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Abstract

Background: Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used R software package for the

generation of gene co-expression networks (GCN). WGCNA generates both a GCN and a derived partitioning of

clusters of genes (modules). We propose k-means clustering as an additional processing step to conventional

WGCNA, which we have implemented in the R package km2gcn (k-means to gene co-expression network, https://

github.com/juanbot/km2gcn).

Results: We assessed our method on networks created from UKBEC data (10 different human brain tissues), on

networks created from GTEx data (42 human tissues, including 13 brain tissues), and on simulated networks derived

from GTEx data. We observed substantially improved module properties, including: (1) few or zero misplaced genes;

(2) increased counts of replicable clusters in alternate tissues (x3.1 on average); (3) improved enrichment of Gene

Ontology terms (seen in 48/52 GCNs) (4) improved cell type enrichment signals (seen in 21/23 brain GCNs); and (5)

more accurate partitions in simulated data according to a range of similarity indices.

Conclusions: The results obtained from our investigations indicate that our k-means method, applied as an adjunct

to standard WGCNA, results in better network partitions. These improved partitions enable more fruitful downstream

analyses, as gene modules are more biologically meaningful.

Keywords: Gene co-expression networks on brain, K-means applied to WGCNA, Assessment of better gene clusters

on bulk tissue

Background
Systems biology is a descriptive paradigm in which one

of the main concerns is how genes work together to

form subsystems. A basic assumption within this con-

text is that genes which are co-expressed are often in the

same subsystem [1]. Gene co-expression networks (GCN)

are graph-based models used to express such subsys-

tems. Construction of these networks is usually based on

co-variation in expression within groups of genes across

samples [2]. They are graphs in which nodes are genes

and edges represent interactions between them. Typically,
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the edges are undirected, in the sense that causality (e.g.

whether changes in Gene A expression causes changes in

Gene B expression) is unassigned. Edges may be weighted

and/or signed, thus indicating the strength of relationship

between pairs of genes and up/down regulated interac-

tions depending on the sign. Topological considerations,

such as the number or relevance of connections for each

node, can distinguish some nodes as highly intercon-

nected (hubs) and central nodes within the system being

modelled.

GCN can be used to make in silico functional pre-

dictions about genes. The Guilt By Association (GBA)

paradigm [3] is used to predict function for genes that are

not sufficiently studied and annotated using GCNs. GBA

assumes that genes that strongly co-express must share

functionality, thus we can use well-characterised genes to

assign function to those that are not.
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Groups of genes that tightly co-express are usually seen

as a single functional unit. On this basis, in the same way

that single genes are used in association mapping with

phenotype, convenient mathematical representations of

groups of genes can be useful for multi-gene associa-

tion mapping with phenotype as well. One of the most

widely used pipelines for GCN construction is Weighted

Gene Co-expression Network Analysis (WGCNA) [4–6].

It works in two main steps. In the first step it constructs

a network N of gene-gene co-expression in the form of a

squared n×nmatrix, where n is the number of genes in the

study and each N(i, j) is the interaction strength between

the corresponding pair of genes (i.e. adjacency). In the sec-

ond step, this matrix is used as the basis for obtaining a

new squared distance matrix with the distance between

genes, ready to be used for obtaining clusters. And then

such clusters can be used for multi-gene association map-

ping with traits or different downstream analyses [7–9].

This pipeline has been widely used and generated many

fruitful insights into how genes interact within specific

conditions [7–13].

In this paper we propose an improvement to the stan-

dard WGCNA pipeline by a refinement of how the

clusters (i.e. modules) are generated. This refinement is

enabled through a hybrid clustering algorithm. It uses the

output of the conventional WGCNA clustering as sub-

sequent input to a k-means [14] clustering algorithm for

further refinement. We will show that this hybrid scheme

improves many interesting module properties paving the

way to more accurate and potentially useful WGCNA

co-expression network analyses.

WGCNA’s standard configuration uses hierarchical

clustering (HC). In HC, a strong point is that the dendro-

gram structure eases the problem of finding a good num-

ber of clusters, k. Moreover, the developers of WGCNA

include in the software an automated method to gener-

ate the appropriate number of clusters [15]. On the other

hand, a weak point of HC is that final results strongly

depend upon how distances between clusters are com-

pared. Furthermore, once the decision on which branch of

the dendrogram a gene belongs to, this cannot be undone.

Regarding k-means, a weakness in it is that the value of

k (i.e. number of clusters) must be set prior to running

the algorithm. Although there are techniques for setting it

automatically, most of these are based onmultiple random

initialisations of centroids (e.g. k-means++ [16]), so k is

usually set arbitrarily. It needs an initialisation of the cen-

troids to start running. A centroid is defined as an average

representative of all the genes/points within the cluster

such that all genes/points belonging to the cluster show

minimum distance to that centroid in comparison to the

other modules. How we initialize these centroid will have

a critical effect on the final result. On the upside, k-means

will search for the best centroids quickly and will quickly

converge to an equilibrium situation (see “Improvement

of hierarchical clustering with k-means” section).

The hybrid scheme we propose exploits the upsides

from both approaches while alleviating their respective

drawbacks. K-means will move genes between modules

thus effectively undoing premature decisions made by HC

when assigning genes to sub-dendrograms. We set the

value of k equal to the number of modules discovered by

HC and we initialise the centroids to the eigengenes gen-

erated by WGCNA, thus taking advantage of HC to carry

out sensible initialization (see “The standard WGCNA

procedure” section).

Implementation
The standardWGCNA procedure

Consider a gene expression profile matrix Gn×m where

n is the number of samples for a given condition, m

is the number of transcripts and each g(i, j) in G gives

the quantification of the j-th transcript within the i-th

sample. The standard WGCNA [6] procedure generates

a squared adjacency matrix, between genes, based on

their correlation. Depending on whether the adjacency

is signed (where correlations in the [−1, 1] interval are

scaled into the [ 0, 1] interval) or unsigned (where negative

correlations are made positive) we will obtain networks

either reflecting the direction of co-regulation (i.e. up or

down regulation) or ignoring it, respectively. Adjacency

is defined as adj(i, j) = |cor(i, j)|β for genes i and j. The

β parameter is an integer that modulates how smooth is

the transition between the lowest to the highest possible

co-regulation between genes.

