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ARTICLE

An additive Gaussian process regression model
for interpretable non-parametric analysis
of longitudinal data
Lu Cheng1,2, Siddharth Ramchandran1, Tommi Vatanen 3,4, Niina Lietzén5, Riitta Lahesmaa5,

Aki Vehtari1 & Harri Lähdesmäki1

Biomedical research typically involves longitudinal study designs where samples from indi-

viduals are measured repeatedly over time and the goal is to identify risk factors (covariates)

that are associated with an outcome value. General linear mixed effect models are the

standard workhorse for statistical analysis of longitudinal data. However, analysis of long-

itudinal data can be complicated for reasons such as difficulties in modelling correlated

outcome values, functional (time-varying) covariates, nonlinear and non-stationary effects,

and model inference. We present LonGP, an additive Gaussian process regression model that

is specifically designed for statistical analysis of longitudinal data, which solves these com-

monly faced challenges. LonGP can model time-varying random effects and non-stationary

signals, incorporate multiple kernel learning, and provide interpretable results for the effects

of individual covariates and their interactions. We demonstrate LonGP’s performance and

accuracy by analysing various simulated and real longitudinal -omics datasets.
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B iomedical research often involves longitudinal studies
where individuals are followed over a period of time and
measurements are repeatedly collected from the subjects of

the study. Longitudinal studies are effective in identifying various
risk factors that are associated with an outcome, such as disease
initiation, disease onset or any disease-associated molecular bio-
marker. Characterisation of such risk factors is essential in
understanding disease pathogenesis, as well as in assessing an
individuals’ disease risk, patient stratification, treatment choice
evaluation, in a future personalised medicine paradigm, and
planning disease prevention strategies.

There are several classes of longitudinal study designs,
including prospective vs. retrospective studies and observational
vs. experimental studies, and each of these can be implemented
with a particular application-specific experimental design. Also,
as the risk factors (or covariates) can be either static or time-
varying, statistical analysis tools need to be versatile enough so
that they can be appropriately tailored to every application.
Traditionally, analysis of variance (ANOVA), general linear
mixed effect models (LME), and generalised estimating equations
are widely used in analysing longitudinal data due to their sim-
plicity and interpretability1. Although numerous advanced
extensions of these statistical techniques have been proposed,
longitudinal data analysis is still complicated for several reasons,
such as difficulties in choosing covariance structures to model
correlated outcomes, handling irregular sampling times and
missing values, accounting for time-varying covariates, choosing
appropriate nonlinear effects, modelling non-stationary (ns) sig-
nals, and accurate model inference.

Modern statistical methods for timeseries and longitudinal data
analysis make less assumptions about the underlying data gen-
erating mechanisms. These methods use predominantly non-
parametric models, such as splines2, and more recently latent
stochastic processes, such as Gaussian processes (GP)3,4. While
spline models can implement complex nonlinear functions, they
are less efficient in modelling effects of covariate interactions. GP
is a principled, probabilistic approach to learn non-parametric
models, where nonlinearity is implemented through kernels5. A
GP modelling framework is adopted in this work due to its
flexibility and probabilistic formulation.

GPs have become a popular method for non-parametric
modelling, especially for time-series data, and a wide variety of
kernel functions have been proposed for different modelling
tasks. A GP model can be made additive by defining the kernel
function to be a sum of kernels. Similarly, a product of two or
more kernels is also a valid kernel5. Thus, GPs can be made more
interpretable and flexible by decomposing the kernel into a sum
of individual and product (interaction) kernels much in the same
way, conceptually, as with standard linear models. Here we can
view the individual kernels as flexible nonlinear functions, which
corresponds to the linear terms in linear regression. Plate6 was
among the first to formulate additive GPs by proposing a sum of
univariate and multivariate kernels in an attempt to balance
between model complexity and interpretability. Duvenaud et al.7

considered an additive kernel that includes all input interaction
terms and proposes a method for learning point estimates of
kernel parameters by maximising the marginal likelihood. More
complex kernel functions and structures were considered later8.
Gilboa et al.9 proposed Bayesian inference for additive GPs,
whereas a hypothesis testing framework for nonlinear effects with
GP was later proposed10. Bayesian semi-parametric models4 and
additive GP regression together with Bayesian inference meth-
ods11 were proposed in the context of longitudinal study designs.
Schulam et al.12 presented a method that combines linear com-
ponents, spline components, and GP components to model a data
set with a hierarchical structure. Computationally efficient model

inference for additive GP models (AGPM) using sparse approx-
imations and variational inference was recently proposed13.

We present LonGP, a flexible and interpretable non-parametric
modelling framework together with a versatile software imple-
mentation that solves commonly faced challenges in longitudinal
data analysis. LonGP implements an additive GP regression
model, with appropriate product kernels, that is specifically
designed for longitudinal biomedical data with complex experi-
mental designs. LonGP inherits the favourable features of GPs
and multiple kernel learning. Our method extends previous GP
(as well as linear mixed effect) models in several ways. Contrary
to previous GP methods, LonGP implements a multi-level model
that is conceptually similar to the commonly used linear models,
and thus enables modelling individual-specific time-varying
random effects, for example. LonGP also models ns signals using
ns kernel functions and provides interpretable results for the
effects of individual covariates and their interactions. We also
develop a fully-Bayesian, predictive inference for LonGP and use
that to carry out model selection, i.e. to identify covariates that are
associated with a given study outcome value.

We demonstrate LonGP’s performance and accuracy by ana-
lysing various simulated and real longitudinal -omics data sets,
including high-throughput longitudinal proteomics and metage-
nomics data. We also compare LonGP with LME and GPs with
automatic relevance determination (GP-ARD) kernel. LonGP
with its full functionality is developed as an open-source software
tool, which provides great convenience and flexibility of non-
parametric longitudinal data analysis for applied research.

Results
Additive GP. Linear models and their mixed effect variants have
become a standard tool for longitudinal data analysis. However, a
number of challenges still persist in longitudinal analysis, e.g.
when data contains nonlinear and ns effects.

