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The study of free-living amoebae has proven valuable to explain
the molecular mechanisms controlling phagocytosis, cell adhe-
sion and motility. In this study, we identified a new adhesion
molecule in Dictyostelium amoebae. The SibA (Similar to Integrin
Beta) protein is a type I transmembrane protein, and its cytosolic,
transmembrane and extracellular domains contain features also
found in integrin b chains. In addition, the conserved cytosolic
domain of SibA interacts with talin, a well-characterized partner
of mammalian integrins. Finally, genetic inactivation of SIBA
affects adhesion to phagocytic particles, as well as cell adhesion
and spreading on its substrate. It does not visibly alter the
organization of the actin cytoskeleton, cellular migration or
multicellular development. Our results indicate that the SibA
protein is a Dictyostelium cell adhesion molecule presenting
structural and functional similarities to metazoan integrin b

chains. This study sheds light on the molecular mechanisms
controlling cell adhesion and their establishment during evolution.
Keywords: adhesion; Dictyostelium; integrin; motility; talin
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INTRODUCTION
Cell–substrate adhesion is a crucial step in many biological
processes such as development, wound healing, metastasis and
phagocytosis. In mammalian cells, several proteins are involved
in cellular adhesion, in particular cell-surface receptors,
signalling molecules and components of the actin cytoskeleton.

Integrin-mediated cell adhesion is one of the most widely studied
adhesion mechanisms. Integrins are heterodimeric type I trans-
membrane proteins composed of one a-subunit and one
b-subunit, which bind to the extracellular matrix by their
extracellular domain and control cell spreading, migration,
proliferation and survival (Schwartz, 2001).

The amoeba Dictyostelium discoideum is a widely used model
to study cellular adhesion, phagocytosis and the dynamics of the
actin cytoskeleton. This unicellular organism is amenable to
genetic analysis, mainly owing to its fully sequenced haploid
genome (Eichinger et al, 2005). Many gene products have been
implicated in various aspects of the phagocytic process in
Dictyostelium on the basis of the analysis of targeted knockout
mutants (Bracco et al, 2000) or of mutants identified in random
genetic screenings (Cornillon et al, 2000; Fey et al, 2002; Gebbie
et al, 2004). Nevertheless, the receptors controlling the adhesion
of free-living Dictyostelium cells to their substrate and to
phagocytic particles have not been unambiguously identified.

Here, we report the identification and characterization of
a Dictyostelium adhesion molecule, named SibA, which presents
several features also found in mammalian integrin b chains.
These results may shed light on the origin of adhesion
molecules in evolution.

RESULTS AND DISCUSSION
SibA, a membrane protein involved in phagocytosis
To identify new genes involved in phagocytosis, we mutagenized
Dictyostelium cells by random insertion of a plasmid, and selected
a mutant defective for phagocytosis of fluorescent latex beads.
On the basis of its resemblance to integrins (see below), the
corresponding gene was named SIBA (Similar to Integrin Beta). In
the sibA mutant, the mutagenic plasmid is inserted in the
DDB0187447 gene (Fig 1A), resulting in the absence of the
corresponding transcript (Fig 1B). The SibA protein (1,928 amino-
acid residues) has a putative endoplasmic reticulum insertion
signal sequence at its amino terminus (position 1–21) and a
transmembrane domain towards its carboxyl terminus (position
1859–1881), suggesting that it is a type I transmembrane protein.
Indeed, cell-surface biotinylation followed by immunoprecipitation
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confirmed that SibA is present at the cell surface (Fig 2A).
Four genes encoding homologues of SibA are present in the
Dictyostelium genome (DDB0187821, DDB0187822,
DDB0219318, DDB0187788), and positioned, like SIBA, on
chromosome V. The first three are adjacent and arranged in
tandem, and the fourth is in close proximity, suggesting a recent
expansion of this gene family. Consistent with this hypothesis, the
overall structure of Sib proteins is almost identical.