The WGCNA methodology enables choosing β in such

a way that the network shows a Scale Free Topology

(SFT) property [17] (where the network has the same

shape whether ‘zoomed-out’ or ‘zoomed-in’). This feature

is commonly observed in biological networks. From the

adjacency values, a new matrix with the same dimensions

is created, the Topological Overlap Matrix (TOM). This

step alleviates the effect of noisy genes when obtaining the

adjacency from correlation.

Once the network is built through the TOM, it is con-

verted to a distance matrix (1−TOM) to use it as the basis

for clustering (HM with average linkage distance compar-

ison between clusters). A dynamic tree-cutting algorithm

[15] is then applied to the dendrogram to generate a

partition P = {P1, . . . ,Pk} of disjunct sets of genes.

Thus, WGCNA generates two main components which

are useful for subsequent downstream analyses. On the

one hand, the TOM gives, for the j-th row/column, the

level of co-expression of gene j with all of the genes in

the network. The higher the value for a given (i, j) pair, the

tighter the interaction between them. Furthermore, the

sum of all row or column values for a gene, will give a

measure of its overall level of co-regulation within the
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experimental condition, i.e. its ‘hubbiness’. Thus, the TOM

is, in effect, the GCN.

The other component produced by WGCNA is the

partition of gene sets, P, created from the TOM. These

partitions or modules often reflect cell types, common

cellular functions or other biological subsystems reflect-

ing, for example, immune function, or function related to

the tissue under study [2, 7, 8]. But the main utility of

modules is to allow mapping gene groups to traits, when

available. Following the WGCNA standard methodology,

this is performed by looking for significant correlations

between traits and the module ‘eigengene’. The eigengene

summarizes the overall module activity in a given sam-

ple, and is obtained as the 1st PC component of the gene

expression of genes belonging to the module.

Improvement of hierarchical clustering with k-means

HC provides a convenient graphical representation of

groupings that can be validated by biologists. One can

readily obtain a suitable number of clusters from such an

approach by ‘cutting’ the dendrogram at different heights,

either manually or via various automatic algorithms [15].

But, as we explained above, the final dendrogram strongly

depends on how we measure distance between clusters

(e.g. via simple, complete or average linkage). Further-

more, once a gene falls under a subdendrogram, this

decision cannot be modified under HC.

If we consider how WGCNA manages modules and

eigengenes, it is assumed that each gene is highly corre-

lated with other genes in its module. In other words, the

module membership (MM) of the gene in its ownmodule,

measured as the Pearson correlation between its expres-

sion and the module eigengene, should be higher than it

is for any other module. However, we show here, from our

real-data analyses, that 25% of genes would be better off

in other modules (see “K-means improves the ‘eigengene’

as a tool for analysis” section).

In this paper, we propose a post-processing step based

on k-means to overcome all these limitations. It works

on the partition P, leaving the TOM unmodified. The k-

means algorithm [14] is well known and works on the n

dimensional sample space of m points (genes) in an itera-

tive fashion. It starts by setting a value for k, the number of

clusters to discover and k centroids, one for each cluster.

Centroids are the representatives of each cluster, in such

a way that a point (gene) g belongs to cluster i if the dis-

tance of such point to the cluster centroid is the minimum

among all distances to all k cluster centroids. In standard

k-means, given a partition of k modules, the the centroid

for the i-th module ci = {ci,1, . . . , ci,n} is generated as

follows

ci =
1

n

m∑

j=1

gj, where gi ∈ pi. (1)

However, in WGCNA, the notion of a centroid is substi-

tuted by that of an eigengene. Accordingly, our definition

of k-means will use eigengenes as centroids.

The concept of distance is a central element of k-

means. It is important to note that distance in k-means is

always defined between a point in the dataset (i.e. a gene)

and a centroid (i.e. an eigengene). Euclidean distance is

the the most commonly used distance in conventional

k-means. However, given that we are constructing co-

expression networks based on correlations, distance can-

not be Euclidean. Modules should represent co-expressed

genes (i.e. highly correlated) instead. Thus, and depend-

ing on the WGCNA type of network, we should apply

a distance between gene and eigengene based on the

co-expression measure used. We will limit our discus-

sion to signed networks. These specific types of networks

will separate up- from down-regulated genes in differ-

ent modules, which is usually of biological interest. They

are also convenient for downstream analysis as corre-

lation of genes and eigengenes will be positive, which

eases a posteriori analyses. In signed networks, WGCNA

uses

co(gi, egj) =
1

2
(1 + cor(gi, egj)), (2)

as a normalised measure of co-expression between the

expression profile of a gene gi and a eigengene egj,

where by default cor() is the Pearson correlation coeffi-

cient. Accordingly, we use 1 − co(gi, egj) as distance. It is

worth noting that HC needs a distance matrix between

all genes, i.e. 1 − TOM. K-means needs instead a com-

putable distance definition between gene and eigengene.

Finally, on the basis of this definition of centroid and dis-

tance, genes are reassigned to the partitions induced by

the new centroids, iteratively. If a stopping criterion is

met, the algorithm finishes. Otherwise, a new iteration is

performed.

We note that WGCNA is computationally optimized

to use Pearson correlation. Other correlation measures

are in principle possible, including Spearman’s rank

correlation coefficient. However, in our own investiga-

tions we observe an increase in computation time of

at least ×2.5 when using Spearman correlation with-

out seeing any conclusive improvement with respect

to the biology of networks (data not shown). Thus,

throughout this paper we perform analyses using Pearson

correlation.

We propose a general procedure which obtains, from

a Gn×m matrix of gene expression profiles from n sam-

ples and m genes, a clustering partition P of such genes

by incorporating the standard WGCNA process together

with a post-processing of the partition obtained from it.
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The original contribution of this paper is described in

steps from 5 to 8 below.