GP are a flexible class of models that have become popular in
machine learning and statistics. Realizations from a GP
correspond to random functions and, consequently, GPs
naturally provide a prior for an unknown regression function
that is to be estimated from data. Thus, GPs differ from standard
regression models in that they define priors for entire nonlinear
functions, instead of their parameters. While nonlinear effects can
be incorporated into standard linear models by extending the
basis functions e.g. with higher order polynomials, GPs can
automatically detect any nonlinear as well as ns effects without
the need of explicitly defining basis functions5. By definition,
the prior probability density of GP function values f(X)= (f(x1),
f(x2), ⋯, f(xN))T for any finite number of fixed input covariates X
= (x1, x2, ..., xN) (where xi 2 X ) is defined to have a joint
multivariate Gaussian distribution

f ðXÞ � Nð0;KX;XðθÞÞ; ð1Þ

where elements of the N-by-N covariance matrix are defined by
the GP kernel function [KX,X(θ)]i,j= k(xi, xj|θ) with parameters θ.
Mean in Eq. (1) can in general depend on X but zero mean is
often assumed in practice. Covariance (also called the kernel
function) of the normal distribution defines the smoothness of
the function f, i.e. how fast the regression function can vary.
Intuitively speaking, although GP is defined such that any finite-
dimensional marginal has a Gaussian distribution, GP regression
is a non-parametric method in the sense that the regression
function f has no explicit parametric form. More formally, GP
contains countably infinite many parameters that define the
regression function, which are the function values f at all possible
inputs x 2 X . For a comprehensive introduction to GPs we refer
the reader to the book5 and the Methods section.
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GP models can be made more flexible and interpretable by
making them additive, where the kernel (covariance) is a sum of
kernels (covariances) and each kernel models the effect of
individual covariates or their interactions, i.e. f(x)= f (1)(x) + ⋯
+ f (D)(x). Intuitively one can think that each GP component f ( j)

now implements a nonlinear function that specifies the
corresponding effect, and the overall effect of several covariates
is then the sum of these nonlinear functions. This is achieved by
using specific kernels for different types of covariates, such as
squared exponential (se) kernel for continuous covariates,
constant (co), binary (bi), and categorical (ca) kernels for discrete
covariates, and products of these kernels for interaction terms.
Moreover, ns signals can be accounted for by incorporating ns
kernels.

Figure 1 shows an example where biomarker data y is
simulated from an AGPM that depends on continuous covariates
age (age) and time from a disease event (diseaseAge) as
well as discrete covariates ID (id) and location (loc) as follows:

y ¼ f ð1Þse ðageÞ þ f ð2Þca ´ seðid ´ ageÞ þ f ð3Þns ðdiseaseAgeÞ þ f ð4Þbi ðlocÞþ
f ð5Þbi ´ seðloc ´ ageÞ þ f ð6Þca ðidÞ þ ε, where id identifies an individual
and ε is additive noise. In other words, the underlying regression
function f is decomposed into six separate (nonlinear) functions
(Fig. 1, top row), and the measurements are corrupted by additive
noise ε (Fig. 1, top row, right panel). This example provides an
intuitive illustration of nonlinear and ns effects of different
kernels mentioned above. For example, continuous covariate age
has a nonlinear effect on y and similarly continuous covariate
diseaseAge has a nonlinear and ns effect on y, where the largest
change in the effect is localized at the time of disease onset. The
overall cumulative effect is then defined by the sum of the
individual nonlinear effects (Fig. 1, bottom row, second panel
from right), and measurements of biomarker y are corrupted by
additive noise (Fig. 1, bottom row, right panel). In case a study
contains other covariates or interaction terms, the additive GP
regression provides a very flexible modelling framework that can
be adjusted to a number of different applications.

Longitudinal studies typically involve two interrelated statis-
tical questions: prediction of an outcome and model selection.
While standard linear models are commonly constructed using
hypothesis testing, here we develop a Bayesian predictive model
selection method for the proposed AGPM that combines several
state-of-the-art methodologies, including both Markov chain
Monte Carlo (MCMC) sampling and approximate inference
using central composite design (CCD). Furthermore, our model

selection strategy involves assessing the predictive performance
using cross-validation (with or without importance sampling),
Bayesian bootstrap and a model search strategy for accurate
model selection. For details of LonGP’s statistical methodology,
see Methods section. We tested LonGP on simulated data sets and
two real data sets, including a longitudinal metagenomics14 and a
proteomics data sets15, which are described below.

Simulated data sets. We first carried out a large simulation study
to test and demonstrate LonGP’s ability to correctly infer asso-
ciations between covariates and target variables from longitudinal
data. Here, we are primarily interested in answering two ques-
tions: is LonGP able to select the correct model as well as the
correct covariates that were used to generate the data and can we
detect disease-associated signals. We simulated nonlinear and ns
-omics data sets from five different generative AGPM:

AGPM1 : y ¼ f ð1Þca ðidÞ þ ε

AGPM2 : y ¼ f ð1Þca ðidÞ þ f ð2Þse ðageÞ þ f ð3Þca´ seðid ´ ageÞ þ ε

AGPM3 : y ¼ f ð1Þca ðidÞ þ f ð2Þse ðageÞ þ f ð3Þca´ seðid ´ ageÞ þ f ð4Þbi ðlocÞ þ f ð5Þbi ´ seðloc ´ ageÞ þ ε

AGPM4 : y ¼ f ð1Þca ðidÞ þ f ð2Þse ðageÞ þ f ð3Þca´ seðid ´ ageÞ þ f ð4Þns ðdiseaseAgeÞ þ ε

AGPM5 : y ¼ f ð1Þca ðidÞ þ f ð2Þse ðageÞ þ f ð3Þca´ seðid ´ ageÞ þ f ð4Þbi ðlocÞ þ f ð5Þbi ´ seðloc ´ ageÞ
þf ð6Þns ðdiseaseAgeÞ þ ε

To set up our simulation scenario, we first use P= 40
individuals (which are divided into 20 cases and 20 controls for
AGPM4 and AGPM5 due to the presence of sero effect in cases),
each with ni= 13 data points ranging from 0 to 36 months with
an increment of three months, thus specifying the age covariate.
Other covariates are randomly simulated using the following
rules. The disease occurrence time is sampled uniformly from 0 to
36 months for each case subject and diseaseAge is computed
accordingly. We make the effect of diseaseAge ns by transforming
it with the sigmoid function from Eq. (16), such that majority of
changes occur in the range of −12 to +12 months. The loc and
gender are i.i.d. and sampled from a Bernoulli distribution with
p= 0.5 for each individual, where gender and group act as
irrelevant covariates. The continuous covariates are subjected to
standardisation after being generated, such that the mean of each
covariate is 0 and standard deviation is 1. We then sample latent
function values and data from all the five models with the kernels
described above (for details, see Methods), where the length-
scales for continuous (standardised) covariates are set to 1 for
the shared components and 0.8 for the interaction components.
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Fig. 1 An additive Gaussian process (Simulated data). The x-axis is age by default except for the third figure in the top panel, which is the disease age. The
top panel shows random functions drawn from different components, i.e. GPs of the specific kernels. The lower panel shows the cumulative effects of the
different components. The bottom right panel shows the simulated data
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We set the variances of each shared component to 4 and noise
to 3, i.e. σ2age ¼ σ2diseaseAge ¼ σ2loc ¼ σ2id ¼ 4 and σ2ε ¼ 3. With
these specifications, we generate 100 data sets for each AGPM. A
randomly generated longitudinal data set from AGPM5 is
visualised in Fig. 1 (Note, the order of latent functions is changed
for better visualisation).

