while boot-t CI requires an estimate of the entire distribution.

While the resized bootstrap slightly undercovers a single coefficient (Ta-

ble 2), the relative error is within 2% in all of the levels we examined. Simi-

larly, the proportion of variables covered in a single-shot experiment (Table

3) is also close to the nominal coverage and the relative error is within 1%.

In addition, boot-g and boot-t CI achieve similar accuracy at every level we

examined. Since boot-g CI uses a smaller sample size, we prefer boot-g CI

when the Gaussian assumption holds. We can verify the normality assump-

tion by comparing the quantiles of bootstrap MLEs with normal quantiles.

Table 2 shows the coverage of a non-null variable, and we report coverage

of a null variable in the supplement. Comparing the coverage probability
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4.2 Results

Table 2: Coverage proportion of a single non-null variable (qj in

Eqn. (4.10)) with standard deviation between parentheses. This exam-

ple uses multivariate-t covariates. We highlight the number closest to the

empirical observation in bold.

Theoretical CI Standard Bootstrap Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Parametric Pairs Boot-g Boot-t Boot-g Boot-t

95
87.3 93.5 71.1 76.3 93.6 93.9 94.2 94.4

(0.3) (0.3) (1.6) (1.3) (0.7) (0.7) (0.8) (0.8)

90
79.4 87.9 61.2 66.6 88.5 88.7 88.6 89.1

(0.3) (0.3) (1.7) (1.4) (1.0) (1.0) (1.1) (1.1)

80
67.4 77.2 46.8 52.7 79.5 79.6 80.8 80.0

(0.5) (0.4) (1.7) (1.5) (1.2) (1.2) (1.3) (1.4)

using the estimated signal strength γ̂ versus its true value γ shows that the

method with estimated parameters perform as well as if we had an oracle.

As to the other methods, the HDT CIs slightly undercover since vari-

ability is underestimated as seen earlier. Classical CIs significantly under-

cover. Neither the parametric nor the pairs bootstrap provide the correct

coverage, and this is consistent with observations from Figure 1.
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Table 3: The proportion of covered variables in a single-shot experiment (q̄

in Eqn. (4.11)). The standard deviation is given between parentheses.

Theoretical CI Standard Bootstrap Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Parametric Pairs Boot-g Boot-t Boot-g Boot-t

95
92.5 93.7 90.8 93.3 94.6 94.9 94.7 95.0

(0.02) (0.02) (0.06) (0.05) (0.04) (0.04) (0.04) (0.04)

90
86.6 88.2 84.5 87.8 89.5 89.7 89.7 89.9

(0.02) (0.02) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06)

80
75.7 77.7 73.6 77.5 79.4 79.5 79.6 79.7

(0.03) (0.03) (0.09) (0.08) (0.08) (0.08) (0.08) (0.08)

5. Application to a real data set

Having observed that the resized bootstrap procedure provides more accu-

rate inference compared to classical and high-dimensional theory, we now

analyze a real data set. In this study by Hong, Jun and Lee (2019), re-

searchers aim to understand which factors are associated with restrictive

spirometry pattern (RSP), which is a lung condition. In particular, they

hypothesize that glomerular hyperfiltration (GHF), which assesses the kid-

ney function, may be associated with the risk of RSP. To evaluate their

hypothesis, they collected participants data from from the Korea National
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Health and Nutrition Examination Survey (KNHANES) from 2009-2015.

They performed a logistic regression, where the response variable is RSP

(defined as FVC < 80% AND FEV1/FVC ≥ 0.7) and the covariates include

demographic variables, medical history, medications used, and a variety of

health-related variables.

For the purpose of illustrating our approach, we fit a logistic regression

using subsamples of sample size n = 200 and include p = 18 covariates

including the intercept (κ = 18/200 = 0.09). We only include binary vari-

ables such that both positive and negative classes occur in at least 5% of

all the samples. We examine whether the confidence intervals of the model

coefficients, i.e., the log odds ratios, cover the “true” coefficients, which

we estimate by the logistic MLE using the full data that contains about

22,000 observations. Figure 6 shows the CI for each covariate using clas-

sical theory (black), resized bootstrap (red), and the estimated coefficient

using the full data (black points). Because the estimated γ is random, we

repeat 10 times and use the average as the estimated signal strength. The

resized bootstrap CI is closer to zero compared to CI using the classical

theory, and is slightly more accurate. For instance, the coefficient for waist

circumference is covered by the red segment, but is not covered by the black

segment.
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Figure 6: Confidence interval for each variable using classical theory (black)

and the resized bootstrap (red). The black points indicate true model co-

efficients, estimated using the full data set. While we include demographic

variables in the logistic model, we do not present their fitted coefficients as

in Table 2 of the paper.