• Step 1: Initialization. Let Gn×m be a dataset of n
samples andm genes for a given condition. Let d()

denote a distance function between a gene in G and

an eigengene. Let fc() denote a function which takes a

clustering partition P = {p1, . . . , pk} as an argument

and generates centroids (i.e. k vectors, one for each

pi, of n components)
• Step 2: β =

WGCNA::pickSoftThreshold(data=G,

powerVector=1:20,

networkType=‘signed’)$powerEstimate

• Step 3: Obtain a TOM, given G and β

• Step 4: Generate a partition PHC = {p1, . . . , pk} with

1 − TOM as a distance matrix and with average

linkage hierarchical clustering and dynamic cutting

height.
• Step 5: Let c = {c1, . . . , ck} be a set of k vectors of n

components which denote the centroids of the

k-means clustering.
• Step 6: Initialize c with fc(PHC)

• Step 7: Create a new partition PkM = {p1, . . . , pk} by

assigning each gene gi, 1 ≤ i ≤ m to a pj ∈ PkM such

that d(gi, cj) ≤ d(gi, ct), 1 ≤ t ≤ k holds.
• Step 8: If the termination criterion holds, then STOP.

If not, generate new centroids c with fc(PkM) and Go

to Step 7.

Note that, in this algorithm, we left d() and fc() unde-

fined. However, within this paper we define d() according

to Eq. 2 and fc() as the module eigengene.

Computational complexity of the proposed approach

Conventional WGCNA GCN construction needs three

sequential steps: (1) obtaining the soft threshold (i.e. β

parameter) to account for scale free topology, which has a

computational complexity that depends on the number of

genes and samples, (2) obtaining the TOM matrix, which

has a complexity O(n2), where n is the number of genes,

as it has to construct a n×n squared matrix of adjacencies

between all n genes, and (3) hierarchical clustering, which

has a complexity O(nlogn). Overall, WGCNA’s computa-

tional complexity is O(n2). WGNCA’s space complexity

is also O(n2) because it needs to maintain the TOM in

memory for HC to get the clusters. The computational

complexity of k-means fits well with WGCNA’s complex-

ity. Its time complexity is O(n × k × it) where n is the

number of genes, k is the number of clusters and it is the

number of iterations. Assuming that k,it < 100, using it as

a post-process is very affordable in terms of computation

time. Note that k-means does not require the TOMmatrix

in memory as the only distances it requires are between

genes and eigengenes, and these we obtain on the fly by

using Eq. 2.

Stopping criterion

It is reasonable to assume that a sufficiently high num-

ber of k-means iterations will always be able to decrease

the number of misplaced genes (i.e. genes which lie

closer to the centroid of a different module) to 0. On

the other hand, the algorithm’s time complexity (see

“Computational complexity of the proposed approach”

section) means that it is possible to run a single k-means

in a conventional laptop in a matter of a few minutes. This

means that we could, in principle, design a stopping cri-

terion based on the minimun number of misplaced genes

being set to 0. However, we note that a situation may

exist where the algorithm may fall into an infinite loop

without reaching the desired state (i.e. changing the same

genes from one module to another and back again). Thus,

the stopping criterion we include in the software pack-

age km2gcn tries to reach the desired value for misplaced

genes but always within a limited number of iterations.

We did not observe the mentioned infinite loop situation

in any of our experiments.

Results
We wished to assess the ability of our method to define

gene groups that genuinely reflect biological function.

This is non-trivial for the following reasons. Firstly, many

genes are known to be pleiotropic, i.e. a single gene can

affect many traits [18]. Transcription factors are a good

example of this [19] but there are many other examples

[20]. By creating non-overlapping partitions we deliber-

ately ignore this fact and implicitly assume a model in

which genes are highly specialized (i.e. belong to a single

module). Secondly, we are limited by technology and sam-

ple availability from producing optimum estimates of gene

expression profiles. We therefore lack of all the necessary

information to build the best model. Finally, if we wanted

to evaluate the functional similarity of genes within a

module, again we do not know all functions that all genes

may play in any condition.

Notwithstanding these caveats, we explored various

approaches to provide a comprehensive and varied assess-

ment of the effectiveness of our k-means hybrid method.

In “Materials and methods for the GCNs used for our

evaluations” section we describe the datasets used in our

investigations and the particular pipelines used to obtain

the corresponding GNCs. In “Dynamics of k-means when

working on 1-TOM distance space” section we show our

hybrid approach (i.e. the combination of HC and k-means)

works. in “Is k-means doing a proper job?” section we

digress to note that k-means actually optimizes the sum of

squares of within cluster distance. In “K-means improves

the ‘eigengene’ as a tool for analysis” section we show
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that the proposed approach improves modules as a tool

for mapping with traits. In “K-means improves module

preservation” section we suggest that k-means improves

cluster similarity between conditions (i.e. tissues in this

case). In “K-means detects more accurate partitions than

WGCNA in simulated data” section we compare the accu-

racy of k-means against WGCNA on simulated data.

In “K-means improves functional enrichments” section

we show that k-means improves a module’s functional

characterization through well-known databases such as

the Gene Ontology. Finally, in “K-means improves brain

specific cell type marker enrichment” section we present

results that suggest that gene markers for specific cell

types show a better arrangement in partitions generated

from k-means.

Materials andmethods for the GCNs used for our

evaluations

We evaluated GCNs in two well-known datasets. The

first (the United Kingdom Brain Expression Consortium

or UKBEC dataset) is focused on brain tissue exclusively

and it is based on Affymetrix Human Exon v2 microar-

ray expression profiles from 10 brain tissues. This dataset

is well suited for evaluating the k-means extension to

WGCNA because it is well known, it comprises 10 dif-

ferent brain regions and GCN networks created with

the standard WGCNA method have been published [8].

The procedure used to create the GCNs is as follows.

Sample outliers were identified by visual inspection after

clustering the samples using hierarchical clustering with

Euclidean distance as the distance measure. The major-

ity of the identified outliers had low interarray correlation,

which is defined as the Pearson correlation coefficient

of the expression levels for a given pair of transcripts

using all available data available (i.e., < 3 standard devi-

ations of the average interarray correlation). After outlier

removal, the same process was repeated to check for addi-

tional outliers. The GCN constructed was of signed type,

with β = 12 for all tissues. Using these settings, the HC

WGCNA partition was created using 15,409 transcripts

(13,706 genes) passing quality control. Once the parti-

tion was created, 3743 additional transcripts (3541 genes)

were assigned to modules based on their highest module

membership. Each partition was refined afterwards with

k-means.