In the inference, all covariates including irrelevant group and
gender are used, which means that there are 25= 32 candidate
models to choose from. Interaction terms are allowed for all
covariates except for diseaseAge. Table 1 shows the distribution of
selected models for each generating AGPM, with the numbers in
bold font indicating correctly identified models. Table 1 shows
that LonGP can achieve between 88% and 98% accuracy in
inferring the correct model with these parameter settings. Results
in Table 1 also show that it becomes more challenging to identify
the correct model as the generating model becomes more
complex, which is expected. LonGP can accurately detect the
disease related signal as well, since the diseaseAge covariate is
included in the final model for 97% of the simulation runs for
both AGPM4 and AGPM5 models (see Table 1). Moreover,
LonGP is notably specific in detecting the diseaseAge covariate as
the percentage of false positives is only 0%, 1% and 0% for
AGPM1, AGPM2 and AGPM3, respectively (see Table 1).

To better characterise LonGP’s performance in different
scenarios, we tested how the amount of additive noise affects
the results. We varied the noise variance as σ2ε 2 f1; 3; 5; 8g and
kept all other settings unchanged, effectively changing the signal
to noise ratio or the effect size relative to the noise level. Figure 2a
shows that the model selection accuracy increases consistently as
the noise variance decreases. We next tested how the number of
study subjects (i.e. the sample size P) affects the inference results.
We set the number of case-control pairs to {(10, 10), (20, 20),

(30, 30), (40, 40)} and kept all other settings unchanged. As
expected, Fig. 2b shows how LonGP’s model selection accuracy
increases as the sample size increases. Similarly, LonGP maintains
its high sensitivity and specificity in detecting the diseaseAge
covariate across the additive noise variances and samples sizes
considered here (see Supplementary Tables 1 and 2).

Finally, we also quantified how the sampling interval (i.e. the
number of time points per individual) affects the inference
results. We varied the sampling intervals as {2, 3, 4, 6} (months)
corresponding to ni ∈ {19, 13, 10, 7} time points for each
individual and kept all other simulation settings unchanged.
Supplementary Table 3 shows that, again, the model selection
accuracy changes consistently with the number of measurement
time points. Supplementary Table 4 shows that changing the
sampling interval has a small but systematic effect on the
sensitivity and specificity of detecting the diseaseAge covariate.

To demonstrate LonGP’s performance relative to previous
methods, we analysed the same simulated data sets using three
traditional methods: (a) LME, (b) LME with second-order
polynomial terms (LME-P), and (c) GP-ARD. We include GP-
ARD in performance comparisons because it is the most
commonly used method for assessing relevance of variables in
GP regression. The ARD kernel contains an individual length-
scale parameter for each input covariate, and the relevance of
each covariate is determined by the estimated length-scale value,
large (small) values indicate lower (higher) relevance. In LME and
LME-P, the same effects in the generating models are considered
as for LonGP. Specifically, individual variations are modelled as
random effects and others are modelled as fixed effects. In GP-
ARD, only shared effects are considered and interactions are not
considered. See Supplementary Method 1 for detailed
descriptions.

Table 1 Model inference results

Generating model AGPM1 AGPM2 AGPM3 AGPM4 AGPM5 Others diseaseAge
included

diseaseAge
not included

AGPM1 98 2 0 0 0 0 0 100
AGPM2 0 95 2 1 0 2 1 99
AGPM3 0 0 95 0 0 5 0 100
AGPM4 0 3 0 92 3 2 97 3
AGPM5 0 0 3 8 88 1 97 3

The data is simulated with P= 40 individuals (20 cases and 20 controls), noise variance σ2ε ¼ 3 and samples taken every 3 months. Rows show the number of times each model is inferred as the best
model out of 100 Monte Carlo simulations for each generating model. ‘Others’ corresponds to all the other 32− 5= 27 possible AGPM. The last two columns show the number of times if the diseaseAge
covariate is included in the final model
AGPM Additive GP Models
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Fig. 2 LonGP accuracy by varying noise and sample size. a Model selection accuracy as a function of noise variance. b Model selection accuracy as a
function of sample size. AGPM stands for Additive GP Models. y-axis shows the number of times the correct model is inferred as the best model out of 100
Monte Carlo simulations (Simulated data sets)
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Figure 3 shows the number of times the correct models were
identified and the number of times the diseaseAge term was
detected in the final model, for the same experiment settings as in
Table 1. LonGP has a notably better accuracy than the traditional
methods in selecting the correct model (Fig. 3a), as well as
significantly better sensitivity (AGPM4-5 in Fig. 3b) and
specificity (AGPM1-3 in Fig. 3b) in detecting the disease related
effect. Full results of LME, LME-P, and GP-ARD over all
simulated data sets are provided in Supplementary Note 1 and
Supplementary Data 1.

Overall, our results suggest that LonGP can accurately infer the
correct model structure and also detect a relatively weak disease
related signal with as few as 10 case-control pairs and notable
noise variance. Moreover, the model selection accuracy increases
as the number of individuals (biological replicates), the number of
time points, and signal to noise ratio increases.

Longitudinal metagenomics data set. We used LonGP to analyse
a longitudinal metagenomics data set14. In this data set, 222
children from Estonia, Finland, and Russia were followed from
birth until the age of three years through the collection of long-
itudinal stool samples, which were subsequently analysed by
metagenomic sequencing. The aim of this study was to char-
acterise the developing gut microbiome in infants from countries
with different socio-economic status and to determine the key
factors affecting the early gut microbiome development. Here, we
model the microbial pathway profiles (i.e. total count of meta-
genomic reads mapping to bacterial genes involved in a pathway)
quantifying the functional potential of the metagenomic com-
munities. There are in total N= 785 metagenomic samples. To
focus our analysis on pathways with sufficiently strong signal, we
include in our analysis pathways that have been detected (i.e. at
least one sequence read maps to genes of a pathway) in at least
64% (=500/785) of the samples. Let cij denote the number of
reads mapping to genes in the jth (j= 1, …, 394) pathway in
sample i (i= 1, …, 785) and Ci is the total number of sequencing
reads for sample i. The target variable is defined by
log2ðcij=Ci �medianðC1;C2; :::;CNÞ þ 1Þ.

We selected the following 7 covariates for our additive GP
regression based on their known interaction with the gut
microbiome: age, bfo, caesarean, est, fin, rus, and id. bfo indicates
whether an infant was breastfed at the time of sample collection;
caesarean indicates if an infant was born by Caesarean section;
est, fin, and rus are bi covariates indicating the home country of
the study subjects (Estonia, Finland, and Russia, respectively); id

denotes the study subjects. We use SE kernel for age and bfo, ca
kernel for id, and bi kernel for caesarean, est, fin, and rus.
Interactions are allowed for all covariates except for bfo.