The extracellular domains of Sib proteins contain an
immunoglobulin-like fold (E-set, CL-0159, positions 174–235), a
cysteine-rich domain (positions 394–461) and a von Willebrand
factor type A domain (VWA, positions 520–691; Fig 1C). These
three domains are commonly found in the extracellular domains
of secreted or membrane-bound proteins and in many instances
have been implicated in cell–substrate adhesion. VWA domains
are ubiquitous in cytoplasmic proteins, but are also specifically
deployed in several metazoan extracellular proteins, with integrin
b subunits as very early evolutionary representatives (Whittaker
& Hynes, 2002). Although lacking several features characteristic
of metazoan integrin b chains, the Sib VWA domains
show particularly high homology to integrin b VWA domains
(supplementary information 1 online).

In addition, Sib extracellular domains contain four repeats
of about 200 amino-acid residues (R1–R4; Fig 1C; supplementary
Fig S2 online) also found in several surface or secreted bacterial
proteins, in particular VCBS (IPR010221) and RTX (Lally et al,
1999) proteins. These bacterial proteins are involved in the
interaction of bacteria with their substrate or with host cells,
suggesting that these repeats could have a role in binding to
certain substrates. We could not detect similar repeats in any

eukaryotic protein other than Dictyostelium Sib proteins. Sib
proteins thus represent hybrid structures associating bacterial-like
repeats and metazoan-like features (an extracellular VWA
domain), suggesting that these bacterial repeats might have been
acquired from bacterial genomes by horizontal transfer.

The Sib transmembrane and cytosolic domains are particularly
conserved among Sib proteins. The transmembrane domain
is unusually rich in glycine residues, forming notably a GxxxG
motif (Fig 1E). A GxxxG membrane motif is important for the
oligomerization of several homo- and hetero-oligomeric mem-
brane complexes (Cosson & Bonifacino, 1992; Russ & Engelman,
2000) and is a key feature of integrins’ structure (Schneider &
Engelman, 2004). The cytosolic domain contains two highly
conserved NPxY motifs separated by eight amino-acid residues
(Fig 1D), a motif also found in integrin b chains.

The cytosolic domain of Sib proteins interacts with talin
The conserved cytoplasmic domain of integrin b chains mediates
interactions with several cytosolic proteins. One of these, talin,
has a crucial role in integrin-mediated adhesion (Calderwood,
2004). However, integrin b cytosolic domains contain a trypto-
phan residue crucial for this interaction, which is not conserved in
Sib proteins. To test the ability of the SibA cytosolic domain to
interact with talin, we expressed a fusion protein of glutathione
S-transferase (GST) with the cytosolic domain of SibA in bacteria,
purified it and immobilized it on Sepharose beads and then
incubated the beads with a Dictyostelium cellular lysate. Talin
bound to GST–SibA, but not to GST alone (Fig 2B). As expected,
no signal was detected when a lysate from talin knockout cells
was used. In addition, talin also bound to GST–SibB, GST–SibC,