The second dataset is GTEx [21], which is one of

most comprehensive human datasets currently available

for multi-tissue transcriptomics. The GTEx V6 gene

expression dataset comprises 11,978 samples unevenly

distributed across 54 post-morten human tissues. We cre-

ated networks for 42 tissues. In sequential steps, starting

from RPKM [22] values of gene-level quantification pro-

vided by GTEx, we selected all tissues with more than

60 samples. For each tissue we retained Ensembl genes

with RPKM > 0.1 seen in more than 80% of the sam-

ples. This produced a variable set of genes for each tissue,

with a minimum of 16,098 for skeletal muscle tissue and

a maximum of 29,561 for testis. We applied batch, gen-

der, age and RIN as known covariates for data correction

and to account for unknown covariates we applied SVA

(surrogate variable analysis)[23] axes. For each dataset

of filtered RPKM values, we applied the sva R package

using svaseq() to generate SVA axes. For network con-

struction we used the residuals obtained by regressing the

RPKM expression values with the known and unknown

covariates with a generalized linear model. To construct

the networks, we applied the algorithm introduced in

“Improvement of hierarchical clustering with k-means”

section.

Note that the differences between the UKBEC and

GTEx networks are important andmakes themwell suited

and complementary for the purpose of our study. The

UKBEC gene expression dataset is microarray based,

while the GTEx gene expression dataset is based on

RNA-seq technology, with RPKM quantification. UKBEC

networks are restricted to 10 brain tissues while GTEx

networks cover 42 tissues, including 13 brain tissues (see

Additional file 1 for tissues used, number of samples and

genes). In summary, we have 42 GTEx GNCs, 10 brain

specific UKBEC GCNs, GTEx sample sizes range from

n = 63 to n = 430 (mean 182); UKBEC sample sizes

range from n = 65 to n = 88 (mean 78.8); we have

a variable number of genes used in the GTEx GCNs, in

the range 16,098 to 29,561 for skeletal muscle and testis

respectively (mean 19,636); and the same 19,152 probes

for all 10 UKBEC GCNs. Finally, note there is a much

higher variability in the number of modules per GCN

in GTEx, [ 10, 214] (mean 67.6) than in UKBEC, [ 13, 34]

(mean 22).

Please note that throught the paper we use abbreviations

to refer to tissues. Please see Table 1 for the correspon-

dence between abbreviations and brain region names.

Dynamics of k-means when working on 1-TOM distance

space

As outlined in “Improvement of hierarchical clustering

with k-means” section, our proposed algorithm does not

modify the distancematrix (i.e. 1−TOM) but acts later, on

the partition P = {p1, . . . , pk} taking k from the number

of modules discovered by the HC used within WGCNA.

K-means acts iteratively creating centroids from mod-

ules and deciding for each gene, on the basis of the

new centroids, which one is nearest to the gene. If, in

the current iteration, the gene is nearest to a different

centroid, then the k-means algorithm assigns it to the

corresponding module. Thus, in each iteration a new par-

tition is generated with the changes applied to the former

partition.
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Table 1 Real names for the tissues used in the UKBEC and GTEx brain tissue experiments

Short name UKBEC Tissue name Samples Short name GTEx Tissue name Samples

CRBL Cerebellum 76 AMYG Amygdala 72

FCTX Frontal Cortex 83 ACCT Anterior cingulate cortex (BA24) 84

HIPP Hippocampus 86 CAUD Caudate (basal ganglia) 117

MEDU Medulla 88 CEHE Cerebellar Hemisphere 105

OCTX Occipital cortex 77 CERE Cerebellum 125

PUTM Putamen 77 CTEX Cortex 114

SNIG Substantia nigra 65 FCTX Frontal Cortex (BA9) 108

TCTX Temporal Cortex 72 HIPP Hippocampus 94

THAL Thalamus 81 HYPO Hyppothalamus 96

WHMT White matter 83 NUAC Nucleus accumbens (basal ganglia) 113

PUTM Putamen 97

SPIN Spinal Cord 71

SNIG Substantianigra 63

Figure 1 displays the dynamics of the algorithm in terms

of how genes are changed from one module to another.

In all analyses displayed there is a high activity in terms

of moved genes in the early iterations, which progres-

sively decreases to reach a stable level of changes close to

zero. The number of changes at the first iteration ranges

roughly between 3000 and 5000 genes, i.e. about 1/4 of

the gene pool size. Any single gene can be moved more

than once during the series of iterations (for more details

on gene changes and how the algorithm stabilizes see

“Is k-means doing a proper job?” section). It is also of

interest to note that multiple modules contribute to the

final configuration of genes to each other module. For

example, with the 42 GTEx GCNs, for each module pi ∈

P, on average 30% of other modules within the GCN

contribute with genes to its final gene set configuration.

Genes that leave their HC module have a module mem-

bership at that module of 0.53 on average, with standard

deviation of 0.19. Genes arriving to a module for the final

k-means partition show an average MM on arrival, 0.57,

with standard deviation 0.18.

The lower panel of Fig. 1 focuses on the 10 UKBEC

GCNs, and on how MM evolves with iterations. Dashed

lines show, for each tissue, the average MM of moved

genes, at each iteration, defining MM with reference to

the original WGCNA partition. Initially, the algorithm

focuses on moving genes with very low MM, but follow-

ing this it focuses on genes with higher MM and then

stabilizes. The solid lines show the average MM of all the

genes in the network for each iteration. This dramatically

increases over the first iterations and then smoothly and

monotonically increases across additional iterations. This

suggests that, over time, genes’ assignment to a module

becomes stronger.

Is k-means doing a proper job?

k-means is designed to optimize the sum of squares of

within clusters distance [14]. We define the within cluster

distance, denoted withW (P), for a partition P as

W (P) =

K∑

k=1

∑

p(i)=k

||gi − ck||
2 (3)

where K is the number of clusters within P, p(i) refers to

the cluster that gi belongs to, and ck is the eigengene for

the k-th cluster. We could, alternatively, define the dis-

tance between clusters, B(P). Note that for a given set of

genes, we can obtain the sum of distances between all gene

pairs. If we denote this measure by T(G) for a given gene

expression profile G, we can decompose it into T(G) =

B(P) + W (P) for any given P obtained from G (see [24]

for a detailed discussion). This means that maximizing the

between-clusters distance is equivalent to minimizing the

within-cluster distance.