We applied LonGP to analyse each microbial pathway as a target
variable separately and inferred the covariates for each target
variable as described above. The selected models and explained
variances of the components for all 394 pathways are available in
Supplementary Data 2. A key discovery in Vatanen et al.14 was that
Lipid A biosynthesis pathway was significantly enriched in the gut
microbiomes of Finnish and Estonian children compared to
Russian children. Our analysis confirmed the linear model
based analysis14 by selecting the following model for Lipid

A biosynthesis pathway: y ¼ f ð1Þse ðageÞ þ f ð2Þse ðbfoÞ þ f ð3Þbi ðrusÞ þ
f ð4Þca ðidÞ þ f ð5Þbi´ seðrus ´ ageÞ þf ð6Þca´ seðid´ ageÞ þ ε, which shows the
difference between the Russian and Finnish study groups.
Explained variance of bfo was 0.2% and bfo was thus excluded
from the final model. Figure 4a shows the normalised Lipid A
biosynthesis data together with the additive GP predictions using

kernels y ¼ f ð1Þse ðageÞ þ f ð3Þbi ðrusÞ þ f ð5Þbi´ seðrus ´ ageÞ. The obtained
model fit is similar to that reported by Vatanen et al.14 with an
exception that the apparent nonlinearity is captured by the AGPM,
but otherwise the new model conveys the same information. Our
analysis also identified many novel pathways with differences
between Finnish, Estonian, and Russian microbiomes and is
reported in Supplementary Data 2.

Longitudinal proteomics data set. We next analysed a long-
itudinal proteomics data set from a type 1 diabetes (T1D) study15.
Liu et al. measured the intensities of more than 2000 proteins
from plasma samples of 11 children who developed T1D and 10
healthy controls. For each child, nine longitudinal samples were
analysed with the last sample for each case collected at the time of
T1D diagnosis, resulting in a total of 189 samples. Detection of
T1D associated autoantibodies in the blood is currently held as
the best early marker that predicts the future development of
T1D, and most of the individuals turning positive for multiple
T1D autoantibodies will later on develop the clinical disease.
Identifying early markers for T1D that would be detected even
before the appearance of T1D associated autoantibodies is a
grand challenge. It would allow early disease prediction and
possibly even intervention.

Liu et al. used a linear mixed model with quadratic terms to
detect proteins that behave differently between cases and controls.
However, they only regressed on age since they did not take into
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Fig. 3Methods comparison. aModel selection accuracy. b Disease effect detection accuracy. As in Table 1, y-axis shows a the number of times the correct
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account different seroconversion ages (age at the first detection of
one or multiple T1D autoantibodies, as defined by Liu et al.15) of
the cases and therefore could not model changes associated with
seroconversion. We use LonGP to re-analyse this longitudinal
proteomics data set15 and try to find additional proteins with
differing plasma expression profiles between cases and controls in
general, as well as focusing on changes occurring close to
seroconversion. Note that the age at which the T1D autoanti-
bodies are detected is different for each individual. For each
individual, the GP sero effect is then localized at the individual-
specific seroconversion time point, making the sero effect
consistent in the sero age coordinate but difficult (or impossible)
to detect in the absolute age coordinate. The sero effect aims to
detect nonlinear and ns effects that appear at specific times before
and after the seroconversion, possibly near the time of the
seroconversion. The modelling is done with the following
covariates: age, sero (measurement time minus seroconversion
time, see Methods), group (case or control), gender, and id. 1538
proteins with less than 50% missing values are kept for further
analysis. We follow the same preprocessing steps15 to get the
normalised protein intensities. We use SE kernel for age, input
warped ns SE kernel for sero, bi kernel for group as well as for
gender, and ca kernel for id. Interactions are allowed for all
covariates except for sero. The selected models and explained
variances of each component for all 1538 proteins are reported in
Supplementary Data 3.

We detected 38 proteins that are associated with the group
covariate. In the original analyses by Liu et al.15 [Table 1 and
Supplementary Table S3], 18 of these proteins had the same
temporal expression trend between the cases and the controls. As
an example, we found the levels of Carbohydrate sulfotransferase
3 (UniProt Accession Q7LGC8) to be higher in cases than

controls. The selected model for the protein is y ¼ f ð1Þse ðageÞ þ
f ð2Þbi ðgroupÞ þ f ð3Þbi ´ seðgroup ´ ageÞ þ f ð4Þca ´ seðid ´ ageÞ þf ð5Þca ðidÞ þ ε.
Figure 5 shows the contribution of each component and the

cumulative effects. Figure 4b shows the cumulative effect y ¼
f ð1Þse ðageÞ þ f ð2Þbi ðgroupÞ þ f ð3Þbi ´ seðgroup ´ ageÞ against the real pro-
tein intensity to better visualise the predicted group difference.

We also detected altogether 47 proteins whose expression levels
were changed relative to the time of seroconversion (sero covariate),
with 20 of them having the same expression trend between the
cases and the controls based on the analyses by Liu et al.15

(Table 1 and Supplementary Table S3). For two selected proteins,
Prosaposin (Uniprot Accession P07602) and Opioid-binding
protein/cell adhesion molecule (Uniprot Accession Q14982),
protein expression levels were best explained by the LonGP

model y ¼ f ð1Þse ðageÞ þ f ð2Þca ´ seðid ´ ageÞ þ f ð3Þca ðidÞ þ f ð4Þns ðseroÞ þ ε.
Figure 4c shows the contribution of the sero component together
with the real (centred) protein intensities as a function of
seroconversion age for protein P07602. The sero component
increases and then stabilises at a higher baseline after seroconversion
in the cases. This is shown by the lower baseline of cases before
seroconversion and higher baseline after seroconversion. Supple-
mentary Fig. 1 shows the predicted mean of each component as well
as the cumulative effects for protein P07602. Supplementary Fig. 2
shows a different type of sero effect for protein Q14982 where a
temporary increase in protein intensity is observed close to the
seroconversion time for many T1D patients, in contrast to the
slowly decreasing age trend. Supplementary Fig. 3 shows the
predicted individual components and the cumulative effects for
protein Q14982.

Discussion
General LME is a simple yet powerful modelling framework that
has been widely accepted in biomedical literature. Still, applica-
tions of linear models can be challenging, especially when the
underlying data generating mechanisms contain unknown non-
linear effects and correlation structures or ns signals.

Here we have described LonGP, a non-parametric additive GP
model for longitudinal data analysis, which we demonstrate to
solve many of the commonly faced modelling challenges. As
LonGP builds on GP regression, it can automatically handle
irregular sampling time points and time-varying covariates.
Missing values are also easily accounted for via bi mask kernels
without any extra effort. More generally, LonGP provides a
flexible framework to choose appropriate covariance structures
for the correlated outcomes via the GP kernel functions, and the
chosen kernels are properly adjusted to the given data by carrying
out Bayesian inference for the kernel parameters. GP are known
to be capable of approximating any continuous function. Thus,
LonGP is applicable to any longitudinal data set. Furthermore,
incorporating ns kernels into the kernel mixture easily adapts
LonGP for ns signals. This allows us to model longitudinal
phenomenon whose statistical properties are not time-shift
invariant, which is especially useful for modelling e.g.
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normalised read counts of the samples. Russian, Finnish, and Estonian infant samples are depicted by the red, green, and blue colour dots, respectively.
The blue line shows the nonlinear age trend of Finnish and Estonian infants. The red line shows the age trend of Russian infants. The red and blue lines are
generated as the sum of components y ¼ fð1Þse ðageÞ þ fð3Þbi ðrusÞ þ fð5Þbi ´ seðrus ´ ageÞ. b Cumulative effect y ¼ fð1Þse ðageÞ þ fð2Þbi ðgroupÞ þ fð3Þbi ´ seðgroup ´ ageÞ against
real (centred) intensity of protein Q7LGC8 (Proteomics data set). Red lines are cases and blue lines are controls. c Predicted mean of the sero component
for protein P07602 (Proteomics data set). The dashed red lines show the measurements of cases and the dashed blue lines are controls. x-axis indicates
time from seroconversion and y-axis is the centred protein intensity. Mean seroconversion age of all cases (79.42 month) is used as the seroconversion
age for controls. The solid red line corresponds to the mean of the seroconversion component y ¼ fð4Þns ðseroÞ