I II III IV
3′5′

A B

kb

6.6

5.0

W
T si

bA

sibA

SS

VWA

R-1

R-2

R-4

R-3

D.d. Sib

H.s. Intβ1

C

Membrane

Cytosol

SibA  KKSAPPTDAFFGEGAFADGAVSTNPMYEESGRSAINPLYEASSENL

SibB  RKAAPPTDAFFDEGAFLGDGVNSNPMYQESKNGGENPLYLASNETL

SibC  RKAAPPTDTFFSEAAFLGDGVSSNPLYEQSASAAENPLYQSASDTTD

SibD  KRSSPPTDTFFDEGAFMGD-VSSSPIYEKSETSYVSRIYEGADD

SibE  RKAAPPTDTFFSEAAFLGDGVNANPLYEQSASAAENPLYQSASDNTD

               F  E          nP Y        np Y   

Intβ1 IHDRREFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKYEGK

D

SibA     KTVLTGAIAGAAAGAGLLAAGAWFLLKK

SibB     KTVLSGAIAGAAAGTALIAAAMWKMLRK

SibC     KTVLTGAIAGAAAGTALIAAAAWRLLRK

SibD     KTVLSGAIAGASAGAALLVIGLWKMIKR

SibE     KTVLTGAIAGAAAGTALIAAAAWKLLRK

              G  AG      L     W  L

Intβ1  DIIPIVAGVVAGIVL-IGLALLLIWKLLMI

E

CRD

mut1 mut2

IGL

Fig 1 | Structure of Sib proteins. (A) Organization of the SIBA gene. Exons are shown as numbered black boxes (I–IV). The position of the vector

insertion site in sibA mutant cells is indicated (nucleotide 1235 of the coding sequence). Scale bar, 1 kb. (B) A 6-kb SIBA transcript was detected by

northern blot in wild-type (WT) but not in sibA mutant cells. (C) Structure of the SibA protein, and of human integrin b. CRD, cystein-rich domain;

D.d., Dictyostelium discoideum; H.s., Homo sapiens; IGL, immunoglobulin-like fold; R, repeated motif; SS, cleavable signal sequence; VWA,

von Willebrand factor type A domain. (D) The cytoplasmic domain of Sib proteins contains a conserved motif also found in integrin b chains.

(E) The transmembrane domain of Sib proteins contains a GxxxG motif also present in integrin b chains.

Adhesion molecule in Dictyostelium

S. Cornillon et al

EMBO reports VOL 7 | NO 6 | 2006 &2006 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

scientificreport

618



GST–SibD and GST–SibE (Fig 2). Mutational analysis showed that
the membrane-proximal NPxY motif (mutated in mut1) is essential
for binding to talin, whereas the membrane-distal motif (mut2) is
dispensable (Fig 2C). A similar finding was previously reported
for integrin b chains (Calderwood, 2004).

Cellular adhesion of sibA mutant cells is defective
In several phagocytosis mutants characterized so far (Fey et al,
2002; Gebbie et al, 2004), the phagocytosis defect is caused by
a defect in cellular adhesion to particles. For sibA mutant cells,
phagocytosis of latex beads was altered (Fig 3A), but macro-
pinocytosis, which was determined by measuring the uptake of
fluid phase, was unaffected (Fig 3B). In addition, sibA mutant cells
phagocytosed Klebsiella bacteria almost normally (Fig 3B),
indicating that the machinery responsible for engulfment of
particles was still functional and suggesting that the primary
cause of the phagocytosis defect in sibA cells might be a specific
defect in cell adhesion. To confirm this hypothesis, we measured
the ability of sibA cells to establish a tight contact with their
substrate. Cells were incubated on a glass substrate, and their zone
of contact with the glass was visualized and measured by
interference reflection microscopy (IRM; Fig 3C). The contact

area was markedly smaller for sibA cells (average 14 mm2) than for
wild-type cells (41 mm2; Fig 3D), suggesting that sibA mutant cells
adhered less readily to their substrate.
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We then directly measured the adhesion of mutant cells to their
substrate. Cells attached to a glass substrate were subjected to
a flow of medium, and the speed of the flow necessary to detach
50% of the cells was determined. The strength necessary to detach
the cells can be extrapolated and represents the strength of the
cellular adhesion to the substrate (Decave et al, 2002). The
adhesion of sibA mutant cells (0.170.05 Pa) was significantly
weaker than that of wild-type cells (0.670.05 Pa), indicating that
SibA is necessary for efficient cell–substrate adhesion.