We observe that k-means monotonically decreases

W (P) (and thus B(P) increases) across iterations (see

Fig. 2). The algorithm generates a higherW (P) at the early

iterations, which decreases to a lower level in later itera-

tions. This behaviour is in line with the shape of the gene

changes curves of the upper plot in Fig. 1. Higher num-

ber of moved genes imply higher decreasing rate of within

cluster distance.

This behaviour is also in accordance with what we see

in Fig. 3. This plot shows, for each module pi ∈ P, and

the specific case of UKBEC’s cerebellum CGN, the dis-

tance between the eigengenes for the same module, as

they are created during successive iterations. Over time,

the eigengene vectors stabilize across iterations suggesting

that cluster definition becomes stable.
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Fig. 1 Upper plot shows the evolution of the number of moved genes

(y axis) between any pair of modules pi and pj across k-means

iterations (x axis) for UKBEC-microarray dataset. Bottom plot shows the

average module membership of genes (y axis) moved (dashed line)

across iterations (x axis) for the UKBEC-microarray dataset in

comparison with average module membership for all the genes (solid

line)

K-means improves the ‘eigengene’ as a tool for analysis

One of the main applications of WGCNA partitions

is searching for associations between gene clusters and

traits. Traits are usually given as a vector of n compo-

nents where n is the number of samples. On the other

hand, modules are comprised of m vectors of the same

form where each vector is the expression profile for the

corresponding gene. To assess the correlation between the

trait and the gene module, WGCNA transforms module

pi into an eigengene (i.e. the 1st principal component of

gene expression). From this, the correlation between the

trait and the eigengene can be easily obtained.

There are several applications for the eigengene. For

example, it can be used to provide a measure of how

strong is the membership of each gene g ∈ pi to the i-th

module, by correlating its expression with the eigengene,

resulting in the MM of g. Let this module membership be

denoted withm(g, i) for gene g andmodule i. It is assumed

that a good P would be one such that, the number of genes

g with m(g, i) < m(g, j) when g ∈ pi, for any i �= j, is low.

Let us call such genes ‘misplaced genes’. We would pre-

fer a partition in which the number of misplaced genes is

minimum. To assess the number of misplaced genes after

applying k-means, we performed investigations in the 10

UKBEC and 42 GTEx tissues. In UKBEC, using k-means

with only 20 iterations (i.e. the fixed number of iterations

used in all the experiments), we get a maximum of 380

misplaced genes in the putamen and a minimum of 72 for

occipital cortex and a mean of 208 misplaced genes per

partition. In the WGCNA partitions, the maximum num-

ber of misplaced genes is 5742 in temporal cortex, the

minimum is 3970 in white matter and an average of 4763

genes; 20 times more than with the k-means algorithm. In

GTEx clustering partition modules, the average number

of misplaced genes in modules from a WGCNA partition

is 118. After applying k-means, it is only 0.4.

K-means improves module preservation

One component of WGCNA provides a convenient tool

for the analysis of module preservation [5]. Given a parti-

tion, P, constructed from a network obtained from a given

set of samples S, we can test whether the features of each

module pi ∈ P (i.e. cluster and network based features)

are preserved in an alternative set of samples S′ (e.g. a

different species but same brain region, or same species

but different brain region). Preservation analysis is based

on estimating, for some statistic of interest, differences

between what is observed and what is obtained by ran-

dom permutation. For example, one statistic of interest is

the gene correlation with the eigengene (kME). Through

a simple transformation one can check whether the val-

ues obtained in the reference network are maintained (i.e.

correlated) for the same genes within the other network.

WGCNA uses the ‘Z-summary’ statistic as a general sum-

mary of all the different statistics used. To assess the effect

of k-means on Z-summary, we performed the same inves-

tigations on both 10 UKBEC brain tissues and on the

13 GTEx brain tissues. Note we focus on brain tissues

within GTEx as comparison of preservation only makes

sense for tissues that are similar. Within each UKBEC

and GTEx tissue GCN, we compared the preservation

of all the partitions generated by WGCNA alone with

the preservation obtained by applying k-means to each of

them. A permutation analysis on 10 tissues generates, for
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Fig. 2 The within cluster distance evolution during the k-means runs for the UKBEC datasets

Fig. 3 Euclidean distance of successive module eigengenes along the k-means iterations for Cerebellum samples for UKBEC datasets
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each tissue t, and for each module pi within the corre-

sponding tissue network, a vector of 9 Z-summary values

corresponding to the preservation of pi in the other 9

tissues.

Table 2 displays the results of the comparison between

WGCNA and k-means. Each table cell indicates the dif-

ference between the number of modules preserved after

applying k-means, versus the number of modules pre-

served with standard WGCNA (defined as Z-summary >

10 following the author’s recommendation). For exam-

ple, in subtable (a), FCTX (row) shows 5 more modules

preserved in CRBL (column) after applying the k-means

method.

From Table 2 it is apparent that there is an overall

increase in the number of modules preserved under k-

means. In the UKBEC GNCs, there is an improvement in

73 cases (81%), no improvement in 16 cases (17%), and

only case with a worse preservation (thalamus in white

matter). The average improvement in modules preserved

for UKBEC is 2.1. In the GTExGCNs, there is an improve-

ment in module preservation in 133 cases (85%), no

improvement in only 20 cases (12.8%) and a decreased

preservation in just 3 cases. The average number of mod-

ules improved by the k-means method is 4.2 (note that

in GTEx networks we get higher number of modules

per GCN).

This suggests that k-means creates less noisy modules

as similarities between tissues are more apparent. Finally,

it is worth noting that each tissue is expected to have

specific modules, i.e. modules that will be poorly pre-

served in other tissues because they are exclusive from

that tissue, reflecting study-specific or sample-specific

gene subsystems.