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09785-8

6 NATURE COMMUNICATIONS |         (2019) 10:1798 | https://doi.org/10.1038/s41467-019-09785-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


pathophysiological mechanisms and changes that can have faster
dynamics around a disease onset time than changes at other time
points. While it is in principle possible to model ns signals with
linear models, ns GP regression with Bayesian inference can be
conveniently formulated and implemented using ns kernel
functions, as we have shown here. Similar to standard GP
regression methods, LonGP also provides predictions with
quantified uncertainties (Eqs. (19) and (22)). As an example,
corresponding to Fig. 4b, c, Supplementary Figs. 7 and 8 show the
one standard deviation around the predictive mean. As the effect
of individual covariates and their interactions can be quantified
from the kernel mixture, LonGP provides an interpretable, non-
parametric probabilistic analysis framework.

LonGP is equipped with an advanced Bayesian predictive
inference method that utilises several recent, state-of-the-art
techniques which make model inference accurate and improves
running time especially for larger data sizes and more complex
models. Finally, LonGP can be easily tailored for a variety of
different longitudinal study designs. For example, multiple dis-
ease sub-types can be accounted for by using a ca kernel instead
of a bi (case-control) kernel. Similarly, continuous phenotypes
can be modelled using continuous kernels. For example, the
ability to model the extensive, nonlinear age-associated changes
observed in serum protein expression levels during early child-
hood16 should improve the detection of disease-associated signals
from such data.

LonGP has at least three features which makes it more efficient
in our simulated data scenarios than the standard LME model.
First, kernels automatically implement arbitrary nonlinear effects,
whereas LME model is limited to linear (or second-order poly-
nomial) effects. This is accentuated by having several nonlinear
effects for individual covariates or their interactions. Moreover,
characterising the posterior of the kernel parameters further
improves LonGP’s ability to identify nonlinear effects: instead of
optimizing the kernel parameters to a given data set we also infer
their uncertainty, and thus improve predicting new/unseen data
points and inferring the covariate effects at the end. Second,
LonGP contains ns effects that can be difficult to model using
linear models. Third, LonGP naturally implements individual-
specific time-varying random effects, which we consider relevant
in modelling real biomedical longitudinal data sets, too.

Compared with traditional linear regression methods, LonGP
is also useful in finding relatively weak signals that have an
arbitrary shape. The dominant factor for Prosaposin (P07602)
expression in the longitudinal proteomics data set15 is age
(explained variance 25%), while the disease related effect sero
(explained variance 5.5%) is a minor factor, as shown in

Supplementary Fig. 1. Glucose-induced secretion of Prosaposin
has been observed from a murine pancreatic beta-cell line17.
Based on the LonGP analysis of the longitudinal proteomics
data15, the expression of Prosaposin in plasma decreases with age,
but the baseline expression of the protein stabilises at a higher
level in the cases after seroconversion. Similar changes were also
detected by LonGP for secretogranin-3 (Q8WXD2), a protein
with important functions in insulin secretory granules18, and
protein FAM3C (Q92520) also secreted from a murine beta-cell
line in response to glucose17. However, no statistically significant
differences were detected in the expression values of these pro-
teins between cases and controls in the original analyses15.
Seroconversion-associated changes in plasma levels of these
proteins might reflect changes in the function or status of pan-
creatic beta-cells already before the onset of T1D. These, as well
as other seroconversion-associated proteins revealed by our study
provide a list of candidate proteins for further analysis with a
more extensive sample size using, for example, targeted pro-
teomics approaches. Similarly, in the longitudinal metagenomics
data set14, we also observed nonlinear effects for many of the
covariates, some of which warrant further experimental studies.
Revealing such disease related effects is essential in understanding
mechanisms of disease progression and uncovering biomarkers
for diagnostic purposes.

Apart from LME, only a few software packages exist for
longitudinal data analysis. LonGP is accompanied by a software
package that has all the functionality described here. Overall,
supported by our results and open-source software implementa-
tion, we believe LonGP can be a valuable tool in longitudinal data
analysis.

Methods
Notation. We model target variables (gene/protein/bacteria/etc;) one at a time. Let
us assume that there are P individuals and there are ni time-series measurements
from the ith individual. The total number of data points is thus N ¼PP

i¼1 ni . We
denote the target variable by a column vector y= (y1, y2, ... yN)T and the covariates
by X= (x1, x2, ..., xN), where xi= (xi1, xi2, ..., xid)T is a d-dimensional column vector
and d is the number of covariates. We denote the domain of the jth variable by X j

and the joint domain of all covariates is X ¼ X1 ´X 2 ´ ::: ´Xd . In general, we use
a bold font letter to denote a vector, an uppercase letter to denote a matrix, and a
lowercase letter to denote a scale value.

Gaussian process. GP can be seen as a distribution of nonlinear functions5. For
inputs x; x′ 2 X , GP is defined as

f ðxÞ � GPðμðxÞ; kðx; x′ÞÞ; ð2Þ

where μ(x) is the mean and k(x, x′) is a positive-semidefinite kernel function that
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defines the covariance between any two realizations of f(x) and f(x′) by

kðx; x′Þ ¼ covðf ðxÞ; f ðx′ÞÞ; ð3Þ
which is called kernel for short. The mean is often assumed to be zero, i.e.
μðxÞ ¼: 0, and the kernel has parameters θ, i.e. k(x, x′|θ). For any finite collection of
inputs X= (x1, x2, ..., xN), the function values f(X)= (f(x1), f(x2), ..., f(xN))T have
joint multivariate Gaussian distribution

f ðXÞ � Nð0;KX;XðθÞÞ; ð4Þ
where elements of the N-by-N covariance matrix are defined by the kernel [KX,

X(θ)]i,j= k(xi, xj|θ).
We use the following hierarchical GP model

θ � πðϕÞ
f � Nð0;KX;XðθÞÞ
y � Nðf ; σ2ε IÞ;

ð5Þ

where π(ϕ) defines a prior for the kernel parameters (including σ2ε ), σ
2
ε is the noise

variance, and I is the N-by-N identity matrix. For a Gaussian noise model, we can
marginalise f analytically5

pðyjX; θÞ ¼ R pðyjf ;X; θÞpðf jX; θÞdf
¼ Nð0;KX;XðθÞ þ σ2ε IÞ:

ð6Þ

Additive GP. To define a flexible and interpretable model, we use the following
AGPM with D kernels

f ðxÞ ¼ f ð1ÞðxÞ þ f ð2ÞðxÞ þ � � � þ f ðDÞðxÞ
y ¼ f ðxÞ þ ε;

ð7Þ

where each f ðjÞðxÞ � GPð0; kðjÞðx; x′jθðjÞÞÞ is a separate GP with kernel-specific
parameters θ(j) and ε is the additive Gaussian noise. By definition, for any finite
collection of inputs X= (x1, x2, ..., xN), each GP f(j)(X) follows a multivariate
Gaussian distribution. Since a sum of multivariate Gaussian random variables is
still Gaussian, the latent function f also follows a multivariate Gaussian distribu-
tion. Denote Θ ¼ ðθð1Þ; θð2Þ; :::; θðDÞ; σ2ε Þ, then the marginal likelihood for the target
variable y is

pðyjX;ΘÞ ¼ N 0;
XD
j¼1

KðjÞ
X;XðθðjÞÞ þ σ2ε I

 !
; ð8Þ

where the latent function f has been marginalised out as in Eq. (6). To simplify
notation, we define

KyðΘÞ ¼
XD
j¼1

KðjÞ
X;XðθðjÞÞ þ σ2ε I: ð9Þ

For the purposes of identifying covariate subsets that are associated with a
target variable, we assume that each GP depends only on a small subset of
covariates f ðjÞðxÞ : XðjÞ ! X , where XðjÞ ¼ QX i; i 2 Ij � f1; ¼ ; dg and Y is the
domain for target variable. Ij are indices of the covariates associated with the jth
kernel.

Kernel functions for covariates. Longitudinal biomedical studies typically include
a variety of continuous, ca, and bi covariates. Typical continuous covariates include
age, time from a disease event (sampling time point minus disease event time
point), and season (time from beginning of a year). Typical ca or bi covariates
include group (case or control), gender, and id (id of an individual). In practice, to
set up the AGPM, one needs to choose appropriate kernels for different covariates
and their subsets (or interactions). We designed the following kernels to reflect
common domain knowledge of longitudinal study designs, which covers most
common modelling needs. Note that all kernels, including interactions, are auto-
matically determined given a set of input covariates according to the algorithm in
Supplementary Method 2.

Stationary kernels. In LonGP, we use the following specific stationary kernels
which only involve one or two covariates. se kernel for continuous covariates

kseðxi; xjjθseÞ ¼ σ2seexp �ðxi � xjÞ2
2‘2se

 !
; ð10Þ

where ‘se is the length-scale parameter, σ2se is the magnitude parameter and
θse ¼ ð‘se; σ2seÞ. Length-scale ‘se controls the smoothness and magnitude parameter
σ2se controls the magnitude of the kernel.

Periodic kernel for continuous covariates

kpeðxi; xjjθpeÞ ¼ σ2peexp � 2sin2ðπðxi � xjÞ=γÞ
‘2pe

 !
; ð11Þ

where ‘pe is the length-scale parameter, σ2pe is the magnitude parameter, γ is the

period parameter, and θpe ¼ ð‘pe; σ2pe; γÞ. Length-scale ‘pe controls the smoothness,

σ2pe controls the magnitude, and γ is the period of the kernel. In our model, γ
corresponds to a year.

co kernel

kcoðxi; xjjθÞ ¼ σ2co; ð12Þ
where θ ¼ ðσ2coÞ is the magnitude parameter of the co signal.

ca kernel for discrete-valued covariates

kcaðxi; xjÞ ¼
1; if xi ¼ xj
0; otherwise:

�
ð13Þ

bi (mask) kernel for bi covariates

kbiðxi; xjÞ ¼
1; if xi ¼ 1 and xj ¼ 1

0; otherwise:

�
ð14Þ

Product kernel between any two valid kernels, such as kbi(⋅) and kse(⋅) (similarly
for any other pair of kernels)

kbi ´ seð�Þ ¼ kbiðxip; xjpjθðp′Þbi Þkseðxiq; xjqjθðq′Þse Þ; ð15Þ

where θðp′Þbi and θðq′Þse are kernel parameters for the pth and qth covariates,
respectively.

Non-stationary (ns) kernel. It may be realistic to assume that the target variable
(e.g. a protein) changes rapidly only near a special event, such as disease initiation
or onset. This poses a challenge for GP modelling with se kernel since the kernel is
stationary: changes are homogeneous across the whole time window. ns GPs can be
implemented by using special ns kernels, such as the neural network kernel, by
defining the kernel parameters to depend on input covariates19–21 or via input or
output warpings22. We propose to use the input warping approach and define a
bijective mapping ω:(−∞, + ∞) → (−c, c) for a continuous time/age covariate t as

ωðtÞ ¼ 2c � �0:5þ 1

1þ e�aðt�bÞ

� �
; ð16Þ

where a, b, and c are predefined parameters: a controls the size of the effective time
window, b controls its loc, and c controls the maximum range. The ns kernel is
then defined as

knsðt; t′jθseÞ ¼ σ2seexp �ðωðtÞ � ωðt′ÞÞ2
2‘2se

� �
; ð17Þ

where θse are the parameters of the SE kernel.
Supplementary Fig. 4 shows an example transformation with a= 0.5, b= 0 and

c= 40, where we limit the disease related change to be within one year of the
disease event. Effectively, all changes in the transformed space correspond
approximately to ±12 month time window in the original space. Supplementary
Fig. 5 shows randomly sampled functions using stationary and ns SE kernels with
the same kernel parameters. The ns SE kernel naturally models signals that are
spike-like or exhibit a level difference between before and after the disease event,
which can be interpreted as a permanent disease effect.

The same parameters as Supplementary Fig. 4 are used for ns kernels in all
experiments of the Results section.

Kernel specification in practice. The data sets analysed in this work include 11
covariates and covariate pairs which we model using the following kernels (see next
section for prior specifications). age: The shared age effect is modelled with a slowly
changing stationary SE kernel. Time from a disease event or diseaseAge: We use the
product of the bi kernel and the ns SE kernel (assuming cases are coded as 1 and
controls as 0). season: We assume that the target variable exhibits an annual period
and is modelled with the periodic kernel. group: We model a baseline difference
between the cases and controls, which corresponds to average difference between
the two groups, using the product of the bi kernel and the co kernel. gender: We
use the same kernel as for group covariate. loc: bi covariate indicating if an indi-
vidual comes from a certain loc. We use the same kernel as for group covariate. id:
We assume baseline differences between different individuals and model that by
the product of the categorical kernel and the co kernel. group × age: We assume
that the differences between cases and controls varies across age. That difference is
modelled by the product of the bi kernel and the stationary SE kernel. gender × age:
The same kernel as for group × age is used for this interaction term. It implements
a different age trend for males and females. id × age: We assume different indivi-
duals exhibit different age trends. This longitudinal random effect is modelled by
the product of the ca kernel and the SE kernel. This kernel is especially helpful for
modelling individuals with outlying data points. group × gender: This interaction
term assumes that male (or female) cases have a baseline difference compared to
others. The product of two bi kernels and the co kernel is used. Although discrete
covariates are modelled as a product of the co kernel and the bi or ca kernel, the co
kernel is not explicitly included in our notation.