Defects in cellular adhesion can be associated with alterations
of the actin cytoskeleton, resulting in a range of anomalies in cell
shape and migration, or in cytokinesis (Gebbie et al, 2004). No
alteration in the organization of the cytoskeleton was seen in sibA
cells (Fig 3E). Motility of sibA cells (2.770.2 mm/min) was also
identical to that of wild-type cells (3.170.2 mm/min). Finally, only
a small proportion of sibA cells were multinucleate (5.970.4%),
indicating that there was no significant defect in cytokinesis. Thus,
besides their defect in cellular adhesion, sibA mutant cells did not
show any important alteration in the organization and function
of the actin cytoskeleton.

Social amoebae, such as Dictyostelium, undergo multicellular
development in nutrient-free medium. Here, we observed that
sibA mutant cells undergo normal development, with the
formation of tight aggregates after 6 h of starvation, and of fruiting
bodies after 24 h (Fig 4). This indicates that SibA does not have an
essential role in the cell-to-cell interactions that allow multi-
cellular development. Analysis of messenger RNA levels by real-
time PCR indicated that SibA, SibB, SibC and SibE are expressed in
vegetative as well as in starved cells (S.C., unpublished data),
suggesting that for certain cellular processes SibB, SibC and SibE
may compensate for the lack of SibA.

Similarity between b integrins and Sib proteins
In summary, several features found in Dictyostelium Sib proteins
are also present in metazoan integrin b chains. First, like integrin b
chains, the extracellular domains of Sib proteins contain a VWA
domain. Second, the transmembrane and cytosolic domains of

Sib proteins are very similar to those found in integrin b chains. In
metazoan proteins, this specific configuration (a transmembrane
domain containing a GxxxG motif and two conserved cytosolic
NPxY motifs) is present only in integrin b chains. Third,
like integrin b chains, the cytosolic domain of Sib proteins
binds to talin. Finally, loss of SibA causes a specific alteration
in cellular adhesion.

There are, however, clear differences between Sib proteins and
metazoan b integrins: several domains typical of metazoan
integrins are not found in Sib proteins (Psi domain, repeated
EGF-like cystein-rich domains), and we have not identified a
Sib-associated subunit that would represent the equivalent of
a integrins. Several features found in Sib proteins (for example,
Sib bacterial-like repeats) are also absent from b integrins. Thus,
a phylogenetic relationship between Sib proteins and b integrins
remains highly speculative (see below).

Irrespective of their putative phylogenetic relationship, our
observations suggest a certain degree of functional similarity in the
way in which integrin b chains and Sib proteins connect the
extracellular space with the cytosolic machinery. This reinforces
the notion that cellular adhesion mechanisms are similar in
Dictyostelium and in mammalian cells, and that observations in
the Dictyostelium model system can be extrapolated meaningfully
to mammalian cells. A more detailed analysis of the structure and
function of Sib proteins will be necessary to determine further the
extent of the similarity between b integrins and Sib proteins.

Speculation
Metazoan integrin b chains and Dictyostelium Sib proteins could
be the products of convergent evolution. However, in view of the
similarities demonstrated in this study, we speculate that they
might stem from the same ancestral integrin b-like protein. This
ancestral b integrin would represent one of the first evolutionary
attempts to use VWA domains in extracellular domains, as
proposed previously (Whittaker & Hynes, 2002). This hypothesis
would place the appearance of b integrins long before the
appearance of Metazoa, as recent analysis of the Dictyostelium
genome indicated that Dictyostelium diverged from the line
leading to animals after the plant–animal split, but before the
divergence of fungi (Eichinger et al, 2005). The higher rate of
evolutionary change along the fungal lineage may explain why, so
far, no fungal integrin b-related molecules have been identified.

METHODS
Cell culture and mutagenesis. Cells were cultured at 21 1C in HL5
medium (Cornillon et al, 1998). To initiate multicellular develop-
ment, cells were plated on 1% agarose Petri dishes in nutrient-free
medium (5mM Na2HPO4, 5mM KH2PO4, 1mM CaCl2, 2mM
MgCl2, pH 6.5; Sussman, 1987).