K-means detects more accurate partitions thanWGCNA in

simulated data

We wanted to test whether k-means improves the accu-

racy of partitions P with respect to those obtained

Table 2 Number of new modules from a tissue (rows) that are preserved on another tissue (columns) after applying the k-means to

the standard WGCNA partitions

(a) UKBEC brain tissues

CRBL FCTX HIPP MEDU OCTX PUTM SNIG TCTX THAL WHMT

CRBL 0 1 2 3 0 5 3 1 3 2

FCTX 5 0 1 5 0 6 3 0 5 3

HIPP 4 2 0 3 0 7 1 3 0 0

MEDU 1 2 4 0 3 2 3 2 1 1

OCTX 7 1 3 6 0 9 6 3 8 6

PUTM 3 1 3 2 1 0 1 1 0 2

SNIG 1 2 1 0 1 1 0 0 0 1

TCTX 3 2 1 3 0 1 4 0 2 4

THAL 2 2 3 1 1 1 0 0 0 -1

WHMT 1 1 0 1 1 0 1 1 0 0

(b) GTEx brain tissues

AMYG ACCT CAUD CEHE CERE CTEX FCTX HIPP HYPO NUAC PUTM SPIN SNIG

AMYG 0 0 14 1 2 5 6 3 10 14 7 7 7

ACCT 0 0 0 3 1 3 -1 5 1 0 1 6 2

CAUD 2 3 0 2 -1 5 6 5 6 3 1 2 4

CEHE 2 0 1 0 8 0 0 0 4 1 2 0 0

CERE 1 2 1 15 0 4 1 1 0 0 1 1 1

CTEX 2 4 0 4 3 0 1 2 4 4 4 6 3

FCTX 4 5 6 1 2 4 0 3 0 1 4 1 2

HIPP 0 4 7 2 4 0 8 0 1 2 2 8 0

HYPO 2 9 7 4 5 6 5 11 0 3 4 1 1

NUAC 12 11 7 9 5 9 7 20 9 0 6 4 7

PUTM 1 -3 4 6 1 5 3 8 7 5 0 6 5

SPIN 4 2 1 -1 1 6 2 7 9 5 14 0 4

SNIG 15 12 5 0 0 18 4 9 14 7 13 6 0
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under standard WGCNA. To this end we investigated

networks based on ‘synthetic data’. The WGCNA package

provides a gene expression profiling simulation method

simulateDatExp(), which is a convenient method for

generating artificial data sets that mimic the properties

of real datasets. The simulation method works with the

eigengene of gene expression for each gene belonging to

the module.

The simulation method requires, as arguments: (1) a

matrix with the eigengene for each module; (2) the pro-

portion of the total gene pool that one will find within

eachmodule; and (3) the number of genes to be simulated.

Note that the number of samples we want to simulate

appears implicitly as the length of each eigengene (each

eigengene has as many components as samples used to

construct the GCN). The method returns two elements:

(1) a gene expression profiling data set, let us denote it

with D, that we can use to construct GCNs; and (2) the

ideal clustering partition of the simulated gene expression

profiling, here denoted by P(D). Thus, if we rely on the

effectiveness of this simulation method, then a simulated

data set D, we will prefer a GCN construction algorithm

A to algorithm B if the distance between A(D) and P(D)

is smaller than between B(D) and P(D), where A(D) and

B(D) are the clustering partitions we get after construct-

ing GCNs on D with A and B, respectively. The accuracy

of an algorithm A is defined by the similarity of the the-

oretical optimal partition within the synthetic data to the

partition constructed by A.

In order to test whether k-means performs any bet-

ter than standard WGCNA on simulated data, we con-

structed a plausible set of simulated gene expression

profiles. We used GTEx and test with them both k-means

and standard WGCNA on GCN construction.

The accuracy of an algorithm A will be defined as how

similar are the theoretical optimal partition within the

synthetic data, and the partition constructed by A.

In order to test whether k-means performs any bet-

ter than standard WGCNA on simulated data, we con-

structed a plausible set of simulated gene expression

profiles. We used GTEx standard WGCNA GCNs (i.e.

their eigengenes and module relative size) as the simula-

tion seed for the generation of a synthetic gene expression

profile. We focused on the GTEx dataset rather than

UKBEC, because the 42 GCNs comprise a usefully het-

erogeneous network dataset. The simulated data process

produced a gene expression profile and a theoretical ideal

clustering partition for such profile. We used this theo-

retical ideal partition to evaluate standard WGCNA and

k-means accuracy. To estimate accuracy we use three dif-

ferent statistics: (1) the Rand [25] index, also implemented

within WGCNA, the Jaccard coefficient and the similar-

ity index [26], all of them implemented within clv R

package.

Results for all the experiments appear in Additional

file 2. Each row corresponds to a GTEx tissue, the

randsimvswgcna column corresponds to the Rand

index between the ideal partition and that obtained with

WGCNA on the simulated data. The randsimvskm col-

umn corresponds to the same index when using k-means.

The other four columns correspond to the Jaccard coeffi-

cient and the similarity index.

The k-means refinement generate higher values in all

the cases for all three indexes. These results are illustrated

in Fig. 4.

K-means improves functional enrichments

The Gene Ontology [27] is a curated database for gene

annotation which can be used for the functional charac-

terization of gene sets. Given a set of genes (i.e. the gene

set used to create our GCN), and a subset of those genes

(i.e. a module within our partition P), an enrichment anal-

ysis can be performed on GO annotations [28] to search

for terms in the ontology that are significantly enriched

in the subset of genes relative to the full set. The num-

ber and strength of significant terms obtained in this way

can be used to measure the biological functionality of the

module.

Given two different partitions P and P′ created from

the same TOM, we would prefer the partition that gen-

erates more significant GO terms if we assume GO to

reflect a biological ground truth as this would suggest that

the preferred partition makes more biological sense. We

used the gProfiler R package [29] to obtain enrichment

p-values, avoiding EIA (Electronic Inferred Annotations)

terms in GO and requiring a correction for multiple

testing with gSCS, as developed by the authors of the

package. We describe below a series of investigations to

characterize the improvement in a module’s biological

functionality.