In practice, we often observe missing values in the covariates. Missing values
can be due to technical problems in measurements or because some covariates may
not be applicable for certain samples, e.g. diseaseAge is not applicable to controls
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since they do not have a disease. In LonGP, we construct a bi flag vector for each
covariate. The missing values are flagged as 0 and non-missing values are flagged as
1. Then, we construct a bi kernel for this flag vector and multiply it with any kernel
that involves the covariate. Consequently, any kernel involving a missing value is
evaluated to 0, which means that their contribution to the target variable is 0. All
missing values are handled in this way by default and we do not use any extra
notations for it. Interaction terms always refer to product kernels with non-missing
values, assuming missing values are already handled.

Prior specifications. Before the actual GP regression, we standardise the target
variable and all continuous covariates such that the mean is zero and the standard
deviation is one. This helps in defining generally applicable priors for the kernel
parameters. After the GP regression, the predictions are transformed back to the
original scale. We visualise the results in the original scale after centering the data
by subtracting the mean.

We define a prior pðΘÞ ¼QD
j¼1 pðθðjÞÞ ´ pðσ2ε Þ for the kernel parameters as

follows. For continuous covariates without interactions, we use the log normal
prior (μ= 0 and σ2= (log(1)− log(0.1))2/4) for the length-scales (‘se and ‘pe) and
the square root student-t prior (μ= 0, σ2= 1, and ν= 20) for the magnitude
parameters (σ2se and σ2pe). This length-scale prior penalises small length-scales such
that smoothness less than 0.1 has very small probability and the mode is
approximately at 0.3. For continuous covariates with interactions, the prior for the
magnitude parameters is the same as for without interactions and the half
truncated student-t prior (μ= 0, σ2= 1, ν= 4) is used for the length-scale, which
allows smaller length-scales.

Scaled inverse chi-squared prior (σ2= 0.01 and ν= 1) is used for the noise
variance parameter σ2ε . The period parameter γ of the periodic kernel is predefined
by the user. Square root student-t prior (μ= 0, σ2= 1, and ν= 4) is used for the
magnitude parameter σ2co of all co kernels. Supplementary Fig. 6 visualises all the
above-described priors with their default hyperparameter values.

Model inference and prediction. Given the AGPM, we are next interested in the
posterior inference of the model conditioned on data (y, X). Assume, for now, that
for each additive component f(j) the kernel k(j)(⋅), its inputs XðjÞ and prior are
specified. We use two different inference methods, MCMC and a deterministic
evaluation of the posterior with the CCD.

For MCMC we use the slice sampler as implemented in the GPStuff
package23,24 to sample the parameter posterior

pðΘjy;XÞ / pðyjX;ΘÞpðΘÞ; ð18Þ
where the likelihood is defined in Eq. (8). After convergence checking from 4
independent Markov chains (details in Supplementary Method 3), we obtain S
posterior samples fΘsgSs¼1, where Θs ¼ ðθð1Þs ; θð2Þs ; :::; θðDÞs ; σ2ε;sÞ. We use the
posterior samples to approximate the predictive density for test data
X� ¼ ðx�1 ; x�2 ; :::; x�nÞ

pðf �jy;X;X�Þ ¼ R pðf �jy;X;X�;ΘÞpðΘjy;XÞdΘ

� 1
S

PS
s¼1

pðf �jy;X;X�;ΘsÞ

¼ 1
S

PS
s¼1

Nðμs;ΣsÞ;

ð19Þ

where

μs ¼ KX� ;XðΘsÞKyðΘsÞ�1y ð20Þ

Σs ¼ KX� ;X� ðΘsÞ � KX� ;XðΘsÞKyðΘsÞ�1KX;X� ðΘsÞ ð21Þ
are the standard GP prediction equations adapted to additive GPs with

KX� ;XðΘsÞ ¼
PD

j¼1 K
ðjÞ
X� ;XðθðjÞs Þ encoding the sum of cross-covariances between the

inputs X and test data points X* (KX� ;X� is defined similarly) and Ky(Θs) is defined
in Eq. (9).

As an alternative approach to slice sampling for higher dimensional models, we
also use a deterministic finite sum using the CCD to approximate the predictive
densities for GPs25,26. CCD assumes a split-Gaussian posterior q(⋅) for (log-
transformed) parameters γ= log(Θ) and defines a set of R points fγrgRr¼1
(fractional factorial design, the mode, and so-called star points along whitened
axes) to estimate the predictive density with a finite sum

pðf �jy;X;X�Þ � PR
r¼1

pðf �jy;X;X�; γrÞqðγrÞΔr

¼ PR
r¼1

Nðμr ;ΣrÞqðγrÞΔr ;

ð22Þ

where N(μr, Σr) is computed as in Eqs. (20, 21), q(γr) is the split-Gaussian
posterior, and Δr are the area weights for the finite sum26.

Predictions and visualisations for an individual kernel k(j) (1 ≤ j ≤D) are
obtained by replacing μs and Σs in Eqs. (19) and (22) with

μðjÞs ¼ KðjÞ
X� ;XðθðjÞs ÞKyðΘsÞ�1y ð23Þ

ΣðjÞ
s ¼ KðjÞ

X� ;X� ðθðjÞs Þ � KðjÞ
X� ;XðθðjÞs ÞKyðΘsÞ�1KX;X� ðθðjÞs Þ: ð24Þ

Similarly, predictions for a subset of kernels are obtained by replacing

KðjÞ
X� ;XðθðjÞs Þ and KðjÞ

X� ;X� ðθðjÞs Þ with the relevant sums.

Model comparison. We have described how to build and infer an AGPM for a
given target variable using a set of kernels and a set of covariates for each kernel. A
model M can be specified by a 3-tuple ðD; fkðjÞgDj¼1; fIjgDj¼1Þ, where D ≥ 1. How-
ever, all covariates may not be relevant for the prediction task and often the
scientific question is to identify a subset of the covariates that are associated with
the target variable. For model selection, we use two cross-validation variants and
Bayesian bootstrap as described below.