Then, we generate B = 24 disjoint subsamples of sample size n =

200 and compare classical theory and the resized bootstrap based on the

estimated inflation, std.dev., and the coverage proportion of CIs. First, we

examine the bias of the MLE by plotting the average of the logistic MLE

estimated using each subsample versus the true coefficients (Figure 7, Left).

While the average MLEs are scattered across, their absolute magnitude is

slightly larger than the true coefficients. The resized bootstrap yields an

estimate α̂b = 1.14 (red). Though this is a small adjustment, it allows the
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Figure 7: Bias and std.dev. of the MLE. (Left) Average MLE for the vari-

ables versus true coefficients. The black points show the average MLE

averaged over B = 24 batches. The red line shows the resized bootstrap es-

timate of the bias factor (α̂b = 1.13). (Right) Average estimated standard

deviation of the MLE for each variable versus standard deviation across

batches. The black and red points respectively use classical theory and the

resized bootstrap. In both plots, the black line is the 45 degree line.

resized bootstrap to produce more accurate CI as observed in Figure 6.

Next, we plot the average estimated std.dev. versus the empirical std.dev.

in Figure 7 (Right) calculated across batches. The resized bootstrap and

the classical estimates are similar, and both methods tend to underesti-

mate the true standard deviation. In Table 4, we evaluate the proportion

of variables covered in each batch as well as the coverage probability of the

variable “systolic blood pressure”. Since both methods under-estimates the
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Table 4: Coverage probability of confidence intervals (the coverage standard

deviation is between parentheses). The first columns report the coverage

proportion for the variable “systolic blood pressure”. The next two columns

compute the proportion of variables covered in each batch and report the

average over 24 batches.

Nominal I. Single variable II. Single experiment

Coverage Classical Resized Bootstrap Classical Resized Bootstrap

95 87.5 (6.9) 91.7 (6.0) 92.2 (1.3) 94.9 (1.1)

90 87.5 (6.9) 87.5 (7.2) 85.8 (1.6) 88.2 (1.4)

80 83.3 (7.8) 83.3 (8.1) 72.3 (1.9) 75.3 (1.7)

std.dev., we expect that the bootstrap provides some improvement in cov-

erage, but does not yield correct coverage either, and this is indeed what we

observe in the table. In this example, we use the large sample coefficient as

a proxy for the true model coefficients, and our results suggest that when

the sample size is small, while the resized bootstrap may not yield accurate

coverage, it may perform better than the classical theory.
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6. Discussion

In this paper, we demonstrated that the distribution of the MLE in large

logistic regression models depends on the distribution of the covariates and

that bootrstrap methods fail to approximate this distribution. This is in line

with previous findings concerned with linear regression (El Karoui (2018);

El Karoui and Purdom (2018)). To fix this problem, we introduced a re-

sized bootstrap, which correctly adjusts inference. The key is to resample

from a parametric distribution obtained by shrinking the MLE towards zero

in a data-dependent fashion, where the amount of shrinkage is informed by

insights from HDT. Resized bootstrap CIs yield correct coverage propor-

tions for different types of covariate distributions and types of GLMs. Our

findings echo previous results in El Karoui and Purdom (2018) and Lopes

and Aue (2019); combining HDT with bootstrap resampling methods can

provide improved estimates.

We conclude with several future research questions. First, while the

resized bootstrap procedure provides a high-quality approximation to the

MLE distribution, it slightly underestimates the standard deviation. There-

fore, future research on the theoretical accuracy of the procedure might lead

to improvements in the design of the resized MLE, for example, by adjusting

the coefficients to not only match the standard deviation of the linear pre-
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dictor, but also a few higher moments. Second, one drawback of the resized

bootstrap is its relatively high computational cost: we need to compute

the MLE many times to estimate γ and the MLE distribution. Although a

few hundred bootstrap samples suffice to yield accurate CIs when the MLE

is approximately Gaussian, being able to reduce the computational cost

would make it even more suitable for larger datasets. Third, as mentioned

in Section 3.3, the resized bootstrap is expected to accurately estimate the

distribution of the MLE for coefficients with moderate magnitudes. While

the resized bootstrap is reasonably accurate for relatively large βj (see sup-

plement), novel insights might further enhance it.

Supplementary Materials

Additional materials contain the following: (1) a conjecture about the MLE

distribution when the covariates follow a multivariate t-distribution; (2) a

description of the SLOE estimator; (3) additional logistic regression ex-

amples; (4) simulated examples for Probit and Poisson regressions; (5) a

simulated example when the sample size is small; (6) simulations when the

coefficients are sparse; (7) application of the resized bootstrap method to

the case when the M-estimator minimizes a general function.
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