Global annotation term significance

Consider a partition P = {p1, . . . , pk} of genes arranged

into modules pi, 1 ≤ i ≤ k. Now suppose we want to

perform a gene set enrichment analysis on each pi ∈ P

based on the Gene Ontology. GO is a list of ontological

terms, organised into three main branches: BP (Biologi-

cal Process), MF (Molecular Function) and CC (Cellular

component). Genes within the database will be associated

with a number of terms from each branch. Thus, for each

term in GO, and given the list of genes in pi, we can apply a

contingency test, e.g. Fisher exact test [30], under the null

hypothesis that the genes in pi show no significant over-

lap with the set of genes associated with the term.With an

appropriate correction for multiple testing, we define as

significant the association of the list of genes in pi with the

corresponding term, when the corrected p-value is< 0.05.

We then aggregate all these p-values for a module in a sin-
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Fig. 4 Results on performance of standard WGCNA and k-means on 42 simulated data sets that used the GTEx WGCNA GNCs as seed for simulation.

We display the same results using three different indexes of similarity between cluster partitions. The k-means method outperforms standard

WGCNA with all three indexes used

gle measure of significance as follows. For each pi ∈ P,

we use

sGO(pi) =
∑

pvaluej∈test(pi,GO)

−log10(pvaluej), (4)

where test(pi,GO) is the set of p-values, pvaluej, of sig-

nificant terms associated with the genes in partition pi,

emerging from the analysis. In this way,

SGO(P) =
∑

pi∈P

sGO(pi) (5)

can be used to aggregate all the biological signals (i.e.

all the significant annotation terms) of a whole partition

P. Given a choice of partitions, we prefer P to P′ when

SGO(P) > SGO(P′).

Figure 5a displays for each UKBEC and GTEx GCN,

the relative improvement between the standard WGCNA

partition, P and the k-means partition, P′ by

SGO(P′)

SGO(P)
− 1.

The average improvement is 13% (ranging from -22.9%

for the GTEx Spleen GCN to 109.1% for the UKBEC Puta-

men GCN). Overall, there is improvement in all UKBEC

tissues and in 34 out of 42 GTEx GCNs, and the overall

improvement is significant (paired t-test p-value 2.01e-6).

Does a higher enrichment implies less informativemodules?

High values of the SGO(P) index are of interest, as we pre-

fer a partition P over P′ if SGO(P) > SGO(P′). However, it

is possible that modules show better SGO values after k-

means because the module have more annotation terms

that are generic, and therefore less descriptive about the

specifics of the tissue studied. In order to assess this, we

applied the notion of information content [31]. We used

the GOSim package [32] which applies information-based

metrics to Gene Ontology terms. The metric IC(t) for a

term t belonging to an ontology is defined as:

IC(t) = −logP(t), (6)

where P(t) is the probability of observing t within the

annotations available within that ontology.

Ideally, we prefer modules with more GO terms, which

are more significant (i.e. more reliably defining the net-

work module) and more informative (i.e. terms that are

highly specific for the sample’s tissue). From previous

sections we know we have more significant networks

thanks to SGO. But is k-means capable of not only improv-

ing significance but also of maintaining the level of infor-

mation of the modules if not increasing it?

Figure 6 displays the differences between standard

WGCNA and k-means in the number of times a term

appears across all 44 GTEx networks (x-axis) versus their
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Fig. 5 The left plot’s light blue blue bars show the percentage of relative improvement by k-means with respect to WGCNA SGO(P) statistic. Values in

red (<0%) are those that k-means fails to improve. The right plot shows cell type enrichment improvement in the same way, for the 10 UKBEC GCNs

and the 13 GTEx brain networks. Again, values in red are those that k-means fails to improve

IC values (y-axis). Each point represents a significant

GO term, obtained by gProfileR as described above. We

may expect that terms with lower IC values appear more

frequently within the GCNs’ functional characterization

because they are more abundant on the Gene Ontology.

Fig. 6 Relation between frequency of appearance of GO annotation

terms across all GTEx GCNs and IC (information content). Terms

appearing more times tend to have lower IC. Regression lines show

that k-means gets better IC values for highly repetitive terms (not

significant Anova test)

The plot shows that both for kMeans and standard

WGCNA there is a clear tendency for the more frequent

terms to be also those with lower information content

(Pearson correlation −0.58, p-value < 2.2e − 16).

Is the overall IC obtained by k-means degraded as

a consequence of obtaining more significant terms per

GCN in comparison with standard WGCNA? To assess

this we regressed the information content of the signif-

icant annotation terms against the frequency of appear-

ance in the GCN annotation sets. We found a tendency

towards higher IC in k-means GCNs. This suggests that

k-means annotations are more specific, and therefore

more useful.

Is the increase in enrichment better than random?

In “Dynamics of k-means when working on 1-TOM dis-

tance space” section we noted that one of the changes

within cluster partitions after applying k-means is that

module sizes change andmanymodules will increase their

size considerably. It is fair to assume that modules increas-

ing their size in genes, will also increase their sGO enrich-

ment. There is a significant Pearson correlation between

increase in module size after k-means and increase in

number of significant annotation terms (r = 0.42, p-value

2.2e-16). The question arises, therefore, of what is the real

contribution of k-means in comparison to a random shift

of genes between modules?

In order to answer this question, for each of the 42GTEx

tissues and their corresponding WGCNA and k-means
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partitions, we identified those genes that were changed at

the WGCNA partition to create the k-means one. Then,

in a single step, we randomly assigned these genes to other

modules in such a way that we kept the same module

sizes obtained with k-means. Via this algorithm, we pro-

duced new partitions in which the genes that remained

unchanged from WGCNA to k-means stayed at the same

modules, but those genes that were changed by k-means

were again changed but this time in a random fashion.

Figure 7 shows the results of this investigation. Plot (a)

shows, for all modules of all GCNs, the SGO(P) statistic.

Plot (b) shows the number of significant GO terms.

In 89% of the modules, k-means finds the same num-

ber (18%) or more (70%) significant GO terms than

the random placement of misplaced genes (paired t-test

Fig. 7 Effect of random assignment of genes selected by k-means, on

a WGCNA partition, to be changed from one module to another. Plot

(a) refers to SGO(P) values and (b) to number of significant terms

p-value < 2.2e − 16). 88% of the final modules show

equal (15%) or better (73%) SGO(P) index using k-means

compared to random (paired t-test p-value < 2.2e − 16).