Leave-one-out cross-validation. We use leave-one-out cross-validation (LOOCV)
to compare the models when a continuous covariate such as age, diseaseAge or
season is added to a model. In this case, a single time point of an individual is left
out as test data and the rest are kept as training data. We use MCMC to infer the
parameters of a given model and calculate the following leave-one-out predictive
density

pðyijy�i;X;MÞ ¼
Z

pðyijΘ;X;MÞpðΘjy�i;X;MÞdΘ; ð25Þ

where y−i= y|yi and Θ are the parameters of the GP model M. This can be
calculated by setting f* ← yi, X* ← xi, y ← y−i and X ← X|xi in Eq. (19). The standard
LOOCV would require us to run the inference N times, which is time consuming
when N is large. In practice, we use importance sampling to sample p(Θ|y−i, X, M)
where the posterior p(Θ|y, X, M) of the full data y is used as the proposal dis-
tribution. We thus approximate Eq. (25) as

pðyijy�iÞ ¼
R pðyi jΘÞpðΘjy�iÞ

pðΘjyÞ pðΘjyÞdΘ

� PS
s¼1

pðyi jΘsÞpðΘs jy�iÞ
pðΘs jyÞ

� 1PS
s¼1

1
pðyi jΘs Þ

ð26Þ

where we have omitted X and M in the notation for simplicity and Θs is a MCMC
sample from the full posterior p(Θ|y). However, directly applying Eq. (26) usually
results in high variance and is not recommended. We use a recently developed
Pareto smoothed importance sampling to control the variance by smoothing the
importance ratios p(Θs|y−i)/p(Θs|y)27,28.

The importance sampling phase is fast and it is shown to be accurate27.
Therefore, we only need to run MCMC inference once for the full training data.
Once the leave-one-out predictive probabilities in Eq. (25) are obtained for all the
data points, the GP models are compared using Bayesian bootstrap described later
this section.

Stratified cross-validation. In stratified cross-validation (SCV), we leave out all
time points of an individual as test data and use the rest as training data. SCV is
used when a ca/bi covariate, such as group or gender, is added to the model. Let yi
denote all measured time points corresponding to an individual i (Xi is defined
similarly) and y−i= y\yi. Similar to LOOCV, we compute the predictive density of
the test data points yi

pðyijy�i;X;MÞ ¼
Z

pðyijΘ;X;MÞpðΘjy�i;X;MÞdΘ: ð27Þ
This can be calculated by setting f* ← yi, X* ← Xi, y ← y−i, and X ← X−i in Eq.

(22). Since importance sampling does not work well in this case, we apply the CCD
inference P times (once for each individual). Also, we use CCD with SCV as it is
much faster than MCMC.

Model comparison using Bayesian bootstrap. After obtaining the leave-one-out
predictive densities (Eqs. (25) or (27)) for a collection of models, we use Bayesian
bootstrap to compare the involved models. Let us start with a simple case where
two models M1 and M2 are compared. In the LOOCV setting, we compare the
models by computing the average difference of their log-predictive densities

1
N

XN
i¼1

logðpðyijy�i;X;M1ÞÞ � logðpðyijy�i;X;M2ÞÞ
� �

; ð28Þ

which measures the difference of the average prediction accuracy of the two
models. If Eq. (28) is greater than 0, then model M1 is better than M2, otherwise
model M2 is better than M1.

Comparison in Eq. (28) does not provide a probabilistic quantification of how
much better one model is compared to the other. We thus approximate the relative
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probability of a model being better than another model using Bayesian bootstrap29,
which assumes yi only takes values from the observations y= (y1, y2, ... yN)T and
has zero probability at all other values. In Bayesian bootstrap, the probabilities of
the observation values follow the N-dimensional Dirichlet distribution Dir(1, 1, ...,
1). More specifically, we bootstrap the samples NB times (b= 1, …, NB) and each
time we get the same N observations y, with each observation taking weight wbi

(i= 1, …, N) from the N-dimensional Dirichlet distribution. The NB bootstrap
samples are then summarised to obtain the probability of M1 being better than M2

1
NB

XNB

b¼1

δ
1
N

XN
i¼1

wbilog
pðyijy�i;X;M1Þ
pðyijy�i;X;M2Þ
� �( )

; ð29Þ

where δ{⋅} is the Heaviside step function and wbi is the bootstrap weight for the ith
data point in the bth bootstrap iteration27. We call the result of Eq. (29) LOOCV
factor (LOOCVF).

The above strategy also works when comparing multiple models. Instead of
calculating the heaviside step function in the bth bootstrap iteration, we simply
choose the model with the highest rank by sorting the models using

1
N

XN
i¼1

wbi logðpðyijy�i;X;MmÞÞ
�

; ð30Þ

where m indices the model. In the end, we count the occurrences Nm of each model
being the best across all NB bootstrap samples and we compute the posterior
probability of model Mm as Nm/NB, which we term as the posterior rank
probability.

For SCV, we replace yi with yi and y−i with y−i in Eqs. (28, 29) and follow the
same procedure as above to compare the models. Eq. (29) is then termed as the
SCV factor (SCVF). In practice, we set the threshold of the LOOCVF to be 0.8 and
SCVF to be 0.95, i.e. the LOOCVF (resp. SCVF) of the extended model versus the
original model needs to be larger than 0.8 (resp. 0.95) for a continuous covariate
(resp. bi covariate) to be added.

Although Eq. (30) can be used to compare any subset of models, complex
models will dominate the posterior rank probability when compared together with
simpler models. Hence, LonGP only uses it to compare candidate models of similar
complexity (see next Section and Supplementary Method 2).

Step-wise additive GP regression algorithm. The space of all models is large and
thus an exhaustive search for the best model over the whole model space would be
too slow in practice. Two commonly used model (or feature) selection methods
include forward and backward search techniques. Starting with the most complex
model, as in the backward search approach, is not practical in our case, so we
propose to use a greedy forward search approach similar to step-wise linear
regression model building. That is, we start from the base model that only includes
the id covariate. Then we add continuous covariates to the model sequentially until
the model cannot be further improved. During each iteration, we first identify the
covariate that improves the model the most (Eq. (30)) and test if the LOOCVF of a
new proposed model versus the current model exceeds the threshold of 0.8 (Eq.
(29)). While including a continuous covariate, we also include relevant interaction
terms (allowed interaction terms defined by the user). After adding continuous
covariates, we add discrete (ca or bi) covariates sequentially to the model until it
cannot be further improved. As with continuous covariates, during each iteration,
we first identify the discrete covariate that improves the model the most and test if
the SCVF of a new proposed model versus the current model exceeds the threshold
of 0.95. While including a discrete covariate, we also include relevant interaction
terms (allowed interactions specified by user). Details of our forward search
algorithm are given in Supplementary Method 2 together with a pseudo-algorithm
description. We note that although step-wise model selection strategies are com-
monly used with essentially all modelling frameworks, they have the danger of
overfitting a given data. To avoid overfitting, we implement our search algorithm
such that an additional component is added to the current model only if the more
complex model improves the model fit significantly, as measured by the LOOCVF
and SCVF.

Once all the covariates have been added, the kernel parameters of the final
model are sampled using MCMC and kernel-specific predictions on the training
data X are computed using Eq. (19). Additionally, a user can choose to exclude
kernels that have a small effect size as measured by the fraction of total variance
explained. We require component specific variances to be at least 1%. The software
is implemented using features from the GPStuff package24 and implementation is
discussed in Supplementary Method 4.

Data availability
All data generated or analysed during this study are included in this published article
(and its supplementary information files).

Code availability
LonGP software tool and preprocessed data sets are available at https://github.com/
chengl7/LonGP.
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