The sibA mutant was isolated following a procedure described
previously (Cornillon et al, 2000). The plasmid rescued from
the original mutant was used to inactivate the SIBA gene
by homologous recombination in a DH1-10 wild-type strain
(Caterina et al, 1994; Cornillon et al, 2000), and these sibA
knockout cells were used for further characterization. Reverse
transcription of RNA from wild-type cells followed by PCR
amplification (Access QuickTM RT–PCR system, Promega,
Madison, WI, USA) and sequencing showed that the 50 coding
sequence of SIBA differed from the coding sequence predicted by

WT sibA

6 h

24 h

Fig 4 |Development of sibA mutant cells is normal. Wild-type (WT) or

sibA cells were starved to induce development. Cellular aggregates were

observed after 6 h and fruiting bodies after 24 h. Scale bar, 0.5mm.
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the genome sequencing centre, with two short exons instead
of one. For northern blot analysis, a SIBA probe was obtained
by PCR amplification of the genomic DNA using the primers
CCAACTCCAGGTTCATCTGG and GCACCATCAGCAAAAGCTCC.
The probe was radiolabelled and northern blot was carried
out as described (Cornillon et al, 1998). The SIBA sequence can
be found at www.dictybase.org (DDB0187447). Analysis of
protein sequences was carried out with SMART (Schultz et al,
1998), Blast (Altschul et al, 1990) and MULTALIN (Corpet,
1988) programs.
Cellular assays. Phagocytosis and fluid-phase uptake were
measured by incubating cells for 20min at 21 1C in HL5
containing 0.5-mm-diameter Fluoresbrite YG carboxylate micro-
spheres (Polysciences, Warrington, PA, USA), fluorescently
labelled Klebsiella (Cornillon et al, 2000) or 10 mg/ml Alexa647-
labelled dextran (Molecular Probes, Eugene, OR, USA). The
internalized fluorescence was measured in a fluorescence-
activated cell sorter after two washes with HL5 containing 0.1%
sodium azide (Cornillon et al, 2000). Velocity measurements and
staining of nuclei and of the actin cytoskeleton were also
performed as described (Gebbie et al, 2004).

To examine cell–substrate adhesion, cells were incubated for
4 h in HL5 on a glass coverslip, then observed by phase-contrast
microscopy and IRM (Verschueren, 1985), using an Axiovert 100
M microscope (Carl Zeiss AG) coupled to a Hamamatsu Photonics
camera, Openlab 3.0.6 software; contact surfaces were deter-
mined using the MetaMorph Offline software.
Biochemical methods. To express GST–Sib fusion proteins, the
sequence coding for each Sib cytosolic domain was cloned into
the bacterial expression vector pGEX-3X. The expression and
purification of GST fusion proteins on glutathione–Sepharose
beads was carried out as described (Smith & Johnson, 1988).
D. discoideum cells (5" 106) were lysed in 1ml of PBS containing
1% Triton X-100 and protease inhibitors (Ravanel et al, 2001).
Lysates were cleared by centrifugation (15min, 10,000g, 4 1C),
and supernatants preincubated twice with glutathione–Sepharose
beads before incubation for 16 h at 4 1C with GST fusion proteins
immobilized on Sepharose beads. Beads were washed five times
in lysis buffer and once in PBS, and bound proteins were separated
by SDS–polyacrylamide gel electrophoresis and transferred to
nitrocellulose membranes. Talin was observed as described
(Gebbie et al, 2004), with monoclonal anti-talin antibodies
(169.477.5; Kreitmeier et al, 1995).

To immunoprecipitate surface SibA, 6" 106 cells were
biotinylated, lysed and immunoprecipitated with a rabbit
anti-SibA polyclonal antibody raised against the cytoplasmic
domain of SibA. Biotinylated SibA was shown with horseradish
peroxidase-coupled avidin as described (Ravanel et al, 2001).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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