Aggregating the results by tissue, k-means placement per-

forms better in all the cases. Interestingly, the random

placement of misplaced genes prevents enrichment at

the WGCNA partition it starts with (i.e. comparing the

magenta with the blue plots). This is important because

even though many genes at the WGCNA partition are

not touched by the random approach, moving genes ran-

domly will nevertheless worsen these genes’ functional

annotations. This suggests that both the number of sig-

nificant terms and the SGO(P) index have a reasonable

sensitivity.

K-means improves brain specific cell type marker

enrichment

One interesting property of WGCNA GCNs is that par-

titions created from them can be useful when studying

cell-type specific gene networks. In studies where samples

come from bulk tissue, it is most likely that these samples

will be comprised of different cell material. In conse-

quence, the gene expression profiles obtained from them

should reflect this heterogeneity in some way. WGCNA’s

GCNs handle this heterogeneity in an elegant and con-

venient manner: they often generate gene clusters within

partitions which are specialized on a given cell type, i.e.

they present a highly significant enrichment of markers

(i.e. genes which are differentially expressed) for a given

cell type [2, 8, 13, 33].

We wanted to assess the effects of k-means on this

particular feature. To do this, we used three different

resources defining cell-type specific gene sets. These were

WGCNA’s brain lists, [34], and two alternative brain

specific sources, labelled here External [35] and Cahoy

[36]. We evaluated each partition’s modules from the

10 UKBEC GCNs and the 13 brain tissue GTEx GCNs,

using both standard WGCNA and k-means. This eval-

uation generated two matrices of p-values (i.e. one for

WGCNA and one for k-means), with each gene dataset in

a row and each specific module from each of the 10 net-

works in a column. P-values reflect a Fisher’s exact test

for whether there is significant concentration of the cor-

responding gene sets in the tested module. We include in

Additional files 1 and 2, the results for standard WGCNA

and k-means, on the 10 UKBECGCNs. Note that, in these

plots, both columns and rows have been clustered based

on −log10(p-values) so it can be better seen how mod-

ules from different tissues cluster together at columns, and

also how different gene sets cluster among rows. These

heat-maps reveal strongly clustered areas corresponding

to groups of cell-type specific genes sets within most, if

not all, of the tissues. More specifically, we see four groups

cell-type specific gene sets corresponding to microglia,
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astrocytes, oligodendrocytes and neurons (in order from

top right to bottom left).

In the UKBEC k-means heat-map (Additional file 3),

using a significance cut-off of 10−4 (to account for mul-

tiple testing), almost 65% of the modules show cell type

enrichment (i.e. 91 modules in total). Within these, 86

modules show a single cell type signal. In the WGCNA

heat-map (Additional file 4), 63% of the modules show cell

type enrichment (87 modules in total), with 85 showing

single cell type signals.

Figure 5b compares the two enrichment matrices, by

aggregating all the cell-type enrichment −log10 trans-

formed p-values as we did for the Gene Ontology enrich-

ment in “K-means improves functional enrichments”

section. Each bar represents the sum of all values of the

corresponding heat-map, for modules of the given tis-

sue. According to this, we always see an improvement

in UKBEC networks and in most of the the GTEx net-

works. The overall improvement is significant (paired

t-test p-value 0.000193).

Conclusions
Our study shows that an additional k-means step, when

used as an adjunct to WGCNA, improves the parti-

tions generated from gene co-expression networks. Our

method is not an alternative to WGCNA, instead it is an

additional step to the standardWGCNA pipeline. Indeed,

our method can be applied to any general hierarchical

clustering algorithm, and as such it could be usefully

applied to any hierarchical clustering based approach

for network generation, not just gene co-expression net-

works.

We evaluated our method using two contrasting gene

expression datasets representing a variety of different

tissues, one obtained with microarray technology (the

UKBEC dataset on 10 brain tissues), and the other

with RNA-seq (the GTEx dataset on 42 tissues, which

includes 13 brain tissues). Using a variety of approaches,

we demonstrate improved performance of our k-means

method in both datasets. Furthermore, we also demon-

strate improved performance using simulated data gener-

ated from the GTEx dataset.

We show via these analyses that it is possible to obtain

better partitions for the same networks via our k-means

method. Our method generates modules with fewer mis-

placed genes with respect to their eigengene, and this

implies that the eigengene is a better representative of

the phenomena hidden behind the particular set of genes

belonging to the module.

Using Gene Ontology enrichment analyses, we also

show that our partitions are enriched for biological func-

tionality. Statistically significant SGO(P) enrichment is

seen in all 10 UKBEC CGNs and in 34 out of the 42

GTEx GCNs.

Our partitions have improved modules preservation,

which also suggests that the clustering is more accurate

from a biological point of view. Although some gene mod-

ules are specific of each tissue (and therefore show poor

preservation in other tissues), it is a desirable property

of most GCN partitions to be highly replicable under

the assumption that a preserved module is more likely to

be a genuine module. Our analyses suggest that k-means

favours the creation of more genuine modules and these

results are seen in both UKBEC and GTEx GCNs.

Our k-means method also creates partitions in which

gene sets representative of specific brain cell types are

seen in modules with increased statistical significance.

This suggests, once again, more biologically genuine

modules.

GCN construction is likely to become an increasingly

important analysis, as genomics and transcriptomics are

increasingly applied to aid clinical diagnosis and progno-

sis. Methods that generate more reliable and robust gene

GCNs will enable improved prediction of inter-gene rela-

tionships and gene function, with a variety of applications.

Availability and requirements
UKBEC data [37] has accession code GSE46706. All infor-

mation about tissues, samples and quality control can be

found there. GTEx RPKM gene expression V6 was used in

this paper and downloaded from the GTEx portal: http://

gtexportal.org/home. Regarding the software we present

here, this is the availability and requirements.

Project name: km2gcn

Project homepage: https://github.com/juanbot/km2gcn
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Other requirements:WGCNA R package and gProfileR

License: LGPL
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of a gene; SFT: Scale free topology; TOM: Topological overlap matrix; UKBEC:

United Kingdom brain expression consortium; WGCNA: Weighted gene-co

expression network
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